CN108080035B - 一种烃类催化选择氧化的方法 - Google Patents

一种烃类催化选择氧化的方法 Download PDF

Info

Publication number
CN108080035B
CN108080035B CN201611033371.5A CN201611033371A CN108080035B CN 108080035 B CN108080035 B CN 108080035B CN 201611033371 A CN201611033371 A CN 201611033371A CN 108080035 B CN108080035 B CN 108080035B
Authority
CN
China
Prior art keywords
reaction
hydrocarbon
organic amine
oleate
selective oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611033371.5A
Other languages
English (en)
Other versions
CN108080035A (zh
Inventor
徐杰
刘梦
石松
陈晨
高进
苗虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201611033371.5A priority Critical patent/CN108080035B/zh
Publication of CN108080035A publication Critical patent/CN108080035A/zh
Application granted granted Critical
Publication of CN108080035B publication Critical patent/CN108080035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • B01J31/0238Amines with a primary amino group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/32Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/08Formation or introduction of functional groups containing oxygen of carboxyl groups or salts, halides or anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种烃类选择氧化催化剂的制备方法及其应用,该方法以长链有机胺为修饰剂,对过渡金属氧化物纳米材料修饰后,得到表面修饰长链有机胺的氧化催化剂;该催化剂具有表面疏水性和高效催化氧化能力。以空气或O2为氧源,在无溶剂条件下,将该催化剂应用于甲苯、乙苯、对二甲苯、四氢萘和邻二甲苯等烃类选择氧化反应,对于选择氧化制备醇、酮、醛和(或)酸等有机含氧化合物,具有高活性和高选择性。

Description

一种烃类催化选择氧化的方法
技术领域
本发明属于纳米催化材料的制备及其应用,是将一种长链有机胺修饰的过渡金属氧化物纳米材料应用于烃类催化选择氧化反应中,以获得高选择性的醇、酮(醛)、酸等含氧有机化合物。
背景技术
烃类是石油和天然气的主要组分,烃类分子中富含大量的C-C键和C-H键,但是缺少C-O键,而精细化工生产中广泛使用的醇、醛、酮、酸和酯等物质中除了含有C-C键和C-H键外,还含有大量的C-O键,因此,由烃类来制得这些含氧精细化工产品很多是通过氧化过程完成的。例如环己醇和环己酮,俗称K-A油,是合成己内酰胺、己二酸等聚酰胺(尼龙6、尼龙66)的重要单体的原料,是环己烷的氧化产物。对苯二甲酸是对二甲苯的氧化产物,是合成聚对苯二甲酸乙酯(PET)和聚对苯二甲酸丁酯(PBT)的重要单体。邻苯二甲酸和苯酐是邻二甲苯的氧化产物,是各种增塑剂的重要原料。氧化产品市场需求量巨大,因此,烃类高效催化选择氧化是一个十分重要的课题。
烃类的选择氧化是一个分子量增加和附加值增加的过程,也是一个充满挑战的过程。这是因为构成烃类的C-C键和C-H键具有键能大、极性小的特点,所以活化困难,反应活性低;另一方面,由于氧化产物中氧原子的活化作用,产物比原料更活泼,很容易发生过度氧化生成二氧化碳和水等副产物,这不仅造成资源浪费和环境污染,而且给产品的分离和纯化带来很大困难,使原料和生产成本大幅度上升。
为了提高烃类催化选择氧化效率,需要开发不同类型的高效催化剂,其中关于金属氧化纳米粒子用于烃催化氧化研究,文献(Applied Catalysis A:General 292(2005)223-228)中指出,Co3O4纳米粒子应用于环己烷的氧化得到了7.6%的转化率,具有较好的氧化效果,Co3O4纳米粒子具有小的尺寸时,虽然活性位点多具有较高的活性,但是在反应过程中易聚集;文献(Chemical Engineering Journal 288(2016)169-178)中制备了多层结构的花状Cu-Co复合氧化物微球,在乙苯氧化中效果优异,作者认为是因为催化剂中Co-Cu物种活性较高所致;文献(Applied Catalysis A:General 512(2016)9-14)中作者通过合成的Ti-Zr-Co合金用于乙苯氧化,提出催化剂表面的CoO和Co3O4是催化活性物种。综合以上文献调研,金属氧化物在烃类氧化中效果突出,是烃类催化氧化催化剂的一个重要方向;
目前的金属氧化物催化剂大多具有亲水性,或者对于有机烃类原料是不润湿的,导致原料与催化剂接触难,催化效率低;在高效催化活性位的设计方面也存在很多不足。本发明通过在金属氧化物表面原位引入长链有机胺,将有机胺引入到金属氧化物体系中,一方面,由于长链胺的疏水性质,使得催化剂具有疏水表面,容易与原料烃类接触核发生吸附;此外在氧化反应中有水生成,且产物极性比底物大,疏水表面可以促进产物脱附,以期望达到强化促进催化烃的氧化作用;同时,以有机胺活化和络合金属物种,有可能改变金属表面电子云密度,达到提高转化率和有机含氧化合物(醇、酮、醛和(或)酸)选择性的目的。
发明内容
本发明以溶剂热法为制备方法,合成出不同链长有机胺修饰的过渡金属氧化物纳米材料,将其应用于烃类无溶剂催化选择氧化反应以获得高的转化率和选择性是本发明的宗旨。
本发明的目的在于为烃类高效催化选择氧化反应提供一种有机胺修饰的过渡金属氧化物纳米材料作为催化剂。
一种有机胺修饰的过渡金属氧化物纳米材料是以金属氧化物MO为主体,在其表面原位修饰有机胺,其可采用通式Am-MO表示,Am为Amines缩写,MO为Metal Oxides的缩写。金属氧化物包括CoO、Mn3O4和CuMn2O4纳米粒子,粒径10-200nm。
所述有机胺修饰的过渡金属氧化物纳米材料的制备可按如下步骤操作:
1)将无机金属盐和油酸钠混合于正己烷、水和乙醇组成的混合溶剂1中,回流温度下反应4-10h,反应后加入水(0.1-2倍于混合溶剂1体积)分层,取有机相,蒸发去除溶剂,得到金属油酸盐;
2)将得到的金属油酸盐作为前驱体,将其分散在辛醇和有机胺组成的混合溶剂2中,搅拌均匀后移入高压反应釜中反应,反应温度150-250℃,时间2-10h;
3)反应结束后,冷却至室温,反应液通过离心得到固体目标物,乙醇洗涤20-30次,室温干燥后,得到的固体即为催化剂Am-MO。
步骤1)中的无机金属盐可以为氯化钴、氯化锰、氯化铜、乙酸钴、乙酸锰、乙酸铜中的一种或多种,油酸钠与金属盐的用量为2/1摩尔比,混合溶剂1中正己烷/水/乙醇的体积比为5-10/4/3,无机金属盐在混合溶剂1中的浓度为0.1-0.4mol/L;
所述步骤2)中,所述金属油酸盐为油酸钴、油酸锰和油酸铜中的一种或两种以上;
所述步骤2)中,所述混合溶剂2中辛醇与有机胺的体积比为(5/1-1/5);所述金属油酸盐在混合溶剂2中的浓度为0.02-0.08mol/L。
本发明提供的材料可用于烃类催化选择氧化中。烃类催化选择氧化过程是以分子氧为氧源、在催化剂催化作用下进行的。催化反应底物包括环戊烷、环己烷、环庚烷、环辛烷等环烷烃;苯、四氢萘、甲苯、乙苯、对二甲苯、邻二甲苯等芳烃。
按照本发明提供的催化反应,在上述条件下,氧化反应温度为40-200℃;反应压力为0.1-5.0MPa;反应时间可以从30min到800min;底物转化率为6-99%,酮(醛)醇酸总选择性达95%以上。
本发明的有益结果:
本发明将长链有机胺修饰的过渡金属氧化物纳米材料作为催化剂,应用于无溶剂烃类选择氧化反应中,由于该材料表面长链有机胺的修饰作用,一方面表现出疏水特性,有利于底物的吸附与产物的脱附;另一方面,有机胺活化和络合金属物种,有可能改变金属表面电子云密度,达到提高转化率和有机含氧化合物(醇、酮、醛和(或)酸)选择性的目的。
附图说明
图1为材料A的红外表征谱图;
图2为材料D的红外表征谱图;
图3为材料A的TEM电镜表征图;
图4为材料D的TEM电镜表征图。
图5为材料A的粉末X射线衍射图;
图6为材料D的粉末X射线衍射图。
具体实施方式
下面结合实施例对本发明提供的方法进行详述,但不以任何形式限制本发明。
实施例1:材料A(HA-CoO)的制备
1)将9mmol CoCl2·6H2O溶解于混合溶剂1中(正己烷21ml,去离子水12ml,乙醇9ml),搅拌5min后,加入18mmol油酸钠,回流温度下反应4h。反应结束后,用30ml去离子水洗涤,分液,取有机相,蒸发去除溶剂,得到油酸钴;
2)从步骤1所得到的油酸钴中取1mmol,溶解于辛醇和正己胺(HA)的混合溶剂2中,其中辛醇20ml,正己胺5ml;室温搅拌,直到固体完全溶解;
3)将混合均匀的反应液转移到50ml的高压反应釜中,反应温度250℃,反应时间5h;
4)自然降至室温,离心收集固体;乙醇洗涤20-30次;收集室温干燥的固体即得催化剂HA-CoO。
实施例2:材料B-I的制备
材料B-I的制备方法同材料A,不同之处在于有机胺和制备前驱体的金属盐的种类,具体采用的有机胺和金属盐的种类见表1,所得到的材料列于表1。
表1 材料B-I采用的金属盐和有机胺的种类
Figure BDA0001158988220000031
Figure BDA0001158988220000041
实施例3:材料J(CuMn2O4)的制备
1)将9mmol CuCl2·6H2O溶解于混合溶剂1(正己烷21ml,去离子水12ml,乙醇9ml)中,搅拌5min后,加入18mmol油酸钠,回流温度下反应4h。反应结束后,用30ml去离子水洗涤,分液,取有机相,旋蒸去除溶剂,得到油酸铜;
2)将9mmol MnCl2·6H2O溶解于混合溶剂1(正己烷21ml,去离子水12ml,乙醇9ml)中,搅拌5min后,加入18mmol油酸钠,回流温度下反应4h。反应结束后,用30ml去离子水洗涤,分液,取有机相,旋蒸去除溶剂,得到油酸锰;
3)从步骤1所得到的油酸铜中取0.5mmol,从步骤2所得到的油酸锰中取1mmol,混合溶解于辛醇和己胺的混合溶剂2中,其中辛醇20ml,己胺5ml;室温搅拌,直到固体完全溶解;
4)将混合均匀的反应液转移到50ml的高压反应釜中,反应温度220℃,反应时间5h;
5)自然降至室温,离心收集固体;乙醇洗涤20-30次;收集室温干燥的固体即得催化剂HA-CuMn2O4
实施例4:材料K-N的制备
材料K-N的制备方法同材料J,不同之处在于有机胺的组分,具体采用的有机胺的种类见表2,所得到的材料列于表2。
表2 不同金属组分和有机胺种类
Figure BDA0001158988220000042
Figure BDA0001158988220000051
实施例5:催化剂选择氧化性能测试
将实施例中的催化剂样品放置在60ml高压反应釜中,实验催化剂用量为20mg,底物量6~10g,氧气压力0.3-3.0MPa,反应温度通过连接在釜内的热电偶检测,整个加热套受控于PID控温表。反应产物通过气相色谱检测,用内标法定量分析。
表3 不同催化剂催化烃类选择氧化结果
Figure BDA0001158988220000052
从上述结果可以看出,所制备的有机胺修饰的疏水型纳米氧化物材料应用于环烷烃和芳烃的无溶剂选择氧化反应中,由于有机胺对金属活性中心的络合作用以及疏水的表面性质,在催化反应中,能够提高活性中心的电子转移能力以及由于其疏水表面能够促进底物的吸附与产物脱附等,在较温和的反应条件下能够获得优异的催化活性,表现出广阔的应用前景。

Claims (8)

1.一种烃类催化选择氧化反应的方法,其特征在于:该催化剂为以长链有机胺修饰的过渡金属氧化物纳米材料,在过渡金属氧化物纳米材料表面修饰长链有机胺,使其表现出疏水性表面和高活性中心的特点;在无溶剂条件下催化烃类选择氧化,以空气和/或O2为氧源,制备醇、酮、醛和/或酸有机含氧化合物中的一种或二种以上;
所述催化剂按照以下步骤制备:
1)将无机金属盐和油酸钠混合于正己烷、水和乙醇组成的混合溶剂1中,回流温度下反应4-10h,反应后加入0.1-2倍于混合溶剂1体积的水分层,取有机相,蒸发去除溶剂,得到金属油酸盐;
2)将得到的金属油酸盐作为前驱体,将其分散在辛醇和有机胺组成的混合溶剂2中,搅拌均匀后移入高压反应釜中反应,反应温度150-250oC,时间2-10h;
3)反应结束后,冷却至室温,反应液通过离心得到固体目标物,乙醇洗涤20-30次,室温干燥后,得到的固体即为催化剂Am-MO,其中,Am代表长链有机胺Amines,MO代表金属氧化物Metal Oxides,在合成过程原位引入长链有机胺。
2.按照权利要求1所述的方法,步骤1)中的无机金属盐为氯化钴、氯化锰、氯化铜、乙酸钴、乙酸锰、乙酸铜中的一种或多种,油酸钠与金属盐的用量为2 / 1摩尔比,混合溶剂1中正己烷 / 水 / 乙醇的体积比为5-10 / 4 / 3,无机金属盐在混合溶剂1中的浓度为0.1-0.4 mol/L;
所述步骤2)中,所述金属油酸盐为油酸钴、油酸锰和油酸铜中的一种或两种以上;
所述步骤2)中,所述混合溶剂2中辛醇与有机胺的体积比为5 / 1-1 / 5;所述金属油酸盐在混合溶剂2中的浓度为0.02-0.08 mol/L。
3.按照权利要求1所述的方法,其特征在于:所述长链有机胺修饰的过渡金属氧化物纳米材料中,金属氧化物为CoO、Mn3O4或CuMn2O4纳米粒子中的一种,粒径10-200nm,长链有机胺为正己胺、正辛胺、十二胺、十六胺或油胺中的一种或两种以上。
4.按照权利要求1所述的方法,其特征在于:所述的烃类为环烷烃或者芳香烃;环烷烃为环己烷、环庚烷、环辛烷中的一种或者两种以上;芳香烃为甲苯、乙苯、对二甲苯、四氢萘、或者邻二甲苯中的一种或者两种以上。
5.按照权利要求4所述的方法,其特征在于:在烃类催化选择氧化反应中,当底物烃类为环烷烃时,产物为相应的酮和醇;当底物烃类为芳香烃时,产物为相应的苄位酮、醛、醇或者酸。
6.按照权利要求1或4所述的方法,其特征在于:在烃类催化选择氧化反应中,催化剂和烃类底物质量比为1/300 - 1/500,反应无溶剂。
7.按照权利要求1或4 所述的方法,其特征在于:在烃类催化选择氧化反应中,其反应温度为40-200oC;反应压力为0.1-5.0MPa;反应时间为30-800min;底物转化率为6-99%,有机含氧化物总选择性达95%以上。
8.按照权利要求7 所述的方法,其特征在于:在烃类催化选择氧化反应中,其反应温度为80-180oC;反应压力为0.6-2.0 MPa;反应时间为60-480min。
CN201611033371.5A 2016-11-22 2016-11-22 一种烃类催化选择氧化的方法 Active CN108080035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611033371.5A CN108080035B (zh) 2016-11-22 2016-11-22 一种烃类催化选择氧化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611033371.5A CN108080035B (zh) 2016-11-22 2016-11-22 一种烃类催化选择氧化的方法

Publications (2)

Publication Number Publication Date
CN108080035A CN108080035A (zh) 2018-05-29
CN108080035B true CN108080035B (zh) 2021-01-22

Family

ID=62168947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611033371.5A Active CN108080035B (zh) 2016-11-22 2016-11-22 一种烃类催化选择氧化的方法

Country Status (1)

Country Link
CN (1) CN108080035B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114289032B (zh) * 2021-11-18 2024-03-19 江苏大学 一种氧化钨负载铂铁纳米合金催化剂的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217450A (ja) * 2003-01-10 2004-08-05 Japan Science & Technology Agency グラファイト酸化物の層間拡張方法、及びそれを用いる含炭素多孔体複合材料の合成
CN101279262A (zh) * 2008-05-29 2008-10-08 湖北大学 催化烯烃与空气高选择性环氧化的纳米复合氧化物的制备方法
CN102755907A (zh) * 2011-04-28 2012-10-31 中国科学院大连化学物理研究所 一种烃类催化选择氧化的方法
CN102755908A (zh) * 2011-04-28 2012-10-31 中国科学院大连化学物理研究所 一种烯烃环氧化的方法
CN104925871A (zh) * 2015-06-12 2015-09-23 中南民族大学 一种单分散氧化亚钴纳米晶的合成方法
CN105152225A (zh) * 2015-07-10 2015-12-16 南开大学 一种纳米化的过渡金属氧化物和金属单质材料的制备方法
CN105712837A (zh) * 2014-12-05 2016-06-29 中国科学院大连化学物理研究所 一种烃类催化选择氧化制备有机含氧化合物的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217450A (ja) * 2003-01-10 2004-08-05 Japan Science & Technology Agency グラファイト酸化物の層間拡張方法、及びそれを用いる含炭素多孔体複合材料の合成
CN101279262A (zh) * 2008-05-29 2008-10-08 湖北大学 催化烯烃与空气高选择性环氧化的纳米复合氧化物的制备方法
CN102755907A (zh) * 2011-04-28 2012-10-31 中国科学院大连化学物理研究所 一种烃类催化选择氧化的方法
CN102755908A (zh) * 2011-04-28 2012-10-31 中国科学院大连化学物理研究所 一种烯烃环氧化的方法
CN105712837A (zh) * 2014-12-05 2016-06-29 中国科学院大连化学物理研究所 一种烃类催化选择氧化制备有机含氧化合物的方法
CN104925871A (zh) * 2015-06-12 2015-09-23 中南民族大学 一种单分散氧化亚钴纳米晶的合成方法
CN105152225A (zh) * 2015-07-10 2015-12-16 南开大学 一种纳米化的过渡金属氧化物和金属单质材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ong-chain - amine metal complexes as hydrogenation catalysts. Heterogenisation on activated carbon";M.C. Román-Martínez et. al.;《catalysis letters》;20011231;第77卷(第1-3期);第41-46页 *

Also Published As

Publication number Publication date
CN108080035A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
Chirica et al. Applications of MAX phases and MXenes as catalysts
Nasrollahzadeh et al. Green synthesis of a Cu/MgO nanocomposite by Cassytha filiformis L. extract and investigation of its catalytic activity in the reduction of methylene blue, congo red and nitro compounds in aqueous media
Liu et al. Aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid in water under mild conditions
Liang et al. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization
Lv et al. Silylated MgAl LDHs intercalated with MnO2 nanowires: Highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene
CN105712837B (zh) 一种烃类催化选择氧化制备有机含氧化合物的方法
Xiao et al. One-step synthesis of a novel carbon-based strong acid catalyst through hydrothermal carbonization
CN107442180B (zh) 一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用
Shaabani et al. Cr-and Zn-substituted cobalt ferrite nanoparticles supported on guanidine–modified graphene oxide as efficient and recyclable catalysts
Jie et al. Effective ternary copper-cerium-cobalt catalysts synthesized via a modified pechini method for selective oxidation of ethylbenzene
Ghamari Kargar et al. Copper (II) supported on a post-modified magnetic pectin Fe3O4@ pectin~ imidazole~ SO3H-Cu (II): An efficient biopolymer-based catalyst for selective oxidation of alcohols with aqueous TBHP
CN113275019A (zh) 磁性镍钴氧化物负载金催化剂及其制备方法和应用、2,5-呋喃二甲酸的制备方法
Lin et al. Pd (0)–CMC@ Ce (OH) 4 organic/inorganic hybrid as highly active catalyst for the Suzuki–Miyaura reaction
Pazoki et al. MnO2@ Mg-Al layered double hydroxide Nanosheets: A sustainable and recyclable photocatalyst toward oxidation of benzyl alcohol
Sadjadi et al. Composite of magnetic carbon quantum dot-supported ionic liquid and Cu-BDC (CCDC no. 687690) MOF: A triple catalytic composite for chemical transformations
CN108080035B (zh) 一种烃类催化选择氧化的方法
CN112473737A (zh) 一种Ag@MOF材料、其制备方法及应用
Long et al. Pt NPs immobilized on core–shell magnetite microparticles: Novel and highly efficient catalysts for the selective aerobic oxidation of ethanol and glycerol in water
Yang et al. Fe3O4/g-C3N4-CeOx fabricated by in situ-reduction towards solvent-free oxidation of styrene to benzaldehyde
Sharifzadeh et al. High performance of ultrasonic-assisted synthesis of two spherical polymers for enantioselective catalysis
Liu et al. Metal-organic framework-derived nanomaterials: Promising green catalysts for industrially relevant oxidation and hydrogenation
CN102755907A (zh) 一种烃类催化选择氧化的方法
CN116710203A (zh) 通过能量辐射产生氢分子的方法
Khaligh et al. Recent advances in the nano-catalytic Knoevenagel condensation
Zhu et al. Preparation of cobalt (ii) acetylacetonate covalently anchored onto magnetic mesoporous silica nanospheres as a catalyst for liquid-phase oxidation of cyclohexane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant