CN108080645B - 一种降低316l不锈钢球形粉末空心率的方法 - Google Patents

一种降低316l不锈钢球形粉末空心率的方法 Download PDF

Info

Publication number
CN108080645B
CN108080645B CN201711365321.1A CN201711365321A CN108080645B CN 108080645 B CN108080645 B CN 108080645B CN 201711365321 A CN201711365321 A CN 201711365321A CN 108080645 B CN108080645 B CN 108080645B
Authority
CN
China
Prior art keywords
stainless steel
laser
steel film
film
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711365321.1A
Other languages
English (en)
Other versions
CN108080645A (zh
Inventor
梁廷禹
姜勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Jinyuan Intelligent Technology Co ltd
Original Assignee
Nantong Jinyuan Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Jinyuan Intelligent Technology Co ltd filed Critical Nantong Jinyuan Intelligent Technology Co ltd
Priority to CN201711365321.1A priority Critical patent/CN108080645B/zh
Publication of CN108080645A publication Critical patent/CN108080645A/zh
Application granted granted Critical
Publication of CN108080645B publication Critical patent/CN108080645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种降低316L不锈钢球形粉末空心率的方法,其利用激光器对316L不锈钢膜进行线性烧结,所述线性烧结具体为:利用激光器发射的激光照射所述316L不锈钢膜的表面,线性移动所述激光器进行逐行扫描,直至激光烧结覆盖整个所述316L不锈钢膜的表面,弱润湿性的基板会使得所述钢膜团簇成球,防止空心球的出现。

Description

一种降低316L不锈钢球形粉末空心率的方法
技术领域
本发明涉及3D打印机领域,具体涉及一种降低316L不锈钢球形粉末空心率的方法。
背景技术
众所周知,金属材料特别是带有战略性的高熔点合金材料已成为高附加值和高精尖的军民两用的高科技产品的发展方向,而粉末冶金技术及新兴的激光3D打印技术是制备是赋予高科技产品行之有效的方法。特别是激光3D打印技术,用该方法可获得成分无偏析、性能稳定、 组织均匀的零部件;从经济上看,该方法是一种少切屑或无切屑的工艺。与传统锻材加工技术相比,制备部件基本为近净成形,材料利用率几乎可以达到100%。但是,这些领域对材料的物理、化学性质都有很高的要求。对粉末提出了如下要求:粒度分布窄;单分散;球形;特殊情形需要高纯粉末;其目的在于使烧结体产品的密度分布均匀,机械性能和其它物理性能空间分布均匀化。因此,原始粉末的纯度、均匀性和粒度、晶粒度、流动性、空心率对制备细晶全致密的高性能产品起着决定性的作用。
发明内容
基于解决上述问题,本发明提供了一种降低316L不锈钢球形粉末空心率的方法,包括以下步骤:
(1)制备316L不锈钢膜:按照化学配比准备所需316L不锈钢的原料,熔铸成靶材,利用所述靶材进行磁控溅射,在片状弱润湿性材料基板上溅射形成316L不锈钢膜;
(2)预加热:将溅射有316L不锈钢膜的弱润湿性材料基板置于加热载台上,所述加热载台设有加热部件,所述加热部件加热溅射有316L不锈钢膜的弱润湿性材料基板,使得所述316L不锈钢膜升温至接近熔点的温度,并保持该温度;
(3)激光烧结:利用激光器对316L不锈钢膜进行线性烧结,所述线性烧结具体为:利用激光器发射的激光照射所述316L不锈钢膜的表面,线性移动所述激光器进行逐行扫描,直至激光烧结覆盖整个所述316L不锈钢膜的表面;
(4)冷却成球:移除激光器,并利用所述加热部件进行缓慢降温,直至冷却至常温,收集所述弱润湿性基板上的316L不锈钢球粉末;
(5)球磨:对所述316L不锈钢球粉末进行球磨筛选得到最终的316L不锈钢膜球形粉末。
根据本发明的实施例,所述步骤(1)中形成所述316L不锈钢膜的厚度为20-60微米。
根据本发明的实施例,所述弱润湿性基板的材料为耐高温砖、陶瓷等材料。
根据本发明的实施例,所述步骤(3)中激光器移动的速度为2-5cm/min。
根据本发明的实施例,所述步骤(3)中所使用的激光器为气体激光器或者固体激光器。
本发明的优点如下:
(1)利用激光的局部烧结,可使得钢膜的局部受热团簇,在弱润湿性基板的存在下,由于团簇的球的张力较小,就可以容易的成球,且利用其自我团簇,防止了空心球的出现;
(2)本方法利用预加热的方式以方便激光的能量能够快速使得钢膜熔融,避免了烧结达不到熔融温度的问题。
附图说明
图1-2为本发明的激光线性烧结的侧视图和俯视图;
图3为本发明的激光烧结后的316L不锈钢球的示意图;
图4为对比实施例的激光烧结后的316L不锈钢球的示意图。
具体实施方式
参见图1-2,本发明的降低316L不锈钢球形粉末空心率的方法,包括以下步骤:
(1)制备316L不锈钢膜:按照化学配比准备所需316L不锈钢的原料,熔铸成靶材,利用所述靶材进行磁控溅射,在片状弱润湿性材料基板2上溅射形成316L不锈钢膜3;
(2)预加热:将溅射有316L不锈钢膜3的弱润湿性材料基板2置于加热载台1上,所述加热载台设有加热部件(未示出,可以是内置的加热丝等),所述加热部件加热溅射有316L不锈钢膜3的弱润湿性材料基板2,使得所述316L不锈钢膜升温至接近熔点的温度,并保持该温度;
(3)激光烧结:利用激光器4对316L不锈钢膜3进行线性烧结,所述线性烧结具体为:利用激光器4发射的激光5照射所述316L不锈钢膜的表面,沿图2中所示的直线6进行线性移动所述激光器4进行逐行扫描,直至激光5烧结覆盖整个所述316L不锈钢膜3的表面;
(4)冷却成球:移除激光器,并利用所述加热部件进行缓慢降温,直至冷却至常温,收集所述弱润湿性基板上的316L不锈钢球粉末;
(5)球磨:对所述316L不锈钢球粉末进行球磨筛选得到最终的316L不锈钢膜球形粉末。
其中,所述步骤(1)中形成所述316L不锈钢膜的厚度为20-60微米。所述弱润湿性基板的材料为耐高温砖、陶瓷等材料。所述步骤(3)中激光器移动的速度为2-5cm/min。所述步骤(3)中所使用的激光器为气体激光器或者固体激光器。
参见图3,由于是弱润湿性的基板2,团簇的不锈钢球7的表面张力F1较小,其球形度较好,而图4是强润湿性的基板20,团簇的不锈钢球8在基板20上的表面张力F2较大,其较为扁平,不易成球。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (5)

1.一种降低316L不锈钢球形粉末空心率的方法,包括以下步骤:
(1)制备316L不锈钢膜:按照化学配比准备所需316L不锈钢的原料,熔铸成靶材,利用所述靶材进行磁控溅射,在片状弱润湿性材料基板上溅射形成316L不锈钢膜;
(2)预加热:将溅射有316L不锈钢膜的弱润湿性材料基板置于加热载台上,所述加热载台设有加热部件,所述加热部件加热溅射有316L不锈钢膜的弱润湿性材料基板,使得所述316L不锈钢膜升温至接近熔点的温度,并保持该温度;
(3)激光烧结:利用激光器对316L不锈钢膜进行线性烧结,所述线性烧结具体为:利用激光器发射的激光照射所述316L不锈钢膜的表面,线性移动所述激光器进行逐行扫描,直至激光烧结覆盖整个所述316L不锈钢膜的表面;
(4)冷却成球:移除激光器,并利用所述加热部件进行缓慢降温,直至冷却至常温,收集所述弱润湿性材料基板上的316L不锈钢球粉末;
(5)球磨:对所述316L不锈钢球粉末进行球磨筛选得到最终的316L不锈钢膜球形粉末。
2.根据权利要求1所述的降低316L不锈钢球形粉末空心率的方法,其特征在于:所述步骤(1)中形成所述316L不锈钢膜的厚度为20-60微米。
3.根据权利要求1所述的降低316L不锈钢球形粉末空心率的方法,其特征在于:所述弱润湿性材料 基板的材料为耐高温砖、陶瓷材料。
4.根据权利要求2所述的降低316L不锈钢球形粉末空心率的方法,其特征在于:所述步骤(3)中激光器移动的速度为2-5cm/min。
5.根据权利要求2所述的降低316L不锈钢球形粉末空心率的方法,其特征在于:所述步骤(3)中所使用的激光器为气体激光器或者固体激光器。
CN201711365321.1A 2017-12-18 2017-12-18 一种降低316l不锈钢球形粉末空心率的方法 Active CN108080645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711365321.1A CN108080645B (zh) 2017-12-18 2017-12-18 一种降低316l不锈钢球形粉末空心率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711365321.1A CN108080645B (zh) 2017-12-18 2017-12-18 一种降低316l不锈钢球形粉末空心率的方法

Publications (2)

Publication Number Publication Date
CN108080645A CN108080645A (zh) 2018-05-29
CN108080645B true CN108080645B (zh) 2020-10-09

Family

ID=62176738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711365321.1A Active CN108080645B (zh) 2017-12-18 2017-12-18 一种降低316l不锈钢球形粉末空心率的方法

Country Status (1)

Country Link
CN (1) CN108080645B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284829A (ja) * 1990-03-30 1991-12-16 Kyocera Corp 半導体結晶化膜の形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100494478C (zh) * 2006-03-20 2009-06-03 浙江大学 电磁双重屏蔽膜的溅射制备方法
CN101851709B (zh) * 2009-12-15 2012-05-23 江苏大学 一种纳米多孔金属或陶瓷的制备方法及装置
CN102796988B (zh) * 2012-08-24 2014-09-03 广州金升阳科技有限公司 一种溅射法制备高度取向的CuInS2外延薄膜的方法
CN103691329B (zh) * 2013-12-20 2016-01-20 南京工业大学 一种多孔不锈钢膜的制备方法
CN205852070U (zh) * 2016-06-15 2017-01-04 广东工业大学 一种微粒制造设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284829A (ja) * 1990-03-30 1991-12-16 Kyocera Corp 半導体結晶化膜の形成方法

Also Published As

Publication number Publication date
CN108080645A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
Lodes et al. Process development for the manufacturing of 99.94% pure copper via selective electron beam melting
EP3187285B1 (en) Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
JP6417642B2 (ja) 非晶質相を有する金属合金からなる部品の製造方法
US11565322B2 (en) Additively manufactured component and production method therefor
TWI677582B (zh) 利用積層製造製備金屬部件及其所用之含鎢重金屬合金粉末
JP6370925B2 (ja) 非晶質相を有する金属合金からなる部品の製造方法
Ghasali et al. Microwave sintering of aluminum-ZrB 2 composite: focusing on microstructure and mechanical properties
Zhang et al. Microstructural evolvement and formation of selective laser melting W–Ni–Cu composite powder
WO2008089188A1 (en) High density refractory metals & alloys sputtering targets
WO2016119558A1 (zh) 一种用于直接3d打印金属零件的合金粉及其制备方法
Yamanoglu Pressureless spark plasma sintering: A perspective from conventional sintering to accelerated sintering without pressure
Guan et al. Insights into fabrication mechanism of pure copper thin wall components by selective infrared laser melting
Singh et al. Experimental study pertaining to microwave sintering (MWS) of Al-metal matrix composite-a review
Forno et al. On the application of Electro-sinter-forging to the sintering of high-karatage gold powders
CN114318037A (zh) 一种基于激光增材制造的高钨含量钨镍合金材料及其制备方法
KR102639553B1 (ko) 적층 조형용 구리 합금 분말, 적층 조형물의 제조 방법 및 적층 조형물
CN108080645B (zh) 一种降低316l不锈钢球形粉末空心率的方法
KR20220099107A (ko) 3차원 물체를 제조하기 위한 구형 분말
Song et al. Sintering behavior of bimodal iron nanopowder agglomerates
Ayyappadas et al. An investigation on tribological and electrical behaviour of conventional and microwave processed copper-graphite composites
Zhu et al. Investigation on sintering principle of ultra-fine cemented carbide prepared by WC-6Co composite powder
TWI588267B (zh) High purity tungsten metal material and preparation method of tungsten target
TW201928071A (zh) 球狀Ti系粉末及其製造方法
KR970001558B1 (ko) 극초미립의 복합분말물질의 제조방법
TWI735828B (zh) 濺鍍靶及其製造方法、以及磁記錄媒體的製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liang Tingyu

Inventor after: Jiang Yong

Inventor before: Yue Wei

Inventor before: Liang Tingyu

Inventor before: Jiang Yong

Inventor before: Sheng Hongchao

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 226000 No.20, Qixin Road, Nantong Development Zone, Jiangsu Province

Applicant after: NANTONG JINYUAN INTELLIGENT TECHNOLOGY Co.,Ltd.

Address before: Xinghu Avenue Development Zone 226000 Jiangsu city in Nantong Province, 1692, 21 (22) room 1292

Applicant before: NANTONG JINYUAN INTELLIGENT TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant