CN108080638B - 一种非晶合金箔材的激光3d打印成形系统及成形方法 - Google Patents

一种非晶合金箔材的激光3d打印成形系统及成形方法 Download PDF

Info

Publication number
CN108080638B
CN108080638B CN201810087943.0A CN201810087943A CN108080638B CN 108080638 B CN108080638 B CN 108080638B CN 201810087943 A CN201810087943 A CN 201810087943A CN 108080638 B CN108080638 B CN 108080638B
Authority
CN
China
Prior art keywords
amorphous alloy
laser
alloy foil
roller
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810087943.0A
Other languages
English (en)
Other versions
CN108080638A (zh
Inventor
龚攀
李方伟
王新云
莫健华
邓磊
金俊松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Original Assignee
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Shenzhen Huazhong University of Science and Technology Research Institute filed Critical Huazhong University of Science and Technology
Priority to CN201810087943.0A priority Critical patent/CN108080638B/zh
Priority to US15/934,405 priority patent/US11154951B2/en
Publication of CN108080638A publication Critical patent/CN108080638A/zh
Application granted granted Critical
Publication of CN108080638B publication Critical patent/CN108080638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • B23K20/103Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding using a roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/001Amorphous alloys with Cu as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明属于非晶合金的増材制造领域,并公开了一种非晶合金箔材的激光3D打印成形系统及成形方法。通过第一激光器剪裁非晶合金箔材多余样料,再利用第二激光器对剩余部分选择性的扫描加热,使非晶合金加热到过冷液相区的超塑性状态,然后用预热的辊碾压,结合超声振动作用,使上下两层非晶合金箔材产生原子间联系,并急速降温冷却,从而成形大尺寸复杂形状、具有孔洞结构的非晶合金零件。本发明克服了传统非晶合金制备方法对非晶合金件尺寸和形状的限制,采用非晶合金箔材作为原料,相较于传统3D打印非晶粉末成本更低,采取辊轮碾压超薄非晶合金箔材制造,制备的非晶合金零件内部结构更致密。

Description

一种非晶合金箔材的激光3D打印成形系统及成形方法
技术领域
本发明属于非晶合金的増材制造领域,更具体地,涉及一种非晶合金箔材的激光3D打印成形系统及成形方法。
背景技术
相较于传统晶态合金,非晶合金在许多方面都具有明显的优势,主要表现为高强度,良好的耐磨性和耐腐蚀性,优良的软磁、硬磁性等性能,非晶合金在过冷液相区还表现出超塑性,有利于热塑性成形。非晶合金由于其优异的性能,在航空航天、精密器械、军事化工等领域有着广泛的应用前景。
非晶合金由于其对冷却速度的要求,在成形过程中有很大的尺寸限制,当前的铜模铸造法和水淬法成形的非晶合金尺寸都非常小,目前最大尺寸仅为80mm左右,限制其用作结构材料和工业材料的范围。
为了制备大尺寸非晶合金,目前已经有了一些成形方法。例如最主流的选择性激光烧结非晶合金粉末,如专利号为201710229363.6一种非晶合金复合材料的激光3D打印方法所述,通过高能激光束加热熔融粉末成形大尺寸复杂结构非晶合金零件,但其制备的零件残余应力大容易导致开裂等,此外粉末制备成本高,利用率较低。此外还有微滴喷射增材制造非晶合金零件,如专利号为201610244315.X的一中非晶合金材料制备与成形一体化的3D打印方法及装置,该方法直接喷射晶态熔融金属,在较快的冷却速度条件下,制备大尺寸非晶合金零件,该方法成形的非晶合金零件结构也不够致密。Yingqi Li等发表的Buildingmetallic glass structures on crystalline metal substrates by laser-foil-printing additive manufacturing中叙述的一种非晶合金箔材3D叠层打印技术,该方法通过激光束将非晶合金箔材加热至熔化状态后实现箔材之间的原子间联系,该方法的激光在箔材上的光斑导致3D打印后的层与层之间出现波浪状界面,且出现了非常明显的晶化。以上三种3D打印方法存在的共同问题是都将非晶合金材料加热至熔融状态,导致加热下一层材料时对上一层材料重新加热至较高温度,从而引起晶化。综上所述,现有的3D打印成形非晶合金技术并不能解决零件晶化,内部结构不致密的问题,因此开发一种新型工艺方法以成形大尺寸复杂形状、具有多孔结构的非晶合金零件,成为当前急需解决的问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种非晶合金箔材的激光3D打印成形系统及成形方法,通过采用第一激光器实现内部轮廓的初步成形,然后第二激光器选区加热至非晶合金箔材的玻璃转变温度和起始晶化温度之间,最后通过辊轮对切片层的碾压,实现相邻切片层原子间的结合,其目的在于提高零件表面质量和内部结构的致密度,由此解决零件晶化和内部结构不致密的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种非晶合金箔材的激光3D打印成形系统,该系统包括第一激光器、第二激光器、基板,升降台,送料机构,其特征在于,
所述送料机构包括多个滚轮,非晶合金箔材缠绕在所述滚轮上,通过首尾端的送料滚轮和退料滚轮的转动实现非晶合金箔材的送料和收料,所述基板设置在所述送料机构后端的下方,是非晶合金箔材的加工平台,该基板的下方设置有升降台,用于调整所述基板的高度;
所述第一激光器设置在所述送料机构前端的上方,用于实现非晶合金箔材内部轮廓的切割,所述第二激光器设置在所述送料机构的后端上方,且与所述基板相对设置,用于对在所述基板上的非晶合金箔材进行选区加热,该第二激光器的激光头上还连接有辊轮,在非晶合金箔材被选区加热后用于对该非晶合金箔材进行碾压,该辊轮中设置有电阻加热棒和超声波发射器,所述加热棒用于对所述辊轮进行预热至箔材玻璃化转变温度Tg±5K,所述超声波发射器在碾压过程中发出超声实现超声碾压。
进一步优选地,所述第一激光器的一侧还设置有气枪,用于清除第一激光器切割产生的废料,同时,该第一激光器和气枪的下方还设置有废料收集箱,用于收集废料。
进一步优选地,所述第二激光器的一侧设置有吸嘴,用于吸除废料。
进一步优选地,所述第一激光器优选采用UV脉冲激光器,所述第二激光器采用CW连续激光器。
进一步优选地,所述升降台的下方设置有螺杆,通过调节螺杆实现升降台高度的调节;所述辊轮中的加热棒与辊轮的长度相同,设置在辊轮的中心,所述超声波发射器设置在辊轮的两端。
按照本发明的另一方面,提供了一种上述的非晶合金箔材的激光3D打印成形系统的成形方法,其特征在于,该方法包括下列步骤:
(a)将所需零件的三维结构进行切片处理,获得多个切片层和每层切片中零件的内部轮廓和外部轮廓信息;
(b)送料机构将非晶合金箔材送至第一激光器的下方,该第一激光器根据所述单层切片层中零件的内部轮廓对非晶合金箔材进行切割,从而完成单层切片层中内部轮廓的加工,气枪清除切割废料,废料落入废料收集箱中;
(c)废料清除后的非晶合金箔材被送至基板上方,利用第二激光器对非晶合金箔材进行选区加热,其中,加热区域为单层切片中内部轮廓与外部轮廓之间的区域,加热的温度介于非晶合金箔材的玻璃转变温度和起始晶化温度之间;
(d)辊轮对所述加热区域进行碾压,使得所述加热区域与相邻的切片层焊接在一起,吸嘴对被碾压区域粘附的连皮进行清除,升降台下降一个切片层的厚度,使得非晶合金箔材沿所述单层切片层中的外部轮廓剥离,至此完成单层切片层的加工,其中,碾压过程中辊轮中的加热棒对辊轮进行预热,预热的温度为非晶合金箔材玻璃转变温度Tg±5K,超声波发射器发出超声进行超声碾压;
(e)重复步骤(b)~(d),直至完成所有切片层的加工,从而完成非晶合金箔材的激光3D打印成形。
进一步优选地,所述非晶合金箔材的厚度优选为30μm~150μm。
进一步优选地,所述辊轮的超声波发射器发出的超声频率为10kHz~30kHz,超声功率为30W~60W。
进一步优选地,所述非晶合金箔材优选采用Zr基、Fe基或Cu基非晶合金。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1、本发明通过采用非晶合金箔材作为原料,相较于传统3D打印非晶粉末而言,非晶合金粉末的成本是非晶合金箔材的几十至几百倍,如3D打印Fe基非晶合金粉末价格为1200元/公斤,相应的箔材价格为低于100元/公斤,采用非晶合金箔材的成本更低,利用率更高;
2、本发明通过采取辊轮碾压非晶合金箔材,其中通过超声振动辅助成形,释放了非晶合金箔材中的残余应力,碾压还改善非晶合金的成形性,加强层与层之间的原子间联系,使得切片层之间结构更加致密,提高零件的内部结构致密度;
3、本发明通过采用第二激光器加热非晶合金箔材至玻璃转变温度和起始晶化温度之间的过冷液相区,在此温度区间,非晶合金箔材表现为具有超塑性,施加很小的力可以造成很大的均匀形变;
4、本发明通过采用厚度为30μm~150μm的非晶形成能力强,热稳定性好且热塑性成形性能佳的Zr基、Fe基或Cu基非晶合金非晶合金箔材,是因为非晶形成能力强和热稳定性好,能最大程度的避免晶化,热塑性成形性能佳,能使得成形性好;
5、相较于传统3D打印,本专利所用非晶合金箔材比非晶粉末成本更低,利用率更高,本专利加热温度在低于起始晶化温度Tx的过冷液相区,可以防止成型过程中非晶合金发生晶化,保证零件的非晶态结构,采取辊轮碾压超薄非晶合金箔材制造,可避免箔材层片之间出现波浪状界面,从而获得表面质量更好,内部结构更致密的非晶合金样品;通过超声振动辅助成形,使构建获得的激振动应力与内部残余应力叠加,残余应力松弛释放,从而消除或降低残余应力;同时由于超声软化效应,使非晶合金过冷液体的流动更均匀,改善非晶合金的成形性,加强层与层之间的原子间联系,使结构更致密;辊轮与箔材接触为线接触,通过超声波辅助作用,消除线接触导致的不均匀变形,使焊接面均匀成形。通过控制箔材的送料,本发明还可以较便捷地实现非晶合金基复合材料的制备;
6、本发明通过采用频率为10kHz~30kHz,功率为30W~60W的超声波发射器,可以最大程度地释放或降低残余应力,更好地改善非晶合金的成形性。
附图说明
图1是按照本发明的优选实施例所构建的非晶合金箔材的激光3D打印系统的结构示意图;
图2是按照本发明的优选实施例所构建的辊轮结构示意图;
图3是按照本发明的优选实施例所构建的用非晶合金箔材所需制备的典型零件;
图4是按照本发明的优选实施例所构建的用非晶合金箔材制备的典型零件的单层切片层的示意图;
图5是按照本发明的优选实施例所构建的第一激光器切割的示意图;
图6是按照本发明的优选实施例所构建的非晶合金箔材移至基板上的示意图;
图7是按照本发明的优选实施例所构建的吸嘴工作的示意图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1--辊轮,2-待加工零件,3-基板,4-升降台,5-螺杆,6-激光头,7--光纤,8—第二激光发射器,9—第一激光发射器,10—第一激光熔覆头,11--气枪,12--非晶合金箔材,13--废料收集箱,14--送料滚轮,15--退料滚轮,16--吸嘴,102--电阻加热棒,103--超声波发射器,1201—外部轮廓与内部轮廓之间的区域,1202—内部轮廓,1203--连皮,1204--工艺废料
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是按照本发明的优选实施例所构建的非晶合金箔材的激光3D打印系统的结构示意图,如图1所示,一种非晶合金箔材的激光3D打印成形系统,该系统包括第一激光器、第二激光器、基板3,升降台4,送料机构,其特征在于,
送料机构包括送料滚轮14、退料滚轮15和过渡轮等多个滚轮,非晶合金箔材缠绕在所有滚轮上,通过首尾端的送料滚轮14和退料滚轮15的转动实现非晶合金箔材的送料和收料,所述基板3设置在所述送料机构后端的下方,是非晶合金箔材的加工平台,该基板的下方设置有升降台4,用于调整所述基板的高度;
所述第一激光器包括第一激光发射器9和第一激光熔覆头10,第一激光器设置在所述送料机构前端的上方,用于实现非晶合金箔材内部轮廓的切割,所述第二激光器包括第二激光发射器8、激光头6和光纤7,光纤用于连接第二激光发射器和激光头,设置在所述送料机构的后端上方,且与所述基板3相对设置,用于对在所述基板上的非晶合金箔材进行选区加热,该第二激光器的激光头上还连接有辊轮1,在非晶合金箔材被选区加热后用于对该非晶合金铂金进行碾压,该辊轮中设置有电阻加热棒102和超声波发射器103,所述电阻加热棒用于对所述辊轮进行预热,所述超声波发射器在碾压过程中发出超声实现超声碾压。
所述第一激光器的一侧还设置有气枪11,用于清除第一激光器切割产生的废料,同时,该第一激光器和气枪的下方还设置有废料收集箱13,用于收集废料;所述第二激光器的一侧设置有吸嘴16,用于吸除废料。
所述第一激光器优选采用UV脉冲激光器,所述第二激光器采用CW连续激光器。
所述升降台的下方设置有螺杆5,通过调节螺杆实现升降台高度的调节;所述辊轮中的电阻加热棒102与辊轮的长度相同,设置在辊轮的中心,使得辊轮预热的更加均匀和充分,所述超声波发射器103设置在辊轮的两端。
非晶合金箔材的厚度为30-150μm,非晶合金箔材为非晶形成能力强、热塑性成形性好、热稳定性好的非晶合金,如Zr基、Fe基、Cu基等非晶合金。
非晶合金箔材的加热推荐使用激光扫描加热(第二激光器激光加热),也可采取辊轮直接加热的热传导方式、吹热空气的热对流方式、其他类型热传导热对流热辐射等方式加热,并不仅仅限定于本发明。
第二激光器加热的超声频率为10-30kHz,超声功率为30-60W。
辊轮的行进速度可调,第一激光器切割按照内部轮廓进行切割后,采用气枪吹的方法进行去除,也可采用真空吸盘等方法去除。
一种非晶合金箔材的激光3D打印成形系统的成形方法,图3是按照本发明的优选实施例所构建的用非晶合金箔材所需制备的典型零件,如图3所示,加工图3中的零件具体包括如下步骤:
(1)对所需零件的三维结构进行切片,获得多个切片层和每层切片层的内部和外部轮廓信息,图4是按照本发明的优选实施例所构建的用非晶合金箔材制备的典型零件的单层切片层的示意图,图5是按照本发明的优选实施例所构建的第一激光器切割的示意图,如图4和5所示,为打印得到如图4所示切片层片,将激光3D打印成形系统置于保护气体中,第一激光器切割出图5中非晶合金箔材12上所示轮廓,通过气枪将搭在非晶合金箔材内部轮廓中未掉落的结构废料吹落至废料收集箱13中,按照设计好的送料行程,将切割完毕的箔材部分送至基板上,进行下一步操作。
(2)图6是按照本发明的优选实施例所构建的非晶合金箔材移至基板上的示意图,如图6所示,通过程序编辑,设置第二激光器需要加热的范围,为图6中阴影部分所示的外部轮廓与内部轮廓之间的区域1201,第二激光器的激光束在非晶合金箔材上的扫描为线状,从而达到快速加热目的,通过第二激光器对加热区域1201进行扫描加热至温度处于非晶合金玻璃转变温度Tg和起始晶化温度Tx之间的过冷液相区,在温度还未开始大幅度降低之前,通过电阻加热棒102加热的辊轮1从该区域面压而过,结合超声波发射器103产生在辊轮1表面的超声波作用,通过压力使过冷液相区的非晶合金箔材与基板(上一层)形成原子间联系,非晶合金箔材层与层之间形成非晶结构的原子间联系。
(3)待加热区域1201加工完毕后,进行去连皮操作,图7是按照本发明的优选实施例所构建的第二激光器加热的示意图,如图7所示,通过吸嘴16,将连皮1203从零件上吸除,确保打印面无任何多余连皮方可进行下一步操作。
(4)升降台4在螺杆5的作用下下降100μm,箔材焊接部分与工艺废料1204在下降作用下被分离,在退料滚轮15的作用下,箔材前进一个行程,重复以上操作,直至零件加工完毕。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种非晶合金箔材的激光3D打印成形系统,该系统包括第一激光器、第二激光器、基板(3)和送料机构,其特征在于,
所述送料机构包括多个滚轮,非晶合金箔材缠绕在所述滚轮上,通过首尾端的送料滚轮(14)和退料滚轮(15)的转动实现非晶合金箔材的送料和收料,所述基板(3)设置在所述送料机构后端的下方,用于作为非晶合金箔材的加工平台,该基板的下方设置有升降台(4);
所述第一激光器设置在所述送料机构前端的上方,用于实现非晶合金箔材内部轮廓的切割,所述第二激光器设置在所述送料机构的后端上方,且与所述基板(3)相对设置,用于对在所述基板上的非晶合金箔材进行选区加热,该第二激光器的激光头上还连接有辊轮(1),在非晶合金箔材被选区加热后用于对该非晶合金箔材进行碾压,该辊轮(1)中设置有电阻加热棒(102)和超声波发射器(103),所述电阻加热棒用于对所述辊轮进行预热,所述超声波发射器在碾压过程中发出超声实现超声碾压。
2.如权利要求1所述的一种非晶合金箔材的激光3D打印成形系统,其特征在于,所述第一激光器的一侧还设置有气枪(11),用于清除第一激光器切割产生的废料,同时,该第一激光器和气枪的下方还设置有废料收集箱,用于收集废料。
3.如权利要求1或2所述的一种非晶合金箔材的激光3D打印成形系统,其特征在于,所述第二激光器的一侧设置有吸嘴(16),用于吸除废料。
4.如权利要求1或2所述的一种非晶合金箔材的激光3D打印成形系统,其特征在于,所述第一激光器采用UV脉冲激光器,所述第二激光器采用CW连续激光器。
5.如权利要求1或2所述的一种非晶合金箔材的激光3D打印成形系统,其特征在于,所述升降台的下方设置有螺杆(5),通过调节螺杆实现升降台高度的调节;所述辊轮中的电阻加热棒与辊轮的长度相同,设置在辊轮的中心,所述超声波发射器设置在辊轮的两端。
6.一种如权利要求1-5任一项所述的非晶合金箔材的激光3D打印成形系统的成形方法,其特征在于,该方法包括下列步骤:
(a)将所需零件的三维结构进行切片处理,获得多个切片层和每层切片中零件的内部轮廓和外部轮廓信息;
(b)送料机构将非晶合金箔材送至第一激光器的下方,该第一激光器根据所述单层切片层中零件的内部轮廓对非晶合金箔材进行切割,从而完成单层切片层中内部轮廓的加工,气枪清除切割废料,废料落入废料收集箱中;
(c)废料清除后的非晶合金箔材被送至基板上方,利用第二激光器对非晶合金箔材进行选区加热,其中,加热区域为单层切片中内部轮廓与外部轮廓之间的区域,加热的温度介于非晶合金箔材的玻璃转变温度和起始晶化温度之间;
(d)辊轮对所述加热区域进行碾压,使得所述加热区域与相邻的切片层焊接在一起,吸嘴对被碾压区域粘附的连皮进行清除,升降台下降一个切片层的厚度,使得非晶合金箔材沿所述单层切片层中的外部轮廓剥离,至此完成单层切片层的加工,其中,碾压过程中辊轮中的电阻加热棒对辊轮进行预热,预热的温度为非晶合金箔材玻璃转变温度Tg±5K,超声波发射器发出超声进行超声碾压;
(e)重复步骤(b)~(d),直至完成所有切片层的加工,从而完成非晶合金箔材的激光3D打印成形。
7.如权利要求6所述的成形方法,其特征在于,所述非晶合金箔材的厚度为30μm~150μm。
8.如权利要求6或7所述的成形方法,其特征在于,所述辊轮的超声波发射器发出的超声频率为10 kHz~30 kHz,超声功率为30 W~60 W。
9.如权利要求6或7所述的成形方法,其特征在于,所述非晶合金箔材采用Zr基、Fe基或Cu基非晶合金。
CN201810087943.0A 2018-01-30 2018-01-30 一种非晶合金箔材的激光3d打印成形系统及成形方法 Active CN108080638B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810087943.0A CN108080638B (zh) 2018-01-30 2018-01-30 一种非晶合金箔材的激光3d打印成形系统及成形方法
US15/934,405 US11154951B2 (en) 2018-01-30 2018-03-23 Laser 3D printing forming system of amorphous alloy foil and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810087943.0A CN108080638B (zh) 2018-01-30 2018-01-30 一种非晶合金箔材的激光3d打印成形系统及成形方法

Publications (2)

Publication Number Publication Date
CN108080638A CN108080638A (zh) 2018-05-29
CN108080638B true CN108080638B (zh) 2023-07-04

Family

ID=62182703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810087943.0A Active CN108080638B (zh) 2018-01-30 2018-01-30 一种非晶合金箔材的激光3d打印成形系统及成形方法

Country Status (2)

Country Link
US (1) US11154951B2 (zh)
CN (1) CN108080638B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994458A (zh) * 2018-08-27 2018-12-14 广西慧思通科技有限公司 一种以金属箔为原料的3d打印机
CN109226965B (zh) * 2018-09-21 2020-06-09 浙江海洋大学 一种金属箔板复合材料的叠层增材制造装置及方法
CN109128167B (zh) * 2018-09-30 2019-10-08 华中科技大学 一种非晶合金复合材料制备成形一体化方法
CN109226763A (zh) * 2018-11-14 2019-01-18 吉林大学 一种电子束金属3d打印装置及打印方法
CN109382585B (zh) * 2018-12-04 2021-11-09 浙江海洋大学 一种金属箔叠层增材制造装置及方法
CN109434112A (zh) * 2018-12-17 2019-03-08 中国空间技术研究院 一种基于非晶合金超塑性焊接的空间3d打印系统
US11628513B2 (en) * 2019-03-29 2023-04-18 Lm Group Holdings, Inc. Ultrasonic additive manufacturing of cladded amorphous metal products
US11427902B2 (en) * 2019-09-19 2022-08-30 Cornerstone Intellectual Property, Llc Additive manufacturing of iron-based amorphous metal alloys
CN110978497A (zh) * 2019-12-27 2020-04-10 珠海天威飞马打印耗材有限公司 超声波层压3d打印设备及其打印方法
CN111618089B (zh) * 2020-05-29 2023-01-13 广东工业大学 一种激光辅助压轧大块非晶合金的系统和方法
CN111761063A (zh) * 2020-07-20 2020-10-13 华中科技大学 一种适用于微重力空间环境的3d打印系统及方法
CN112522505A (zh) * 2020-11-23 2021-03-19 深圳大学 非晶带材的处理装置
CN113510484B (zh) * 2021-04-20 2022-12-13 南昌大学 增材和减材复合制造系统
CN113600962B (zh) * 2021-07-30 2023-05-26 广东工业大学 一种高能量密度加热焊接非晶合金的方法
CN113909494B (zh) * 2021-09-22 2023-10-31 寰采星科技(宁波)有限公司 用于金属掩膜板的金属箔材及金属掩膜板的制备方法
US11701736B2 (en) 2021-09-30 2023-07-18 Wiegel Tool Works, Inc. Systems and methods for making a composite thickness metal part
CN115261849A (zh) * 2022-07-27 2022-11-01 江苏大学 一种激光沉积-超声表面滚压成形非晶合金的装置和方法
CN115255400A (zh) * 2022-07-29 2022-11-01 深圳市华阳新材料科技有限公司 一种非晶合金3d打印基台装置及3d打印方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29614264U1 (de) * 1996-08-17 1997-12-18 Kuesters Eduard Maschf Beheizbare Walze
JP4926801B2 (ja) * 2006-06-07 2012-05-09 キヤノン株式会社 シート処理装置及び画像形成装置
CN102248275A (zh) * 2011-06-20 2011-11-23 南昌大学 块体非晶合金材料超声波焊接方法
CN102407402A (zh) * 2011-09-06 2012-04-11 南昌大学 晶体和非晶的超声波焊接方法
US9419502B2 (en) * 2012-08-03 2016-08-16 Hamilton Sundstrand Corporation Additive manufacturing of a component having a laminated stack of layers
CN102886599B (zh) * 2012-10-12 2014-11-12 华中科技大学 一种扩散焊制备多层非晶合金与晶态金属复合结构的方法
US20140170012A1 (en) * 2012-12-18 2014-06-19 United Technologies Corporation Additive manufacturing using partially sintered layers
GB2511316B (en) * 2013-02-27 2015-06-24 Mcor Technologies Ltd Tack and bond adhesive system and method for layered object manufacture
CN103320723A (zh) * 2013-05-28 2013-09-25 江苏迈盛新材料有限公司 一种提高合金非晶形成能力的反复熔化-凝固处理方法
US20150076951A1 (en) * 2013-09-16 2015-03-19 Hamilton Sundstrand Corporation Electric machine construction
US10828720B2 (en) * 2015-10-13 2020-11-10 The Curators Of The University Of Missouri Foil-based additive manufacturing system and method
WO2017065751A1 (en) * 2015-10-13 2017-04-20 The Curators Of The University Of Missouri Foil-based additive manufacturing system and method
JP6647829B2 (ja) * 2015-10-20 2020-02-14 株式会社ディスコ レーザ加工装置
CN105420522B (zh) * 2015-11-10 2017-12-12 华中科技大学 一种大塑性非晶基复合材料的制备方法
CN105728728B (zh) * 2016-04-19 2017-04-05 吉林大学 一种非晶合金材料制备与成形一体化的3d打印方法及装置
CN106862748B (zh) * 2017-01-24 2019-08-06 中北大学 非晶/金属微叠层复合材料超声波积累制造方法
CN106978577B (zh) 2017-04-10 2018-07-13 大连交通大学 一种非晶合金复合材料的激光3d打印方法
US10758979B2 (en) * 2017-08-01 2020-09-01 Xact Metal, Inc. Recoating device for additive manufacturing
CN107442955B (zh) * 2017-08-24 2020-05-19 哈尔滨工业大学(威海) 一种激光辅助加热和即时清理式超声波快速成型装置
US20190143587A1 (en) * 2017-11-13 2019-05-16 General Electric Company Foil part warp compensation for mobile large scale additive manufacturing using foil-based build materials
CN208019419U (zh) * 2018-01-30 2018-10-30 华中科技大学 一种非晶合金箔材的激光3d打印成形系统

Also Published As

Publication number Publication date
US20190232430A1 (en) 2019-08-01
CN108080638A (zh) 2018-05-29
US11154951B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
CN108080638B (zh) 一种非晶合金箔材的激光3d打印成形系统及成形方法
US20210339340A1 (en) Method for preparing multiple-material variable-rigidity component by efficient collaborative additive manufacturing
WO2018223478A1 (zh) 双激光束熔敷成形冲击锻打复合增材制造方法
CN107217253B (zh) 一种光-粉-气同轴输送激光熔覆冲击锻打成形复合制造方法
US20180229332A1 (en) Foil-based additive manufacturing system and method
CN102574246B (zh) 激光切割玻璃基板的方法
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
CN111215898A (zh) 一种电弧增材同步超声热轧及速冷复合加工装置及方法
CN108555296A (zh) 一种k465合金粉末的增材制造方法
CN208019419U (zh) 一种非晶合金箔材的激光3d打印成形系统
KR20080006643A (ko) 취성 재료에 초음파 유도 크랙 확대
CN107283059A (zh) 一种电弧熔积激光冲击锻打增材制造方法和装置
US10946448B2 (en) Cold additive and hot forging combined forming method of amorphous alloy parts
CN105108444B (zh) 高温服役剪切装备刀具的修复及强化方法
CN101462205B (zh) 非晶态合金带材的激光切割方法
CN108262478A (zh) 06Cr19Ni10不锈钢蜂窝薄壁构件的制造方法、电子设备及系统
CN114713848B (zh) 一种提升增材制造零件表面质量的方法及增材制造设备
WO2018089080A1 (en) Foil-based additive manufacturing system and method
CN113732310A (zh) 采用激光金属沉积与随动轧制制备复杂薄壁构件的方法
US11565349B2 (en) Composite device for high-precision laser additive/subtractive manufacturing
CN111822578B (zh) 电致塑性辅助激光冲击拉深成形装置及方法
TW201806890A (zh) 3d玻璃製造方法
CN114525508B (zh) 一种超声冲压复合电弧制备高熵合金熔覆层的方法
CN113695595B (zh) 采用激光金属沉积与随动轧制制备薄壁坯料的方法
CN111098033A (zh) 双激光束熔敷成形冲击锻打复合增材制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant