CN108075828B - OTDR device based on multichannel optical fiber optical signal monitoring - Google Patents
OTDR device based on multichannel optical fiber optical signal monitoring Download PDFInfo
- Publication number
- CN108075828B CN108075828B CN201711355335.5A CN201711355335A CN108075828B CN 108075828 B CN108075828 B CN 108075828B CN 201711355335 A CN201711355335 A CN 201711355335A CN 108075828 B CN108075828 B CN 108075828B
- Authority
- CN
- China
- Prior art keywords
- module
- unit
- optical
- pulse
- main control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/508—Pulse generation, e.g. generation of solitons
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光时域反射领域,特别涉及一种基于多路光纤光信号监测的OTDR装置。The invention relates to the field of optical time domain reflection, and in particular to an OTDR device based on multi-path optical fiber optical signal monitoring.
背景技术Background Art
光时域反射仪(Optical Time-Domain Reflectometry,OTDR)是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。Optical Time-Domain Reflectometry (OTDR) is a precise optoelectronic integrated instrument that uses the backscattering caused by Rayleigh scattering and Fresnel reflection when light is transmitted in an optical fiber. It is widely used in the maintenance and construction of optical cable lines. It can measure optical fiber length, optical fiber transmission attenuation, joint attenuation and fault location.
目前,用于光纤故障定位监测的OTDR,主要有两种即:用于单光子级别的弱光检测的单光子探测OTDR和用于非单光子级别的光检测的普通OTDR;雪崩光电二极管(APD)作为激光通信领域常见的一种光敏检测元件,因具有较高的检测灵敏度,是OTDR中一种不可或缺的组成器件。At present, there are two main types of OTDRs used for optical fiber fault location monitoring: single-photon detection OTDR for single-photon level weak light detection and ordinary OTDR for non-single-photon level light detection; avalanche photodiode (APD) is a common photosensitive detection element in the field of laser communication. It is an indispensable component of OTDR because of its high detection sensitivity.
其中,单光子探测OTDR的雪崩光电二极管工作在门控盖革模式,而普通OTDR的雪崩光电二极管工作在线性模式;工作在线性模式的雪崩光电二极管,无需考虑后脉冲效应,可以工作在连续信号采集状态,具有测量时间快的优点,但是由于工作在线性模式的雪崩光电二极管增益低,无法探测弱小光信号,因此,普通OTDR的测量精度和测量距离受到限制。Among them, the avalanche photodiode of the single-photon detection OTDR works in the gated Geiger mode, while the avalanche photodiode of the ordinary OTDR works in the linear mode; the avalanche photodiode working in the linear mode does not need to consider the after-pulse effect and can work in the continuous signal acquisition state, which has the advantage of fast measurement time. However, since the avalanche photodiode working in the linear mode has a low gain and cannot detect weak optical signals, the measurement accuracy and measurement distance of the ordinary OTDR are limited.
虽然,单光子探测OTDR可探测到比热噪声还小的极微弱光信号,可以得到比普通OTDR更高的测量精度、更远的测量距离和更大的动态范围,可以弥补普通OTDR的缺点,但是,因单光子探测OTDR的雪崩光电二极管工作在门控盖革模式下,受后脉冲影响,具有一定的死时间,导致单光子探测器的门脉冲重复频率低,只能工作在逐点扫描模式,且完成一次探测任务往往需要较长的时间;当测量精度越高、扫描点数越多,则单光子探测OTDR所需的探测时间越长;当后脉冲概率越大,则单光子探测OTDR所需要设置的死时间越长。Although the single-photon detection OTDR can detect extremely weak optical signals that are smaller than thermal noise, it can obtain higher measurement accuracy, longer measurement distance and larger dynamic range than ordinary OTDR, which can make up for the shortcomings of ordinary OTDR. However, because the avalanche photodiode of the single-photon detection OTDR works in the gated Geiger mode, it is affected by the after-pulse and has a certain dead time, resulting in a low gate pulse repetition frequency of the single-photon detector. It can only work in the point-by-point scanning mode, and it often takes a long time to complete a detection task; the higher the measurement accuracy and the more scanning points, the longer the detection time required for the single-photon detection OTDR; the greater the probability of the after-pulse, the longer the dead time that needs to be set for the single-photon detection OTDR.
另外,因雪崩光电二极管是容性器件,当门脉冲信号加载在雪崩光电二极管上对其进行充放电时,会引入相应的噪声,将光生的雪崩有效信号淹没,影响探测结果;同时温度的变化也会对雪崩光电二极管的探测性能造成一定影响,会引发雪崩光电二极管工作性能的不稳定使得对光纤故障点的定位和查找不准确。In addition, because the avalanche photodiode is a capacitive device, when the gate pulse signal is loaded on the avalanche photodiode to charge and discharge it, the corresponding noise will be introduced, which will submerge the effective light-generated avalanche signal and affect the detection result. At the same time, temperature changes will also have a certain impact on the detection performance of the avalanche photodiode, causing the instability of the working performance of the avalanche photodiode, making the positioning and search of the optical fiber fault point inaccurate.
发明内容Summary of the invention
本发明的目的在于提供一种基于多路光纤光信号监测的OTDR装置,用以解决背景技术中的缺陷。The object of the present invention is to provide an OTDR device based on multi-channel optical fiber optical signal monitoring to solve the defects in the background technology.
为实现上述目的,本发明采取的技术方案为:一种基于多路光纤光信号监测的OTDR装置,包含主控单元、光发送单元、光分路单元、示波单元、N个耦合单元及N个光分路探测单元,所述主控单元分别与所述光发送单元及示波单元连接,所述光发送单元与所述光分路单元连接,所述光分路单元对应与所述N个耦合单元连接,每个所述耦合单元的输入端对应与光分路单元及一光分路探测单元连接,每个所述耦合单元输出端对应与一待测光纤连接,每个所述光分路探测单元均对应与所述主控单元连接。To achieve the above-mentioned purpose, the technical solution adopted by the present invention is: an OTDR device based on multi-channel optical fiber optical signal monitoring, comprising a main control unit, an optical sending unit, an optical branching unit, an oscilloscope unit, N coupling units and N optical branch detection units, the main control unit is respectively connected to the optical sending unit and the oscilloscope unit, the optical sending unit is connected to the optical branching unit, the optical branching unit is correspondingly connected to the N coupling units, the input end of each of the coupling units is correspondingly connected to the optical branching unit and an optical branch detection unit, the output end of each of the coupling units is correspondingly connected to an optical fiber to be tested, and each of the optical branch detection units is correspondingly connected to the main control unit.
进一步,所述主控单元包含有单片机、脉冲信号发生器、信号衰减驱动器及数据处理器,所述脉冲信号发生器、信号衰减驱动器及数据处理器分别与所述单片机连接;Further, the main control unit includes a single chip microcomputer, a pulse signal generator, a signal attenuation driver and a data processor, and the pulse signal generator, the signal attenuation driver and the data processor are respectively connected to the single chip microcomputer;
所述光发送单元包含脉冲光源及可调衰减器,所述脉冲光源分别与所述脉冲信号发生器及所述可调衰减器连接,所述可调衰减器分别与所述信号衰减驱动器及光分路单元连接;The optical transmission unit comprises a pulse light source and an adjustable attenuator, the pulse light source is connected to the pulse signal generator and the adjustable attenuator respectively, and the adjustable attenuator is connected to the signal attenuation driver and the optical branching unit respectively;
每个所述光分路探测单元均包含一1x2的分光器、一普通探测单元及一单光子探测单元,每个所述1x2分光器输入端对应与一耦合单元连接,每个所述1x2分光器输出端分别对应与一普通探测单元及一单光子探测单元连接。Each of the optical branching detection units includes a 1x2 splitter, a common detection unit and a single photon detection unit. Each of the 1x2 splitter input ends is correspondingly connected to a coupling unit, and each of the 1x2 splitter output ends is correspondingly connected to a common detection unit and a single photon detection unit.
进一步,所述光分路单元为1xN分光器;所述示波单元为波形显示器,且所述波形显示器包含有N个对应用于显示所述光分路探测单元输出的探测光波形曲线的显示区;每个所述耦合单元为定向耦合器或环形器;其中,N为≥2的整数。Furthermore, the optical branching unit is a 1xN splitter; the oscilloscope unit is a waveform display, and the waveform display includes N display areas corresponding to the detection light waveform curve output by the optical branching detection unit; each of the coupling units is a directional coupler or a circulator; wherein N is an integer ≥2.
进一步,每个所述普通探测单元均包含依次连接的第一光电探测模块、滤波器、第一信号放大器及第一模/数转换器,每个第一光电探测模块均还对应与一1x2的分光器的一输出端口连接,每个所述第一模/数转换器均还对应与主控单元的数据处理器连接,每个所述第一光电探测模块均包含有第一雪崩光电二极管、第一温控模块及第一封装盒体;每个所述第一温控模块包含有第一制冷器、第一加热器及第一温度传感器,每个所述第一制冷器及第一加热器均分别与主控单元的单片机连接,每个所述第一温度传感器均分别与所述主控单元的单片机及一第一雪崩光电二极管的管脚连接,每个所述第一光电探测模相对应的第一雪崩光电二极管、第一制冷器、第一加热器及第一温度传感器均对应封装在一个所述第一封装盒体内。Further, each of the ordinary detection units includes a first photoelectric detection module, a filter, a first signal amplifier and a first analog/digital converter connected in sequence, each of the first photoelectric detection modules is also correspondingly connected to an output port of a 1x2 spectrometer, each of the first analog/digital converters is also correspondingly connected to a data processor of the main control unit, each of the first photoelectric detection modules includes a first avalanche photodiode, a first temperature control module and a first packaging box; each of the first temperature control modules includes a first refrigerator, a first heater and a first temperature sensor, each of the first refrigerator and the first heater are respectively connected to the single-chip microcomputer of the main control unit, each of the first temperature sensors are respectively connected to the single-chip microcomputer of the main control unit and the pins of a first avalanche photodiode, and the first avalanche photodiode, the first refrigerator, the first heater and the first temperature sensor corresponding to each of the first photoelectric detection modules are correspondingly packaged in a first packaging box.
进一步,每个所述单光子探测单元均包含第二光电探测模块、偏压模块、时钟模块、门脉冲模块、噪声抑制模块、脉冲整形模块及光子计数器,每个所述偏压模块分别均对应与主控单元的单片机及一第二光电探测模块连接,每个所述时钟模块分别对应与主控单元的脉冲信号发生器及一门脉冲模块连接,每个所述门脉冲模块对应与主控单元的单片机及一第二光电探测模块连接,每个噪声抑制模块分别对应与一第二光电探测模块及一脉冲整形模块连接,每个光子计数器分别对应与主控单元的数据处理器及一脉冲整形模块连接,每个所述第二光电探测模块均对应与一1x2分光器的一输出端口连接,每个所述第二光电探测模块均包含有第二雪崩光电二极管、第二温控模块及第二封装盒体;每个所述第二温控模块包含有第二制冷器、第二加热器及第二温度传感器,每个所述第二制冷器及第二加热器均分别对应与主控单元的单片机连接,每个所述第二温度传感器均分别对应与主控单元的单片机及一第二雪崩光电二极管的管脚连接,每个所述第二光电探测模块相对应的第二雪崩光电二极管、第二制冷器、第二加热器及第二温度传感器均对应封装在一个所述第二封装盒体内。Furthermore, each of the single-photon detection units includes a second photoelectric detection module, a bias module, a clock module, a gate pulse module, a noise suppression module, a pulse shaping module and a photon counter. Each of the bias modules is respectively connected to the single-chip microcomputer of the main control unit and a second photoelectric detection module. Each of the clock modules is respectively connected to the pulse signal generator of the main control unit and a gate pulse module. Each of the gate pulse modules is respectively connected to the single-chip microcomputer of the main control unit and a second photoelectric detection module. Each of the noise suppression modules is respectively connected to a second photoelectric detection module and a pulse shaping module. Each of the photon counters is respectively connected to the data processor of the main control unit and a pulse shaping module. The two photoelectric detection modules are each connected to an output port of a 1x2 splitter, and each of the second photoelectric detection modules includes a second avalanche photodiode, a second temperature control module and a second packaging box; each of the second temperature control modules includes a second refrigerator, a second heater and a second temperature sensor, and each of the second refrigerator and the second heater is respectively connected to the single-chip microcomputer of the main control unit, and each of the second temperature sensors is respectively connected to the single-chip microcomputer of the main control unit and the pin of a second avalanche photodiode, and the second avalanche photodiode, the second refrigerator, the second heater and the second temperature sensor corresponding to each of the second photoelectric detection modules are correspondingly packaged in a second packaging box.
进一步,每个所述偏压模块均为电压源模块,且均分别对应与主控单元的单片机连接及对应与一第二雪崩光电二极管的阴极连接;每个所述偏压模块均用于为与之对应连接的第二雪崩光电二极管提供工作所需的反向偏置电压。Furthermore, each of the bias modules is a voltage source module, and is respectively connected to the microcontroller of the main control unit and to the cathode of a second avalanche photodiode; each of the bias modules is used to provide the reverse bias voltage required for the second avalanche photodiode connected thereto.
进一步,每个所述门脉冲模块均为门脉冲发生器,且分别对应与一时钟模块连接及对应与一第二雪崩光电二极管的阴极连接,每个所述门脉冲模块均包含有锁相环电路、分频器及第二信号放大器,每个所述锁相环电路的输出端对应与一第二信号放大器连接,每个所述锁相环电路的输入端对应与一时钟模块连接,每个所述锁相环电路包含依次连接的鉴相器、环路滤波器及压控振荡器;每个所述门脉冲模块均用于输出门控信号,为与之对应连接的第二雪崩光电二极管进行充放电控制,实现对第二雪崩光电二极管的雪崩及淬灭过程控制,每个所述时钟模块均用于控制与之对应连接的门脉冲模块及脉冲信号发生器同步触发工作,使门脉冲模块输出的门控信号与偏压模块输出的偏置电压信号按照时序的方式加载到第二雪崩光电二极管上,使第二雪崩光电二极管工作在盖革门控模式下,从而实现单光子级别的光强信号检测。Furthermore, each of the gate pulse modules is a gate pulse generator, and is respectively connected to a clock module and to the cathode of a second avalanche photodiode. Each of the gate pulse modules includes a phase-locked loop circuit, a frequency divider and a second signal amplifier. The output end of each phase-locked loop circuit is connected to a second signal amplifier, and the input end of each phase-locked loop circuit is connected to a clock module. Each phase-locked loop circuit includes a phase detector, a loop filter and a voltage-controlled oscillator connected in sequence. Each of the gate pulse modules is used to output a gate control signal to control the charge and discharge of the second avalanche photodiode connected thereto, so as to control the avalanche and quenching process of the second avalanche photodiode. Each of the clock modules is used to control the synchronous triggering of the gate pulse module and the pulse signal generator connected thereto, so that the gate control signal output by the gate pulse module and the bias voltage signal output by the bias module are loaded onto the second avalanche photodiode in a time sequence, so that the second avalanche photodiode works in a Geiger gating mode, thereby realizing single-photon level light intensity signal detection.
进一步,每个所述噪声抑制模块包含带通滤波器、低通滤波器及第三信号放大器;每个所述带通滤波器输入端对应与一门脉冲模块输出端连接,每个所述带通滤波器输出端对应与一第二雪崩光电二极管的阴极连接;每个所述低通滤波器输入端对应与一第二雪崩光电二极管的阳极连接,每个所述低通滤波器输出端对应与一第三信号放大器输入端连接;每个所述第三信号放大器输出端对应与一脉冲整形模块连接;每个所述带通滤波器均用于滤除由对应门脉冲模块输出的门控信号中所带来的边带噪声和谐波噪声信号;每个所述低通滤波器均用于滤除由对应门脉冲模块输出的门控信号所引入的并经过对应第二雪崩光电二极管光电转化后所产出的噪声信号,从中获取有效的光生载流子雪崩信号。Furthermore, each of the noise suppression modules comprises a bandpass filter, a low-pass filter and a third signal amplifier; each of the bandpass filter input ends is correspondingly connected to a gate pulse module output end, and each of the bandpass filter output ends is correspondingly connected to the cathode of a second avalanche photodiode; each of the low-pass filter input ends is correspondingly connected to the anode of a second avalanche photodiode, and each of the low-pass filter output ends is correspondingly connected to the input end of a third signal amplifier; each of the third signal amplifier output ends is correspondingly connected to a pulse shaping module; each of the bandpass filters is used to filter out the sideband noise and harmonic noise signals brought by the gated signal output by the corresponding gate pulse module; each of the low-pass filters is used to filter out the noise signals introduced by the gated signal output by the corresponding gate pulse module and produced after the photoelectric conversion of the corresponding second avalanche photodiode, so as to obtain an effective photogenerated carrier avalanche signal therefrom.
进一步,每个所述脉冲整形模块包含脉冲鉴幅器、脉冲整形电路及第二模/数转换器;每个所述脉冲鉴幅器输入端对应与一第三信号放大器输出端连接,每个所述脉冲鉴幅器输出端对应与一脉冲整形电路输入端连接,每个所述脉冲整形电路输出端对应与一第二模/数转换器输入端连接,每个所述第二模/数转换器输出端对应与一光子计数器输入端连接,每个所述光子计数器输出端均对应与主控单元的数据处理器连接。Furthermore, each of the pulse shaping modules includes a pulse amplitude detector, a pulse shaping circuit and a second analog/digital converter; each of the pulse amplitude detector input ends is correspondingly connected to a third signal amplifier output end, each of the pulse amplitude detector output ends is correspondingly connected to a pulse shaping circuit input end, each of the pulse shaping circuit output ends is correspondingly connected to a second analog/digital converter input end, each of the second analog/digital converter output ends is correspondingly connected to a photon counter input end, and each of the photon counter output ends is correspondingly connected to a data processor of the main control unit.
与现有技术相比,本发明的有益效果是:本发明可对多路待测光纤进行故障点精确定位和查找,有利于提高作业监测人员对光纤线路的运维检修工作效率以及降低对光纤链路的监测费用的投入,具有工作效率高、测量结果精确以及监测速度快等优点。Compared with the prior art, the beneficial effects of the present invention are as follows: the present invention can accurately locate and find fault points of multiple optical fibers to be tested, which is beneficial to improving the efficiency of operation and maintenance of optical fiber lines by operating monitoring personnel and reducing the investment in monitoring costs of optical fiber links. It has the advantages of high work efficiency, accurate measurement results and fast monitoring speed.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明基于多路光纤光信号监测的OTDR装置的结构框图;FIG1 is a block diagram of an OTDR device based on multi-channel optical fiber optical signal monitoring according to the present invention;
图2为本发明基于多路光纤光信号监测的OTDR装置的具体实施例结构框图;FIG2 is a block diagram of a specific embodiment of an OTDR device based on multi-channel optical fiber optical signal monitoring according to the present invention;
图3为基于图2中的每个普通探测单元的结构框图;FIG3 is a structural block diagram of each common detection unit in FIG2;
图4为基于图3中的每个单光子探测单元的结构框图;FIG4 is a block diagram of the structure of each single photon detection unit in FIG3 ;
图5为基于图4的门脉冲模块的电路连接框图;FIG5 is a circuit connection block diagram of the gate pulse module based on FIG4;
图中:1、主控单元;11、单片机;12、脉冲信号发生器;13、信号衰减驱动器;14、数据处理器;2、光发送单元;21、脉冲光源;22、可调衰减器;3、光分路单元;4、示波单元;5、耦合单元;6、光分路探测单元;61、1x2分光器;62、普通探测单元;621、第一光电探测模块;621a、第一雪崩光电二极管;621b、第一温控模块;621b-1、第一制冷器;621b-2、第一加热器;621b-3、第一温度传感器;621c、第一封装盒体;622、滤波器;623、第一信号放大器;624、第一模/数转换器;63、单光子探测单元;631、第二光电探测模块;631a、第二雪崩光电二极管;631b、第二温控模块;631b-1、第二制冷器;631b-2、第二加热器;631b-3、第二温度传感器;631c、第二封装盒体;632、偏压模块;633、时钟模块;634、门脉冲模块;634a、锁相环电路;634b、分频器;634c、第二信号放大器;635、噪声抑制模块;635a、带通滤波器;635b、低通滤波器;635c、第三信号放大器;636、脉冲整形模块;636a、脉冲鉴幅器;636b、脉冲整形电路;636c、第二模/数转换器;637、光子计数器;7、待测光纤。In the figure: 1, main control unit; 11, single chip microcomputer; 12, pulse signal generator; 13, signal attenuation driver; 14, data processor; 2, optical transmission unit; 21, pulse light source; 22, adjustable attenuator; 3, optical branching unit; 4, oscilloscope unit; 5, coupling unit; 6, optical branching detection unit; 61, 1x2 optical splitter; 62, ordinary detection unit; 621, first photoelectric detection module; 621a, first avalanche photodiode; 621b, first temperature control module; 621b-1, first refrigerator; 621b-2, first heater; 621b-3, first temperature sensor; 621c, first packaging box; 622, filter; 623, first signal amplifier; 624, first analog/digital converter; 63, single photon detection unit; 6 31. The second photoelectric detection module; 631a. The second avalanche photodiode; 631b. The second temperature control module; 631b-1. The second refrigerator; 631b-2. The second heater; 631b-3. The second temperature sensor; 631c. The second packaging box; 632. The bias module; 633. The clock module; 634. The gate pulse module; 634a. The phase-locked loop circuit; 634b. The frequency divider; 634c. The second signal amplifier; 635. The noise suppression module; 635a. The band-pass filter; 635b. The low-pass filter; 635c. The third signal amplifier; 636. The pulse shaping module; 636a. The pulse amplitude detector; 636b. The pulse shaping circuit; 636c. The second analog-to-digital converter; 637. The photon counter; 7. The optical fiber to be tested.
具体实施方式DETAILED DESCRIPTION
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图和具体实施例,进一步阐述本发明是如何实施的。In order to make the technical means, creative features, objectives and effects achieved by the present invention easy to understand, the following further describes how the present invention is implemented in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明提供的一种基于多路光纤光信号监测的OTDR装置,包含主控单元1、光发送单元2、光分路单元3、示波单元4、N个耦合单元5及N个光分路探测单元6;主控单元1分别与光发送单元2及示波单元4连接;光发送单元2与光分路单元3连接,光分路单元3对应与N个耦合单元5连接,每个耦合单元5的输入端对应与光分路单元3的一个输出端及一光分路探测单元6连接,每个耦合单元5输出端对应与一待测光纤7连接;每个光分路探测单元6均对应与主控单元1连接。As shown in Figure 1, the present invention provides an OTDR device based on multi-channel optical fiber optical signal monitoring, which includes a main control unit 1, an optical sending unit 2, an optical branching unit 3, an oscilloscope unit 4, N coupling units 5 and N optical branch detection units 6; the main control unit 1 is connected to the optical sending unit 2 and the oscilloscope unit 4 respectively; the optical sending unit 2 is connected to the optical branching unit 3, and the optical branching unit 3 is correspondingly connected to N coupling units 5, and the input end of each coupling unit 5 is correspondingly connected to an output end of the optical branching unit 3 and an optical branch detection unit 6, and the output end of each coupling unit 5 is correspondingly connected to an optical fiber 7 to be tested; each optical branch detection unit 6 is correspondingly connected to the main control unit 1.
如图2,在本实施例中,主控单元1包含有单片机11、脉冲信号发生器12、信号衰减驱动器13及数据处理器14,脉冲信号发生器12、信号衰减驱动器13及数据处理器14均分别与单片机11连接;As shown in FIG2 , in this embodiment, the main control unit 1 includes a single chip microcomputer 11, a pulse signal generator 12, a signal attenuation driver 13 and a data processor 14, and the pulse signal generator 12, the signal attenuation driver 13 and the data processor 14 are respectively connected to the single chip microcomputer 11;
光发送单元2包含脉冲光源21及可调衰减器22,脉冲光源21分别与脉冲信号发生器12及可调衰减器22连接,可调衰减器22分别与信号衰减驱动器13及光分路单元3连接;脉冲光源21发射的是1550nm波段的高速近红外光,光分路单元3为1xN分光器;The optical transmission unit 2 includes a pulse light source 21 and an adjustable attenuator 22. The pulse light source 21 is connected to the pulse signal generator 12 and the adjustable attenuator 22 respectively. The adjustable attenuator 22 is connected to the signal attenuation driver 13 and the optical splitter unit 3 respectively. The pulse light source 21 emits high-speed near-infrared light in the 1550nm band, and the optical splitter unit 3 is a 1xN splitter.
示波单元4为波形显示器,且波形显示器上设置有N个对应用于显示光分路探测单元6输出的探测光波形曲线的显示区域;The oscilloscope unit 4 is a waveform display, and the waveform display is provided with N display areas corresponding to the waveform curve of the detection light output by the optical branch detection unit 6;
每个耦合单元5为一定向耦合器或一环形器;Each coupling unit 5 is a directional coupler or a circulator;
每个光分路探测单元6均包含一1x2的分光器61、一普通探测单元62及一单光子探测单元63。Each optical branching detection unit 6 includes a 1×2 optical splitter 61 , a common detection unit 62 and a single photon detection unit 63 .
其中,N为≥2的整数,按照通常的视窗看图习惯,设置N等于4为最佳。Wherein, N is an integer ≥ 2. According to the usual window viewing habits, it is best to set N equal to 4.
如图3所示,其中,每个普通探测单元62均包含依次连接的第一光电探测模块621、滤波器622、第一信号放大器623及第一模/数转换器624,每个第一光电探测模块621的输入端对应与一1x2的分光器61的一输出端口连接,每个第一模/数转换器624均还对应与主控单元1的数据处理器14连接;As shown in FIG3 , each common detection unit 62 includes a first photoelectric detection module 621, a filter 622, a first signal amplifier 623 and a first analog/digital converter 624 connected in sequence, and the input end of each first photoelectric detection module 621 is correspondingly connected to an output port of a 1x2 optical splitter 61, and each first analog/digital converter 624 is also correspondingly connected to the data processor 14 of the main control unit 1;
每个第一光电探测模块621均包含有第一雪崩光电二极管621a、第一温控模块621b及第一封装盒体621c,每个第一温控模块621b包含有第一制冷器621b-1、第一加热器621b-2及第一温度传感器621b-3,每个第一制冷器621b-1及第一加热器621b-2均分别与主控单元1的单片机11连接,每个第一温度传感器621b-3均分别与主控单元1的单片机11及一第一雪崩光电二极管621a的管脚连接,每个第一光电探测模块621相对应的第一雪崩光电二极管621a、第一制冷器621b-1、第一加热器621b-2及第一温度传感器621b-3均对应封装在一个第一封装盒体621c内,每个第一温控模块621b通过第一制冷器621b-1及第一加热器621b-2均调节与之对应的第一封装盒体621c内的温度,通过对应的第一封装盒体621c内封装的第一温度传感器621b-3实时的将感应到的第一雪崩光电二极管621a的工作温度反馈给主控单元1的单片机11,通过单片机11控制第一制冷器621b-1及第一加热器621b-2制冷或加热控制,实现第一封装盒体621c内温度调控,使得第一雪崩光电二极管621a时刻处于适宜的工作温度下,进而有效的避免掉因温度升高造成第一雪崩光电二极管621a的性能不稳定,影响普通探测单元的光强信号探测结果的准确性。Each first photoelectric detection module 621 includes a first avalanche photodiode 621a, a first temperature control module 621b and a first packaging box 621c. Each first temperature control module 621b includes a first refrigerator 621b-1, a first heater 621b-2 and a first temperature sensor 621b-3. Each first refrigerator 621b-1 and the first heater 621b-2 are respectively connected to the single-chip microcomputer 11 of the main control unit 1. Each first temperature sensor 621b-3 is respectively connected to the single-chip microcomputer 11 of the main control unit 1 and a pin of a first avalanche photodiode 621a. The first avalanche photodiode 621a, the first refrigerator 621b-1, the first heater 621b-2 and the first temperature sensor 621b-3 corresponding to each first photoelectric detection module 621 are correspondingly packaged in a first packaging box. In 621c, each first temperature control module 621b adjusts the temperature in the corresponding first packaging box body 621c through the first refrigerator 621b-1 and the first heater 621b-2, and the first temperature sensor 621b-3 packaged in the corresponding first packaging box body 621c feeds back the sensed working temperature of the first avalanche photodiode 621a to the single-chip microcomputer 11 of the main control unit 1 in real time, and the first refrigerator 621b-1 and the first heater 621b-2 are controlled by the single-chip microcomputer 11 to control the cooling or heating control, so as to realize the temperature control in the first packaging box body 621c, so that the first avalanche photodiode 621a is always at a suitable working temperature, thereby effectively avoiding the unstable performance of the first avalanche photodiode 621a caused by the temperature increase, which affects the accuracy of the light intensity signal detection result of the ordinary detection unit.
如图4所示,其中,每个单光子探测单元63均包含第二光电探测模块631、偏压模块632、时钟模块633、门脉冲模块634、噪声抑制模块635、脉冲整形模块636及光子计数器637;As shown in FIG4 , each single photon detection unit 63 includes a second photodetection module 631 , a bias module 632 , a clock module 633 , a gate pulse module 634 , a noise suppression module 635 , a pulse shaping module 636 and a photon counter 637 ;
每个偏压模块632输入端均对应与主控单元1的单片机11连接,每个偏压模块632输出端均对应与一第二光电探测模块631的输入端连接,每个第二光电探测模块631的输入端还分别对应与一1x2的分光器61的一输出端口及一门脉冲模块634的输出端连接,每个1x2的分光器61的另一输出端口对应与一第一光电探测模块621的输入端连接,每个第二光电探测模块631的输出端对应有依次连接的一噪声抑制模块635、一脉冲整形模块636及一光子计数器637,每个门脉冲模块634的输入端分别对应与主控单元1的单片机11及一时钟模块633连接;每个时钟模块633还分别对应与主控单元1的脉冲信号发生器12及单片机11连接,每个光子计数器637还分别对应与主控单元1的数据处理器14连接;The input end of each bias module 632 is connected to the single-chip microcomputer 11 of the main control unit 1, and the output end of each bias module 632 is connected to the input end of a second photoelectric detection module 631. The input end of each second photoelectric detection module 631 is also connected to an output port of a 1x2 optical splitter 61 and an output end of a gate pulse module 634 respectively. The other output port of each 1x2 optical splitter 61 is connected to the input end of a first photoelectric detection module 621. The output end of each second photoelectric detection module 631 corresponds to a noise suppression module 635, a pulse shaping module 636 and a photon counter 637 connected in sequence. The input end of each gate pulse module 634 is connected to the single-chip microcomputer 11 and a clock module 633 of the main control unit 1 respectively; each clock module 633 is also connected to the pulse signal generator 12 and the single-chip microcomputer 11 of the main control unit 1 respectively, and each photon counter 637 is also connected to the data processor 14 of the main control unit 1 respectively.
每个第二光电探测模块631均包含有第二雪崩光电二极管631a、第二温控模块631b及第二封装盒体631c;每个第二温控模块631b包含有第二制冷器631b-1、第二加热器631b-2及第二温度传感器631b-3,每个第二制冷器631b-1及第二加热器631b-2均分别与主控单元1的单片机11连接,每个第二温度传感器631b-3均分别与主控单元1的单片机11及一第二雪崩光电二极管631a的管脚连接,每个第二光电探测模块631相对应的第二雪崩光电二极管631a、第二制冷器631b-1、第二加热器631b-2及第二温度传感器631b-3均对应封装在一个第二封装盒体631c内,每个第二温控模块631b通过第二制冷器631b-1及第二加热器631b-2均调节与之对应的第二封装盒体631c内的温度,通过对应的第二封装盒体631c内封装的第一温度传感器631b-3实时的将感应到的第二雪崩光电二极管631a的工作温度反馈给主控单元1的单片机11,通过单片机11控制第二制冷器631b-1及第二加热器631b-2制冷或加热控制,实现第一封装盒体621c内温度调控,使得第二雪崩光电二极管631a时刻处于适宜的工作温度下,进而有效的避免掉因温度升高造成第二雪崩光电二极管631a的性能不稳定,影响单光子探测单元的光强信号探测结果的准确性。Each second photoelectric detection module 631 includes a second avalanche photodiode 631a, a second temperature control module 631b and a second packaging box 631c; each second temperature control module 631b includes a second refrigerator 631b-1, a second heater 631b-2 and a second temperature sensor 631b-3, each second refrigerator 631b-1 and a second heater 631b-2 are respectively connected to the single-chip microcomputer 11 of the main control unit 1, each second temperature sensor 631b-3 is respectively connected to the single-chip microcomputer 11 of the main control unit 1 and a pin of a second avalanche photodiode 631a, and the second avalanche photodiode 631a, the second refrigerator 631b-1, the second heater 631b-2 and the second temperature sensor 631b-3 corresponding to each second photoelectric detection module 631 are correspondingly packaged in a second packaging box. In 631c, each second temperature control module 631b adjusts the temperature inside the corresponding second packaging box body 631c through the second refrigerator 631b-1 and the second heater 631b-2, and the first temperature sensor 631b-3 packaged in the corresponding second packaging box body 631c feeds back the sensed working temperature of the second avalanche photodiode 631a to the single-chip microcomputer 11 of the main control unit 1 in real time, and the second refrigerator 631b-1 and the second heater 631b-2 are controlled by the single-chip microcomputer 11 to control the cooling or heating control, so as to realize the temperature control inside the first packaging box body 621c, so that the second avalanche photodiode 631a is always at a suitable working temperature, thereby effectively avoiding the performance instability of the second avalanche photodiode 631a caused by the temperature increase, affecting the accuracy of the light intensity signal detection result of the single photon detection unit.
每个偏压模块632均为电压源模块,且均分别对应与主控单元1的单片机11连接及对应与一第二雪崩光电二极管631a的阴极连接;每个偏压模块632均用于为与之对应连接的第二雪崩光电二极管631a提供工作所需的反向偏置电压。Each bias module 632 is a voltage source module, and is respectively connected to the microcontroller 11 of the main control unit 1 and to the cathode of a second avalanche photodiode 631a; each bias module 632 is used to provide the reverse bias voltage required for operation for the second avalanche photodiode 631a connected thereto.
每个门脉冲模块634均为门脉冲发生器,且分别对应与一时钟模块633及一偏压模块632的连接,如图5所示,每个门脉冲模块634均包含有锁相环电路634a、分频器634b及第二信号放大器634c,每个锁相环电路634a的输出端对应与一第二信号放大器634c连接,每个锁相环电路634a的输入端对应与一时钟模块633连接,每个锁相环电路634a包含依次连接的鉴相器634a-1、环路滤波器634a-2及压控振荡器634a-3;每个门脉冲模块634均用于输出门控信号为与之对应连接的偏压模块632进行充放电控制,生成加载在第二雪崩光电二极管631a上的反向偏置电压,实现对第二雪崩光电二极管631a的雪崩及淬灭过程控制;Each gate pulse module 634 is a gate pulse generator, and is respectively connected to a clock module 633 and a bias module 632. As shown in FIG5 , each gate pulse module 634 includes a phase-locked loop circuit 634a, a frequency divider 634b and a second signal amplifier 634c. The output end of each phase-locked loop circuit 634a is correspondingly connected to a second signal amplifier 634c, and the input end of each phase-locked loop circuit 634a is correspondingly connected to a clock module 633. Each phase-locked loop circuit 634a includes a phase detector 634a-1, a loop filter 634a-2 and a voltage-controlled oscillator 634a-3 connected in sequence; each gate pulse module 634 is used to output a gate control signal to control the charge and discharge of the bias module 632 connected thereto, thereby generating a reverse bias voltage loaded on the second avalanche photodiode 631a, so as to control the avalanche and quenching process of the second avalanche photodiode 631a.
当偏压模块632生成的反向偏置电压加载在第二雪崩光电二极管631a上并大于等于第二雪崩光电二极管631a雪崩电压时,则从待测光纤7中经瑞利散射和菲涅尔反射的返回的光子将入射到第二雪崩光电二极管631a中产生大量的光生载流子,即形成雪崩信号;When the reverse bias voltage generated by the bias module 632 is loaded on the second avalanche photodiode 631a and is greater than or equal to the avalanche voltage of the second avalanche photodiode 631a, the photons returning from the optical fiber 7 to be tested through Rayleigh scattering and Fresnel reflection will be incident on the second avalanche photodiode 631a to generate a large number of photogenerated carriers, that is, to form an avalanche signal;
当偏压模块632生成的反向偏置电压加载在第二雪崩光电二极管631a上并小于第二雪崩光电二极管631a雪崩电压时,则从待测光纤7中经瑞利散射和菲涅尔反射的返回的光子不足以产生光生载流子,即第二雪崩光电二极管63a被淬灭;When the reverse bias voltage generated by the bias module 632 is loaded on the second avalanche photodiode 631a and is less than the avalanche voltage of the second avalanche photodiode 631a, the photons returning from the optical fiber 7 to be tested through Rayleigh scattering and Fresnel reflection are insufficient to generate photogenerated carriers, that is, the second avalanche photodiode 63a is quenched;
每个时钟模块633均用于控制与之对应连接的门脉冲模块634及脉冲信号发生器12同步触发工作,使门脉冲模块634输出的门控信号与脉冲信号发生器12发出的脉冲光信号按照时钟的方式加载到第二雪崩光电二极管631a上,使第二雪崩光电二极管631a工作在盖革门控模式下,从而实现单光子级别的光强信号检测。Each clock module 633 is used to control the synchronous triggering of the gate pulse module 634 and the pulse signal generator 12 connected thereto, so that the gate signal output by the gate pulse module 634 and the pulse light signal emitted by the pulse signal generator 12 are loaded onto the second avalanche photodiode 631a in a clock manner, so that the second avalanche photodiode 631a works in the Geiger gating mode, thereby realizing single-photon level light intensity signal detection.
每个噪声抑制模块635包含带通滤波器635a、低通滤波器635b及第三信号放大器635c;每个带通滤波器635a输入端对应与一门脉冲模块634输出端连接,每个带通滤波器635a输出端对应与一第二雪崩光电二极管631a的阴极连接;每个低通滤波器635b输入端对应与一第二雪崩光电二极管631a的阳极连接,每个低通滤波器635b输出端对应与一第三信号放大器635c输入端连接;每个第三信号放大器635c输出端对应与一脉冲整形模块636连接;Each noise suppression module 635 comprises a bandpass filter 635a, a low-pass filter 635b and a third signal amplifier 635c; each bandpass filter 635a input end is correspondingly connected to an output end of a gate pulse module 634, and each bandpass filter 635a output end is correspondingly connected to a cathode of a second avalanche photodiode 631a; each low-pass filter 635b input end is correspondingly connected to an anode of a second avalanche photodiode 631a, and each low-pass filter 635b output end is correspondingly connected to an input end of a third signal amplifier 635c; each third signal amplifier 635c output end is correspondingly connected to a pulse shaping module 636;
每个带通滤波器635a均用于滤除由对应门脉冲模块634输出的门控信号中所带来的边带噪声和谐波噪声信号;Each bandpass filter 635a is used to filter out the sideband noise and harmonic noise signal brought by the gate control signal output by the corresponding gate pulse module 634;
每个低通滤波器635b均用于滤除由对应门脉冲模块634输出的门控信号所引入的并经过对应第二雪崩光电二极管631a光电转化后所产出的噪声信号,从中获取有效的光生载流子雪崩信号。Each low-pass filter 635b is used to filter out the noise signal introduced by the gate control signal output by the corresponding gate pulse module 634 and produced after the photoelectric conversion by the corresponding second avalanche photodiode 631a, so as to obtain an effective photogenerated carrier avalanche signal therefrom.
每个脉冲整形模块636包含脉冲鉴幅器636a、脉冲整形电路636b及第二模/数转换器636c;每个脉冲鉴幅器636a输入端对应与一第三信号放大器636c输出端连接,每个脉冲鉴幅器636a输出端对应与一脉冲整形电路636b输入端连接,每个脉冲整形电路636b输出端对应与一第二模/数转换器636c输入端连接,每个第二模/数转换器636c输出端对应与一光子计数器637输入端连接,每个光子计数器637输出端均对应与主控单元1的数据处理器14连接。Each pulse shaping module 636 includes a pulse amplitude detector 636a, a pulse shaping circuit 636b and a second analog/digital converter 636c; each pulse amplitude detector 636a input end is correspondingly connected to a third signal amplifier 636c output end, each pulse amplitude detector 636a output end is correspondingly connected to a pulse shaping circuit 636b input end, each pulse shaping circuit 636b output end is correspondingly connected to a second analog/digital converter 636c input end, each second analog/digital converter 636c output end is correspondingly connected to a photon counter 637 input end, and each photon counter 637 output end is correspondingly connected to the data processor 14 of the main control unit 1.
每个脉冲整形模块636用于将获取的有效雪崩模拟信号整形转化成标准数字信号输出至主控单元的数字处理器14中,经数字处理器14分析处理后,在波形显示器上对应的显示区域处显示出相应的OTDR检测光波形信号。Each pulse shaping module 636 is used to shape the acquired effective avalanche analog signal into a standard digital signal and output it to the digital processor 14 of the main control unit. After analysis and processing by the digital processor 14, the corresponding OTDR detection light waveform signal is displayed in the corresponding display area on the waveform display.
在本实施例中,第一雪崩光电二极管621a及第二雪崩光电二极管631a选用的为InGaAs或InP雪崩光电二极管。In this embodiment, the first avalanche photodiode 621a and the second avalanche photodiode 631a are InGaAs or InP avalanche photodiodes.
最后说明,以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。Finally, it should be noted that the above description is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made using the contents of the present invention specification and drawings, or directly or indirectly used in other related technical fields, are also included in the patent protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711355335.5A CN108075828B (en) | 2017-12-16 | 2017-12-16 | OTDR device based on multichannel optical fiber optical signal monitoring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711355335.5A CN108075828B (en) | 2017-12-16 | 2017-12-16 | OTDR device based on multichannel optical fiber optical signal monitoring |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108075828A CN108075828A (en) | 2018-05-25 |
CN108075828B true CN108075828B (en) | 2024-08-23 |
Family
ID=62158771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711355335.5A Active CN108075828B (en) | 2017-12-16 | 2017-12-16 | OTDR device based on multichannel optical fiber optical signal monitoring |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108075828B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109347544B (en) * | 2018-07-26 | 2021-12-07 | 传周半导体科技(上海)有限公司 | Optical fiber time domain reflectometer based on ultra-low noise near-infrared single photon detection system |
CN109831248A (en) * | 2019-03-01 | 2019-05-31 | 成都成电光信科技股份有限公司 | The synthesis optical fiber inspection device and method of integrated FC optical fiber link and Network Check |
CN110149144A (en) * | 2019-04-09 | 2019-08-20 | 珠海市亿鸿通信工程有限公司 | A kind of optical fiber multibreak intelligent detecting method and its system |
TWI759213B (en) * | 2020-07-10 | 2022-03-21 | 大陸商廣州印芯半導體技術有限公司 | Light sensor and sensing method thereof |
CN112067025A (en) * | 2020-08-31 | 2020-12-11 | 上海宇久环保科技有限公司 | A differential distributed optical fiber sensor and warning and defense system |
CN113945362B (en) * | 2021-09-01 | 2024-10-29 | 国网安徽省电力有限公司亳州供电公司 | Optical fiber testing system for optimizing light source for power station |
CN115166916A (en) * | 2022-05-06 | 2022-10-11 | 盛纬伦(深圳)通信技术有限公司 | Temperature self-adaptive shunt |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201854282U (en) * | 2010-12-02 | 2011-06-01 | 桂林光通电子工程公司 | Online monitoring device for multichannel optical fibers based on power partition and OTDR |
CN106130626A (en) * | 2016-08-19 | 2016-11-16 | 浙江神州量子网络科技有限公司 | A kind of optical time domain reflectometer and optical fiber test method |
CN207720138U (en) * | 2017-12-16 | 2018-08-10 | 国网湖北省电力有限公司信息通信公司 | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102545890A (en) * | 2010-12-15 | 2012-07-04 | 浦勇 | Phase-locked loop |
US9964464B2 (en) * | 2012-04-11 | 2018-05-08 | Ultra Communications, Inc. | Optical time domain reflectometer with high resolution and high sensitivity |
CN103323215B (en) * | 2013-05-20 | 2015-11-25 | 中国电子科技集团公司第四十一研究所 | A kind of light time domain reflection measuring apparatus and method |
CN104485990A (en) * | 2014-12-02 | 2015-04-01 | 国家电网公司 | Multi-path fiber core test device and method |
CN107167251B (en) * | 2017-07-28 | 2023-08-11 | 中国航空工业集团公司洛阳电光设备研究所 | Single photon detector based on high-frequency sine gate pulse mode |
-
2017
- 2017-12-16 CN CN201711355335.5A patent/CN108075828B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201854282U (en) * | 2010-12-02 | 2011-06-01 | 桂林光通电子工程公司 | Online monitoring device for multichannel optical fibers based on power partition and OTDR |
CN106130626A (en) * | 2016-08-19 | 2016-11-16 | 浙江神州量子网络科技有限公司 | A kind of optical time domain reflectometer and optical fiber test method |
CN207720138U (en) * | 2017-12-16 | 2018-08-10 | 国网湖北省电力有限公司信息通信公司 | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal |
Non-Patent Citations (1)
Title |
---|
基于光子计数调制的光学时域反射;臧鹏程;《光电工程》;20100331;第1-2页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108075828A (en) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108075828B (en) | OTDR device based on multichannel optical fiber optical signal monitoring | |
CN106017521B (en) | Measuring device and measurement method | |
CN101764646B (en) | Wavelength-encoding optical time domain reflection test device and measurement method thereof | |
CN102506904B (en) | Spontaneous Brillouin scattering optical time domain reflectometer based on superconductive nanowire single-proton detector | |
CN102739311B (en) | Fiber failure positioner and localization method thereof based on chaos visible laser | |
CN103323215B (en) | A kind of light time domain reflection measuring apparatus and method | |
CN104075802B (en) | A high dynamic range photon counting weak light signal measuring device and method | |
CN103148878B (en) | Based on the Brillouin optical time-domain reflectometer method and apparatus of Synchronous data dispose technology | |
CN108663138A (en) | A kind of distributed fiber optic temperature and the sensor-based system and method for vibration | |
CN107063431A (en) | A kind of optical fiber vibration sensing system and method based on double light path | |
CN103575504A (en) | Optical time-domain reflectometer based on superconductivity nanowire single photon detector | |
CN106768277A (en) | A kind of distributed optical fiber vibration sensing device based on coherent phase detection | |
CN109347544B (en) | Optical fiber time domain reflectometer based on ultra-low noise near-infrared single photon detection system | |
CN204439100U (en) | Dynamic distributed Brillouin light fiber sensing equipment | |
CN107966172A (en) | A kind of wideband photodetectors responsiveness tester and its test method | |
CN207720138U (en) | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal | |
CN102928740A (en) | Intelligent collection type fault diagnosis and on-line temperature measuring system | |
CN107436201A (en) | Distributed fiber optic temperature strain sensing system and method based on Brillouin scattering | |
RU2458325C1 (en) | Method of measuring temperature distribution and device for realising said method | |
CN103823175B (en) | A kind of photodetection circuit frequency response function test method based on OTDR | |
CN110702239B (en) | A time-domain reflectometry method for infinitely scattered single-photon probe light | |
CN110375779B (en) | Device and method for improving OFDR frequency domain sampling rate | |
CN105136429B (en) | A kind of signal supervisory instrument and method for improving optical time domain reflectometer dynamic range | |
CN115900787A (en) | Implementation method and system of spectral domain reflectometer | |
CN104236698A (en) | Distributed optical fiber vibration sensing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |