CN207720138U - A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal - Google Patents
A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal Download PDFInfo
- Publication number
- CN207720138U CN207720138U CN201721758792.4U CN201721758792U CN207720138U CN 207720138 U CN207720138 U CN 207720138U CN 201721758792 U CN201721758792 U CN 201721758792U CN 207720138 U CN207720138 U CN 207720138U
- Authority
- CN
- China
- Prior art keywords
- unit
- module
- connect
- optical
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 90
- 238000000253 optical time-domain reflectometry Methods 0.000 title claims abstract description 33
- 239000013307 optical fiber Substances 0.000 title claims abstract description 32
- 238000012544 monitoring process Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 75
- 230000008878 coupling Effects 0.000 claims abstract description 23
- 238000010168 coupling process Methods 0.000 claims abstract description 23
- 238000005859 coupling reaction Methods 0.000 claims abstract description 23
- 238000007493 shaping process Methods 0.000 claims description 23
- 230000001629 suppression Effects 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000005693 optoelectronics Effects 0.000 claims description 4
- 210000003240 portal vein Anatomy 0.000 claims 5
- 239000000523 sample Substances 0.000 claims 4
- 210000001367 artery Anatomy 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 210000003462 vein Anatomy 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本实用新型公开了一种基于多路光纤光信号监测的OTDR装置,包含主控单元、光发送单元、光分路单元、示波单元、N个耦合单元及N个光分路探测单元,所述主控单元分别与所述光发送单元及示波单元连接,所述光发送单元与所述光分路单元连接,所述光分路单元对应与所述N个耦合单元连接,每个所述耦合单元的输入端分别对应与光分路单元及一光分路探测单元连接,每个所述耦合单元输出端对应与一待测光纤连接,每个所述光分路探测单元均对应与所述主控单元连接。本实用新型优点在于:可同时进行多路待测光纤故障点的监测与查找定位,且测试速度快、测量精确度高。
The utility model discloses an OTDR device based on multi-channel optical fiber optical signal monitoring, which comprises a main control unit, an optical sending unit, an optical branching unit, an oscilloscope unit, N coupling units and N optical branching detection units. The main control unit is respectively connected to the optical sending unit and the oscilloscope unit, the optical sending unit is connected to the optical branching unit, and the optical branching unit is correspondingly connected to the N coupling units, and each of the The input ends of the coupling units are respectively connected to the optical branching unit and an optical branching detection unit, and the output ports of each coupling unit are correspondingly connected to an optical fiber to be tested, and each of the optical branching detection units is corresponding to the optical branching detection unit. The main control unit is connected. The utility model has the advantages that the monitoring, searching and locating of multi-channel optical fiber fault points to be tested can be carried out simultaneously, and the testing speed is fast and the measuring accuracy is high.
Description
技术领域technical field
本实用新型涉及光时域反射领域,特别涉及一种基于多路光纤光信号监测的OTDR装置。The utility model relates to the field of optical time domain reflection, in particular to an OTDR device based on multi-channel optical fiber optical signal monitoring.
背景技术Background technique
光时域反射仪(Optical Time-Domain Reflectometry,OTDR)是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。Optical Time-Domain Reflectometry (OTDR) is a precision optoelectronic integrated instrument made by using Rayleigh scattering and backscattering produced by Fresnel reflection when light is transmitted in an optical fiber. Widely used in the maintenance and construction of optical cable lines, it can measure the length of optical fiber, transmission attenuation of optical fiber, joint attenuation and fault location.
目前,用于光纤故障定位监测的OTDR,主要有两种即:用于单光子级别的弱光检测的单光子探测OTDR和用于非单光子级别的光检测的普通OTDR;雪崩光电二极管(APD)作为激光通信领域常见的一种光敏检测元件,因具有较高的检测灵敏度,是OTDR中一种不可或缺的组成器件。At present, there are two main types of OTDR used for optical fiber fault location monitoring: single-photon detection OTDR for single-photon level weak light detection and ordinary OTDR for non-single-photon level light detection; avalanche photodiode (APD) ) as a common photosensitive detection element in the field of laser communication, because of its high detection sensitivity, it is an indispensable component in OTDR.
其中,单光子探测OTDR的雪崩光电二极管工作在门控盖革模式,而普通OTDR的雪崩光电二极管工作在线性模式;工作在线性模式的雪崩光电二极管,无需考虑后脉冲效应,可以工作在连续信号采集状态,具有测量时间快的优点,但是由于工作在线性模式的雪崩光电二极管增益低,无法探测弱小光信号,因此,普通OTDR的测量精度和测量距离受到限制。Among them, the avalanche photodiode of the single photon detection OTDR works in the gated Geiger mode, while the avalanche photodiode of the ordinary OTDR works in the linear mode; the avalanche photodiode working in the linear mode can work in the continuous signal without considering the post-pulse effect The acquisition state has the advantage of fast measurement time, but due to the low gain of the avalanche photodiode working in the linear mode, it cannot detect weak and small optical signals. Therefore, the measurement accuracy and measurement distance of ordinary OTDR are limited.
虽然,单光子探测OTDR可探测到比热噪声还小的极微弱光信号,可以得到比普通OTDR更高的测量精度、更远的测量距离和更大的动态范围,可以弥补普通OTDR的缺点,但是,因单光子探测OTDR的雪崩光电二极管工作在门控盖革模式下,受后脉冲影响,具有一定的死时间,导致单光子探测器的门脉冲重复频率低,只能工作在逐点扫描模式,且完成一次探测任务往往需要较长的时间;当测量精度越高、扫描点数越多,则单光子探测OTDR所需的探测时间越长;当后脉冲概率越大,则单光子探测OTDR所需要设置的死时间越长。Although single-photon detection OTDR can detect extremely weak optical signals smaller than thermal noise, it can obtain higher measurement accuracy, longer measurement distance and larger dynamic range than ordinary OTDR, which can make up for the shortcomings of ordinary OTDR. However, because the avalanche photodiode of the single-photon detection OTDR works in the gated Geiger mode, it has a certain dead time due to the influence of the after-pulse, resulting in a low repetition rate of the gate pulse of the single-photon detector, and can only work in point-by-point scanning. mode, and it often takes a long time to complete a detection task; when the measurement accuracy is higher and the number of scanning points is more, the detection time required for single-photon detection OTDR is longer; when the post-pulse probability is greater, the single-photon detection OTDR The longer the dead time that needs to be set.
另外,因雪崩光电二极管是容性器件,当门脉冲信号加载在雪崩光电二极管上对其进行充放电时,会引入相应的噪声,将光生的雪崩有效信号淹没,影响探测结果;同时温度的变化也会对雪崩光电二极管的探测性能造成一定影响,会引发雪崩光电二极管工作性能的不稳定使得对光纤故障点的定位和查找不准确。In addition, because the avalanche photodiode is a capacitive device, when the gate pulse signal is loaded on the avalanche photodiode to charge and discharge it, the corresponding noise will be introduced, which will submerge the effective signal of the photo-generated avalanche and affect the detection result; at the same time, the change of temperature It will also have a certain impact on the detection performance of the avalanche photodiode, which will cause the instability of the working performance of the avalanche photodiode and make the location and search of the fault point of the optical fiber inaccurate.
发明内容Contents of the invention
本实用新型的目的在于提供一种基于多路光纤光信号监测的OTDR装置,用以解决背景技术中的缺陷。The purpose of the utility model is to provide an OTDR device based on multi-channel optical fiber optical signal monitoring to solve the defects in the background technology.
为实现上述目的,本实用新型采取的技术方案为:一种基于多路光纤光信号监测的OTDR装置,包含主控单元、光发送单元、光分路单元、示波单元、N个耦合单元及N个光分路探测单元,所述主控单元分别与所述光发送单元及示波单元连接,所述光发送单元与所述光分路单元连接,所述光分路单元对应与所述N个耦合单元连接,每个所述耦合单元的输入端对应与光分路单元及一光分路探测单元连接,每个所述耦合单元输出端对应与一待测光纤连接,每个所述光分路探测单元均对应与所述主控单元连接。In order to achieve the above object, the technical solution adopted by the utility model is: an OTDR device based on multi-channel optical fiber optical signal monitoring, including a main control unit, an optical transmission unit, an optical branching unit, an oscilloscope unit, N coupling units and N optical branching detection units, the main control unit is respectively connected to the optical sending unit and the oscilloscope unit, the optical sending unit is connected to the optical branching unit, and the optical branching unit corresponds to the N coupling units are connected, the input end of each coupling unit is connected to an optical branching unit and an optical branching detection unit, and the output end of each coupling unit is connected to an optical fiber to be tested, and each of the coupling units is connected to an optical branching unit and an optical branching detection unit. The optical branch detection units are correspondingly connected with the main control unit.
进一步,所述主控单元包含有单片机、脉冲信号发生器、信号衰减驱动器及数据处理器,所述脉冲信号发生器、信号衰减驱动器及数据处理器分别与所述单片机连接;Further, the main control unit includes a single-chip microcomputer, a pulse signal generator, a signal attenuation driver and a data processor, and the pulse signal generator, a signal attenuation driver and a data processor are connected to the single-chip microcomputer respectively;
所述光发送单元包含脉冲光源及可调衰减器,所述脉冲光源分别与所述脉冲信号发生器及所述可调衰减器连接,所述可调衰减器分别与所述信号衰减驱动器及光分路单元连接;The optical sending unit includes a pulse light source and an adjustable attenuator, the pulse light source is connected to the pulse signal generator and the adjustable attenuator respectively, and the adjustable attenuator is connected to the signal attenuation driver and the optical attenuator respectively. branching unit connection;
每个所述光分路探测单元均包含一1x2的分光器、一普通探测单元及一单光子探测单元,每个所述1x2分光器输入端对应与一耦合单元连接,每个所述1x2分光器输出端分别对应与一普通探测单元及一单光子探测单元连接。Each of the optical branch detection units includes a 1x2 optical splitter, a common detection unit and a single photon detection unit, each of the 1x2 optical splitter input ports is connected to a coupling unit, and each of the 1x2 optical splitters The output ends of the detectors are respectively connected to a common detection unit and a single photon detection unit.
进一步,所述光分路单元为1xN分光器;所述示波单元为波形显示器,且所述波形显示器包含有N个对应用于显示所述光分路探测单元输出的探测光波形曲线的显示区;每个所述耦合单元为定向耦合器或环形器;其中,N为≥2的整数。Further, the optical branching unit is a 1xN optical splitter; the oscilloscope unit is a waveform display, and the waveform display includes N displays corresponding to the detection light waveform curves output by the optical branching detection unit area; each of the coupling units is a directional coupler or a circulator; wherein, N is an integer ≥ 2.
进一步,每个所述普通探测单元均包含依次连接的第一光电探测模块、滤波器、第一信号放大器及第一模/数转换器,每个第一光电探测模块均还对应与一1x2的分光器的一输出端口连接,每个所述第一模/数转换器均还对应与主控单元的数据处理器连接,每个所述第一光电探测模块均包含有第一雪崩光电二极管、第一温控模块及第一封装盒体;每个所述第一温控模块包含有第一制冷器、第一加热器及第一温度传感器,每个所述第一制冷器及第一加热器均分别与主控单元的单片机连接,每个所述第一温度传感器均分别与所述主控单元的单片机及一第一雪崩光电二极管的管脚连接,每个所述第一光电探测模相对应的第一雪崩光电二极管、第一制冷器、第一加热器及第一温度传感器均对应封装在一个所述第一封装盒体内。Further, each of the common detection units includes a first photodetection module, a filter, a first signal amplifier, and a first analog-to-digital converter connected in sequence, and each first photodetection module also corresponds to a 1x2 An output port of the optical splitter is connected, and each of the first A/D converters is also correspondingly connected to the data processor of the main control unit, and each of the first photodetection modules includes a first avalanche photodiode, The first temperature control module and the first packaging box; each of the first temperature control modules includes a first refrigerator, a first heater and a first temperature sensor, and each of the first refrigerator and a first heating The sensors are respectively connected with the single-chip microcomputer of the main control unit, each of the first temperature sensors is respectively connected with the single-chip microcomputer of the main control unit and the pin of a first avalanche photodiode, and each of the first photodetection modules The corresponding first avalanche photodiode, the first refrigerator, the first heater and the first temperature sensor are all correspondingly packaged in one of the first packaging boxes.
进一步,每个所述单光子探测单元均包含第二光电探测模块、偏压模块、时钟模块、门脉冲模块、噪声抑制模块、脉冲整形模块及光子计数器,每个所述偏压模块分别均对应与主控单元的单片机及一第二光电探测模块连接,每个所述时钟模块分别对应与主控单元的脉冲信号发生器及一门脉冲模块连接,每个所述门脉冲模块对应与主控单元的单片机及一第二光电探测模块连接,每个噪声抑制模块分别对应与一第二光电探测模块及一脉冲整形模块连接,每个光子计数器分别对应与主控单元的数据处理器及一脉冲整形模块连接,每个所述第二光电探测模块均对应与一1x2分光器的一输出端口连接,每个所述第二光电探测模块均包含有第二雪崩光电二极管、第二温控模块及第二封装盒体;每个所述第二温控模块包含有第二制冷器、第二加热器及第二温度传感器,每个所述第二制冷器及第二加热器均分别对应与主控单元的单片机连接,每个所述第二温度传感器均分别对应与主控单元的单片机及一第二雪崩光电二极管的管脚连接,每个所述第二光电探测模块相对应的第二雪崩光电二极管、第二制冷器、第二加热器及第二温度传感器均对应封装在一个所述第二封装盒体内。Further, each of the single-photon detection units includes a second photodetection module, a bias voltage module, a clock module, a gate pulse module, a noise suppression module, a pulse shaping module, and a photon counter, and each of the bias voltage modules corresponds to It is connected with the single-chip microcomputer of the main control unit and a second photoelectric detection module, and each said clock module is connected with the pulse signal generator of the main control unit and a gate pulse module respectively, and each said gate pulse module is corresponding with the main control unit The single-chip microcomputer of the unit is connected with a second photoelectric detection module, and each noise suppression module is respectively connected with a second photoelectric detection module and a pulse shaping module, and each photon counter is respectively corresponding with the data processor of the main control unit and a pulse each of the second photodetection modules is connected to an output port of a 1x2 optical splitter, and each of the second photodetection modules includes a second avalanche photodiode, a second temperature control module and The second packaging box; each of the second temperature control modules includes a second refrigerator, a second heater and a second temperature sensor, and each of the second refrigerator and the second heater is respectively corresponding to the main The microcontroller of the control unit is connected, and each of the second temperature sensors is connected to the microcontroller of the main control unit and the pins of a second avalanche photodiode, and the second avalanche photodiode corresponding to each of the second photodetection modules The photodiode, the second refrigerator, the second heater and the second temperature sensor are all correspondingly packaged in one of the second packaging boxes.
进一步,每个所述偏压模块均为电压源模块,且均分别对应与主控单元的单片机连接及对应与一第二雪崩光电二极管的阴极连接;每个所述偏压模块均用于为与之对应连接的第二雪崩光电二极管提供工作所需的反向偏置电压。Further, each of the bias voltage modules is a voltage source module, and they are respectively connected to the single-chip microcomputer of the main control unit and correspondingly connected to the cathode of a second avalanche photodiode; each of the bias voltage modules is used for The second avalanche photodiode connected to it correspondingly provides the reverse bias voltage required for operation.
进一步,每个所述门脉冲模块均为门脉冲发生器,且分别对应与一时钟模块连接及对应与一第二雪崩光电二极管的阴极连接,每个所述门脉冲模块均包含有锁相环电路、分频器及第二信号放大器,每个所述锁相环电路的输出端对应与一第二信号放大器连接,每个所述锁相环电路的输入端对应与一时钟模块连接,每个所述锁相环电路包含依次连接的鉴相器、环路滤波器及压控振荡器;每个所述门脉冲模块均用于输出门控信号,为与之对应连接的第二雪崩光电二极管进行充放电控制,实现对第二雪崩光电二极管的雪崩及淬灭过程控制,每个所述时钟模块均用于控制与之对应连接的门脉冲模块及脉冲信号发生器同步触发工作,使门脉冲模块输出的门控信号与偏压模块输出的偏置电压信号按照时序的方式加载到第二雪崩光电二极管上,使第二雪崩光电二极管工作在盖革门控模式下,从而实现单光子级别的光强信号检测。Further, each of the gate pulse modules is a gate pulse generator, and is respectively connected to a clock module and correspondingly connected to the cathode of a second avalanche photodiode, and each of the gate pulse modules includes a phase-locked loop Circuit, frequency divider and second signal amplifier, the output end of each said phase-locked loop circuit is correspondingly connected with a second signal amplifier, the input end of each said phase-locked loop circuit is correspondingly connected with a clock module, each Each of the phase-locked loop circuits includes a phase detector, a loop filter, and a voltage-controlled oscillator connected in sequence; each of the gate pulse modules is used to output a gate control signal, which is the second avalanche photoelectric connected to it correspondingly. The diode is charged and discharged to control the avalanche and quenching process of the second avalanche photodiode. Each of the clock modules is used to control the synchronous triggering of the gate pulse module and pulse signal generator connected to it, so that the gate The gating signal output by the pulse module and the bias voltage signal output by the bias module are loaded to the second avalanche photodiode in a sequential manner, so that the second avalanche photodiode works in the Geiger gating mode, thereby achieving single-photon level Light intensity signal detection.
进一步,每个所述噪声抑制模块包含带通滤波器、低通滤波器及第三信号放大器;每个所述带通滤波器输入端对应与一门脉冲模块输出端连接,每个所述带通滤波器输出端对应与一第二雪崩光电二极管的阴极连接;每个所述低通滤波器输入端对应与一第二雪崩光电二极管的阳极连接,每个所述低通滤波器输出端对应与一第三信号放大器输入端连接;每个所述第三信号放大器输出端对应与一脉冲整形模块连接;每个所述带通滤波器均用于滤除由对应门脉冲模块输出的门控信号中所带来的边带噪声和谐波噪声信号;每个所述低通滤波器均用于滤除由对应门脉冲模块输出的门控信号所引入的并经过对应第二雪崩光电二极管光电转化后所产出的噪声信号,从中获取有效的光生载流子雪崩信号。Further, each of the noise suppression modules includes a band-pass filter, a low-pass filter and a third signal amplifier; each input of the band-pass filter is correspondingly connected to an output of a gate pulse module, and each of the band-pass filters The output end of the pass filter is correspondingly connected to the cathode of a second avalanche photodiode; each of the input ends of the low-pass filter is correspondingly connected to the anode of a second avalanche photodiode, and each of the output ends of the low-pass filter corresponds to It is connected with a third signal amplifier input; each of the third signal amplifier output is correspondingly connected with a pulse shaping module; each of the bandpass filters is used to filter out the gating output by the corresponding gate pulse module The sideband noise and harmonic noise signal brought in the signal; each of the low-pass filters is used to filter out the gating signal output by the corresponding gate pulse module and pass through the corresponding second avalanche photodiode photoelectric The converted noise signal is used to obtain an effective photo-generated carrier avalanche signal.
进一步,每个所述脉冲整形模块包含脉冲鉴幅器、脉冲整形电路及第二模/数转换器;每个所述脉冲鉴幅器输入端对应与一第三信号放大器输出端连接,每个所述脉冲鉴幅器输出端对应与一脉冲整形电路输入端连接,每个所述脉冲整形电路输出端对应与一第二模/数转换器输入端连接,每个所述第二模/数转换器输出端对应与一光子计数器输入端连接,每个所述光子计数器输出端均对应与主控单元的数据处理器连接。Further, each of the pulse shaping modules includes a pulse discriminator, a pulse shaping circuit, and a second analog-to-digital converter; each of the input terminals of the pulse discriminator is correspondingly connected to a third signal amplifier output, and each The output end of the pulse discriminator is correspondingly connected to the input end of a pulse shaping circuit, each of the output ends of the pulse shaping circuit is correspondingly connected to the input end of a second A/D converter, each of the second A/D The output end of the converter is correspondingly connected with the input end of a photon counter, and each output end of the photon counter is correspondingly connected with the data processor of the main control unit.
与现有技术相比,本实用新型的有益效果是:本实用新型可对多路待测光纤进行故障点精确定位和查找,有利于提高作业监测人员对光纤线路的运维检修工作效率以及降低对光纤链路的监测费用的投入,具有工作效率高、测量结果精确以及监测速度快等优点。Compared with the prior art, the utility model has the beneficial effects that: the utility model can accurately locate and search the fault points of multiple optical fibers to be tested, which is beneficial to improve the operation and maintenance work efficiency of the operation monitoring personnel on the optical fiber lines and reduce the The investment in the monitoring cost of the optical fiber link has the advantages of high work efficiency, accurate measurement results, and fast monitoring speed.
附图说明Description of drawings
图1为本实用新型基于多路光纤光信号监测的OTDR装置的结构框图;Fig. 1 is the structural block diagram of the OTDR device based on multi-channel optical fiber optical signal monitoring of the present invention;
图2为本实用新型基于多路光纤光信号监测的OTDR装置的具体实施例结构框图;Fig. 2 is the structural block diagram of the specific embodiment of the OTDR device based on multi-channel optical fiber optical signal monitoring of the present invention;
图3为基于图2中的每个普通探测单元的结构框图;Fig. 3 is a structural block diagram based on each common detection unit in Fig. 2;
图4为基于图3中的每个单光子探测单元的结构框图;Fig. 4 is a block diagram based on each single photon detection unit in Fig. 3;
图5为基于图4的门脉冲模块的电路连接框图;Fig. 5 is the circuit connection block diagram based on the gate pulse module of Fig. 4;
图中:1、主控单元;11、单片机;12、脉冲信号发生器;13、信号衰减驱动器;14、数据处理器;2、光发送单元;21、脉冲光源;22、可调衰减器;3、光分路单元;4、示波单元;5、耦合单元;6、光分路探测单元;61、1x2分光器;62、普通探测单元;621、第一光电探测模块;621a、第一雪崩光电二极管;621b、第一温控模块;621b-1、第一制冷器;621b-2、第一加热器;621b-3、第一温度传感器;621c、第一封装盒体;622、滤波器;623、第一信号放大器;624、第一模/数转换器;63、单光子探测单元;631、第二光电探测模块;631a、第二雪崩光电二极管;631b、第二温控模块;631b-1、第二制冷器;631b-2、第二加热器;631b-3、第二温度传感器;631c、第二封装盒体;632、偏压模块;633、时钟模块;634、门脉冲模块;634a、锁相环电路;634b、分频器;634c、第二信号放大器;635、噪声抑制模块;635a、带通滤波器;635b、低通滤波器;635c、第三信号放大器;636、脉冲整形模块;636a、脉冲鉴幅器;636b、脉冲整形电路;636c、第二模/数转换器;637、光子计数器;7、待测光纤。In the figure: 1. Main control unit; 11. Single-chip microcomputer; 12. Pulse signal generator; 13. Signal attenuation driver; 14. Data processor; 2. Optical sending unit; 21. Pulse light source; 22. Adjustable attenuator; 3. Optical splitting unit; 4. Oscilloscope unit; 5. Coupling unit; 6. Optical splitting detection unit; 61. 1x2 optical splitter; 62. Common detection unit; 621. First photoelectric detection module; 621a. First Avalanche photodiode; 621b, first temperature control module; 621b-1, first refrigerator; 621b-2, first heater; 621b-3, first temperature sensor; 621c, first packaging box; 622, filter 623, the first signal amplifier; 624, the first analog/digital converter; 63, the single photon detection unit; 631, the second photoelectric detection module; 631a, the second avalanche photodiode; 631b, the second temperature control module; 631b-1, the second refrigerator; 631b-2, the second heater; 631b-3, the second temperature sensor; 631c, the second packaging box; 632, the bias module; 633, the clock module; 634, the gate pulse Module; 634a, phase-locked loop circuit; 634b, frequency divider; 634c, second signal amplifier; 635, noise suppression module; 635a, band-pass filter; 635b, low-pass filter; 635c, third signal amplifier; 636 , a pulse shaping module; 636a, a pulse amplitude discriminator; 636b, a pulse shaping circuit; 636c, a second analog/digital converter; 637, a photon counter; 7, an optical fiber to be tested.
具体实施方式Detailed ways
为使本实用新型实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图和具体实施例,进一步阐述本实用新型是如何实施的。In order to make the technical means, creative features, goals and effects achieved by the utility model easy to understand, how the utility model is implemented will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本实用新型提供的一种基于多路光纤光信号监测的OTDR装置,包含主控单元1、光发送单元2、光分路单元3、示波单元4、N个耦合单元5及N个光分路探测单元6;主控单元1分别与1光发送单元2及示波单元4连接;光发送单元2与光分路单元3连接,光分路单元3对应与N个耦合单元5连接,每个耦合单元5的输入端对应与光分路单元3的一个输出端及一光分路探测单元6连接,每个耦合单元5输出端对应与一待测光纤7连接;每个光分路探测单元6均对应与主控单元1连接。As shown in Figure 1, an OTDR device based on multi-channel optical fiber optical signal monitoring provided by the utility model includes a main control unit 1, an optical transmission unit 2, an optical branching unit 3, an oscilloscope unit 4, and N coupling units 5 and N optical branching detection units 6; the main control unit 1 is respectively connected to an optical sending unit 2 and an oscilloscope unit 4; the optical sending unit 2 is connected to an optical branching unit 3, and the optical branching unit 3 corresponds to N The coupling unit 5 is connected, the input end of each coupling unit 5 is connected to an output end of the optical branching unit 3 and an optical branching detection unit 6, and the output end of each coupling unit 5 is correspondingly connected to an optical fiber 7 to be tested; Each optical branch detection unit 6 is correspondingly connected to the main control unit 1 .
如图2,在本实施例中,主控单元1包含有单片机11、脉冲信号发生器12、信号衰减驱动器13及数据处理器14,脉冲信号发生器12、信号衰减驱动器13及数据处理器14均分别与单片机11连接;As shown in Figure 2, in the present embodiment, the main control unit 1 includes a single-chip microcomputer 11, a pulse signal generator 12, a signal attenuation driver 13 and a data processor 14, and a pulse signal generator 12, a signal attenuation driver 13 and a data processor 14 All are respectively connected with the single-chip microcomputer 11;
光发送单元2包含脉冲光源21及可调衰减器22,脉冲光源21分别与脉冲信号发生器12及可调衰减器22连接,可调衰减器22分别与信号衰减驱动器13及光分路单元3连接;脉冲光源21发射的是1550nm波段的高速近红外光,光分路单元3为1xN分光器;The optical sending unit 2 includes a pulse light source 21 and an adjustable attenuator 22, the pulse light source 21 is connected with the pulse signal generator 12 and the adjustable attenuator 22 respectively, and the adjustable attenuator 22 is connected with the signal attenuation driver 13 and the optical branching unit 3 respectively connection; the pulse light source 21 emits high-speed near-infrared light in the 1550nm band, and the optical splitting unit 3 is a 1xN splitter;
示波单元4为波形显示器,且波形显示器上设置有N个对应用于显示光分路探测单元6输出的探测光波形曲线的显示区域;The oscilloscope unit 4 is a waveform display, and the waveform display is provided with N display areas corresponding to the detection light waveform curve output by the optical branch detection unit 6;
每个耦合单元5为一定向耦合器或一环形器;Each coupling unit 5 is a directional coupler or a circulator;
每个光分路探测单元6均包含一1x2的分光器61、一普通探测单元62及一单光子探测单元63。Each optical branch detection unit 6 includes a 1×2 beam splitter 61 , a common detection unit 62 and a single photon detection unit 63 .
其中,N为≥2的整数,按照通常的视窗看图习惯,设置N等于4为最佳。Wherein, N is an integer ≥ 2, according to the usual habit of viewing pictures in windows, it is best to set N equal to 4.
如图3所示,其中,每个普通探测单元62均包含依次连接的第一光电探测模块621、滤波器622、第一信号放大器623及第一模/数转换器624,每个第一光电探测模块621的输入端对应与一1x2的分光器61的一输出端口连接,每个第一模/数转换器624均还对应与主控单元1的数据处理器14连接;As shown in Figure 3, wherein, each common detection unit 62 all comprises the first photodetection module 621, the filter 622, the first signal amplifier 623 and the first A/D converter 624 connected in sequence, each first photoelectric The input end of the detection module 621 is correspondingly connected to an output port of a 1×2 optical splitter 61, and each first analog/digital converter 624 is also correspondingly connected to the data processor 14 of the main control unit 1;
每个第一光电探测模块621均包含有第一雪崩光电二极管621a、第一温控模块621b及第一封装盒体621c,每个第一温控模块621b包含有第一制冷器621b-1、第一加热器621b-2及第一温度传感器621b-3,每个第一制冷器621b-1及第一加热器621b-2均分别与主控单元1的单片机11连接,每个第一温度传感器621b-3均分别与主控单元1的单片机11及一第一雪崩光电二极管621a的管脚连接,每个第一光电探测模块621相对应的第一雪崩光电二极管621a、第一制冷器621b-1、第一加热器621b-2及第一温度传感器621b-3均对应封装在一个第一封装盒体621c内,每个第一温控模块621b通过第一制冷器621b-1及第一加热器621b-2均调节与之对应的第一封装盒体621c内的温度,通过对应的第一封装盒体621c内封装的第一温度传感器621b-3实时的将感应到的第一雪崩光电二极管621a的工作温度反馈给主控单元1的单片机11,通过单片机11控制第一制冷器621b-1及第一加热器621b-2制冷或加热控制,实现第一封装盒体621c内温度调控,使得第一雪崩光电二极管621a时刻处于适宜的工作温度下,进而有效的避免掉因温度升高造成第一雪崩光电二极管621a的性能不稳定,影响普通探测单元的光强信号探测结果的准确性。Each first photodetection module 621 includes a first avalanche photodiode 621a, a first temperature control module 621b and a first packaging box 621c, and each first temperature control module 621b includes a first refrigerator 621b-1, The first heater 621b-2 and the first temperature sensor 621b-3, each of the first refrigerator 621b-1 and the first heater 621b-2 are respectively connected to the single-chip microcomputer 11 of the main control unit 1, each first temperature The sensors 621b-3 are respectively connected to the single-chip microcomputer 11 of the main control unit 1 and the pins of a first avalanche photodiode 621a, and the first avalanche photodiode 621a and the first refrigerator 621b corresponding to each first photodetection module -1. The first heater 621b-2 and the first temperature sensor 621b-3 are correspondingly packaged in a first packaging box 621c, and each first temperature control module 621b passes through the first refrigerator 621b-1 and the first The heaters 621b-2 all adjust the temperature in the corresponding first packaging box 621c, and the first avalanche photoelectric sensor 621b-3 packaged in the corresponding first packaging box 621c will be sensed in real time. The operating temperature of the diode 621a is fed back to the single-chip microcomputer 11 of the main control unit 1, and the first refrigerator 621b-1 and the first heater 621b-2 are controlled by the single-chip microcomputer 11 to control the cooling or heating, so as to realize the temperature control in the first packaging box 621c, The first avalanche photodiode 621a is kept at a suitable working temperature at all times, thereby effectively avoiding the unstable performance of the first avalanche photodiode 621a due to temperature rise, which affects the accuracy of light intensity signal detection results of ordinary detection units.
如图4所示,其中,每个单光子探测单元63均包含第二光电探测模块631、偏压模块632、时钟模块633、门脉冲模块634、噪声抑制模块635、脉冲整形模块636及光子计数器637;As shown in Figure 4, wherein, each single photon detection unit 63 all comprises the second photodetection module 631, bias voltage module 632, clock module 633, gate pulse module 634, noise suppression module 635, pulse shaping module 636 and photon counter 637;
每个偏压模块632输入端均对应与主控单元1的单片机11连接,每个偏压模块632输出端均对应与一第二光电探测模块631的输入端连接,每个第二光电探测模块631的输入端还分别对应与一1x2的分光器61的一输出端口及一门脉冲模块634的输出端连接,每个1x2的分光器61的另一输出端口对应与一第一光电探测模块621的输入端连接,每个第二光电探测模块631的输出端对应有依次连接的一噪声抑制模块635、一脉冲整形模块636及一光子计数器637,每个门脉冲模块634的输入端分别对应与主控单元1的单片机11及一时钟模块633连接;每个时钟模块633还分别对应与主控单元1的脉冲信号发生器12及单片机11连接,每个光子计数器637还分别对应与主控单元1的数据处理器14连接;The input end of each bias voltage module 632 is correspondingly connected with the single-chip microcomputer 11 of the main control unit 1, and the output end of each bias voltage module 632 is correspondingly connected with the input end of a second photodetection module 631, and each second photodetection module The input end of 631 is also respectively connected with an output port of a 1x2 optical splitter 61 and an output end of a gate pulse module 634, and the other output port of each 1x2 optical splitter 61 is correspondingly connected with a first photodetection module 621 The input end of each second photodetection module 631 corresponds to a noise suppression module 635, a pulse shaping module 636 and a photon counter 637 connected in sequence, and the input end of each gate pulse module 634 corresponds to The single-chip microcomputer 11 of the main control unit 1 is connected with a clock module 633; each clock module 633 is also connected with the pulse signal generator 12 and the single-chip microcomputer 11 of the main control unit 1 respectively, and each photon counter 637 is also corresponding to the main control unit respectively. 1 data processor 14 is connected;
每个第二光电探测模块631均包含有第二雪崩光电二极管631a、第二温控模块631b及第二封装盒体631c;每个第二温控模块631b包含有第二制冷器631b-1、第二加热器631b-2及第二温度传感器631b-3,每个第二制冷器631b-1及第二加热器631b-2均分别与主控单元1的单片机11连接,每个第二温度传感器631b-3均分别与主控单元1的单片机11及一第二雪崩光电二极管631a的管脚连接,每个第二光电探测模块631相对应的第二雪崩光电二极管631a、第二制冷器631b-1、第二加热器631b-2及第二温度传感器631b-3均对应封装在一个第二封装盒体631c内,每个第二温控模块631b通过第二制冷器631b-1及第二加热器631b-2均调节与之对应的第二封装盒体631c内的温度,通过对应的第二封装盒体631c内封装的第一温度传感器631b-3实时的将感应到的第二雪崩光电二极管631a的工作温度反馈给主控单元1的单片机11,通过单片机11控制第二制冷器631b-1及第二加热器631b-2制冷或加热控制,实现第一封装盒体621c内温度调控,使得第二雪崩光电二极管631a时刻处于适宜的工作温度下,进而有效的避免掉因温度升高造成第二雪崩光电二极管631a的性能不稳定,影响单光子探测单元的光强信号探测结果的准确性。Each second photodetection module 631 includes a second avalanche photodiode 631a, a second temperature control module 631b, and a second packaging box 631c; each second temperature control module 631b includes a second refrigerator 631b-1, The second heater 631b-2 and the second temperature sensor 631b-3, each of the second refrigerator 631b-1 and the second heater 631b-2 are respectively connected with the single chip microcomputer 11 of the main control unit 1, each second temperature The sensors 631b-3 are respectively connected to the single-chip microcomputer 11 of the main control unit 1 and the pins of a second avalanche photodiode 631a, and the corresponding second avalanche photodiode 631a and the second refrigerator 631b of each second photodetection module -1. The second heater 631b-2 and the second temperature sensor 631b-3 are correspondingly packaged in a second packaging box 631c, and each second temperature control module 631b passes through the second refrigerator 631b-1 and the second The heaters 631b-2 all adjust the temperature in the corresponding second packaging box 631c, and the second avalanche photoelectric sensor 631b-3 packaged in the corresponding second packaging box 631c will sense the temperature in real time. The operating temperature of the diode 631a is fed back to the single-chip microcomputer 11 of the main control unit 1, and the second refrigerator 631b-1 and the second heater 631b-2 are controlled by the single-chip microcomputer 11 to control the cooling or heating, so as to realize the temperature control in the first packaging box 621c, Make the second avalanche photodiode 631a be at a suitable working temperature at all times, thereby effectively avoiding the unstable performance of the second avalanche photodiode 631a caused by the temperature rise, which affects the accuracy of the light intensity signal detection result of the single photon detection unit .
每个偏压模块632均为电压源模块,且均分别对应与主控单元1的单片机11连接及对应与一第二雪崩光电二极管631a的阴极连接;每个偏压模块632均用于为与之对应连接的第二雪崩光电二极管631a提供工作所需的反向偏置电压。Each bias module 632 is a voltage source module, and is respectively connected to the single-chip microcomputer 11 of the main control unit 1 and correspondingly connected to the cathode of a second avalanche photodiode 631a; The correspondingly connected second avalanche photodiode 631a provides the required reverse bias voltage for operation.
每个门脉冲模块634均为门脉冲发生器,且分别对应与一时钟模块633及一偏压模块632的连接,如图5所示,每个门脉冲模块634均包含有锁相环电路634a、分频器634b及第二信号放大器634c,每个锁相环电路634a的输出端对应与一第二信号放大器634c连接,每个锁相环电路634a的输入端对应与一时钟模块633连接,每个锁相环电路634a包含依次连接的鉴相器634a-1路滤波器634a-2及压控振荡器634a-3;每个门脉冲模块634均用于输出门控信号为与之对应连接的偏压模块632进行充放电控制,生成加载在第二雪崩光电二极管631a上的反向偏置电压,实现对第二雪崩光电二极管631a的雪崩及淬灭过程控制;Each gate pulse module 634 is a gate pulse generator, and is respectively connected to a clock module 633 and a bias voltage module 632. As shown in FIG. 5, each gate pulse module 634 includes a phase-locked loop circuit 634a , a frequency divider 634b and a second signal amplifier 634c, the output end of each phase-locked loop circuit 634a is correspondingly connected with a second signal amplifier 634c, and the input end of each phase-locked loop circuit 634a is correspondingly connected with a clock module 633, Each phase-locked loop circuit 634a includes a phase detector 634a-1, a filter 634a-2 and a voltage-controlled oscillator 634a-3 connected in sequence; each gate pulse module 634 is used to output a gate control signal for corresponding connection The bias voltage module 632 performs charge and discharge control, generates a reverse bias voltage loaded on the second avalanche photodiode 631a, and realizes the avalanche and quenching process control of the second avalanche photodiode 631a;
当偏压模块632生成的反向偏置电压加载在第二雪崩光电二极管631a上并大于等于第二雪崩光电二极管631a雪崩电压时,则从待测光纤7中经瑞利散射和菲涅尔反射的返回的光子将入射到第二雪崩光电二极管631a中产生大量的光生载流子,即形成雪崩信号;When the reverse bias voltage generated by the bias module 632 is loaded on the second avalanche photodiode 631a and is greater than or equal to the avalanche voltage of the second avalanche photodiode 631a, then from the optical fiber 7 to be tested through Rayleigh scattering and Fresnel reflection The returned photons will be incident on the second avalanche photodiode 631a to generate a large number of photo-generated carriers, that is, form an avalanche signal;
当偏压模块632生成的反向偏置电压加载在第二雪崩光电二极管631a上并小于第二雪崩光电二极管631a雪崩电压时,则从待测光纤7中经瑞利散射和菲涅尔反射的返回的光子不足以产生光生载流子,即第二雪崩光电二极管63a被淬灭;When the reverse bias voltage generated by the bias module 632 is applied to the second avalanche photodiode 631a and is less than the avalanche voltage of the second avalanche photodiode 631a, the light from the optical fiber 7 to be tested through Rayleigh scattering and Fresnel reflection The returned photons are not enough to generate photogenerated carriers, that is, the second avalanche photodiode 63a is quenched;
每个时钟模块633均用于控制与之对应连接的门脉冲模块634及脉冲信号发生器12同步触发工作,使门脉冲模块634输出的门控信号与脉冲信号发生器12发出的脉冲光信号按照时钟的方式加载到第二雪崩光电二极管631a上,使第二雪崩光电二极管631a工作在盖革门控模式下,从而实现单光子级别的光强信号检测。Each clock module 633 is used to control the gate pulse module 634 and the pulse signal generator 12 correspondingly connected to it to trigger synchronously, so that the gate control signal output by the gate pulse module 634 and the pulse light signal sent by the pulse signal generator 12 follow the The clock is loaded to the second avalanche photodiode 631a, so that the second avalanche photodiode 631a works in a Geiger-gated mode, thereby realizing single-photon level light intensity signal detection.
每个噪声抑制模块635包含带通滤波器635a、低通滤波器635b及第三信号放大器635c;每个带通滤波器635a输入端对应与一门脉冲模块634输出端连接,每个带通滤波器635a输出端对应与一第二雪崩光电二极管631a的阴极连接;每个低通滤波器635b输入端对应与一第二雪崩光电二极管631a的阳极连接,每个低通滤波器635b输出端对应与一第三信号放大器635c输入端连接;每个第三信号放大器635c输出端对应与一脉冲整形模块636连接;Each noise suppression module 635 comprises a band-pass filter 635a, a low-pass filter 635b, and a third signal amplifier 635c; each band-pass filter 635a input is correspondingly connected with a gate pulse module 634 output, and each band-pass filter The output terminal of the device 635a is correspondingly connected with the cathode of a second avalanche photodiode 631a; the input terminal of each low-pass filter 635b is correspondingly connected with the anode of a second avalanche photodiode 631a, and the output terminal of each low-pass filter 635b is correspondingly connected with the anode of a second avalanche photodiode 631a The input terminal of a third signal amplifier 635c is connected; the output terminal of each third signal amplifier 635c is correspondingly connected with a pulse shaping module 636;
每个带通滤波器635a均用于滤除由对应门脉冲模块634输出的门控信号中所带来的边带噪声和谐波噪声信号;Each band-pass filter 635a is used to filter out sideband noise and harmonic noise signals brought by the gating signal output by the corresponding gating module 634;
每个低通滤波器635b均用于滤除由对应门脉冲模块634输出的门控信号所引入的并经过对应第二雪崩光电二极管631a光电转化后所产出的噪声信号,从中获取有效的光生载流子雪崩信号。Each low-pass filter 635b is used to filter out the noise signal introduced by the gate control signal output by the corresponding gate pulse module 634 and produced after the photoelectric conversion of the corresponding second avalanche photodiode 631a, thereby obtaining effective photogenerated Carrier avalanche signal.
每个脉冲整形模块636包含脉冲鉴幅器636a、脉冲整形电路636b及第二模/数转换器636c;每个脉冲鉴幅器636a输入端对应与一第三信号放大器636c输出端连接,每个脉冲鉴幅器636a输出端对应与一脉冲整形电路636b输入端连接,每个脉冲整形电路636b输出端对应与一第二模/数转换器636c输入端连接,每个第二模/数转换器636c输出端对应与一光子计数器637输入端连接,每个光子计数器637输出端均对应与主控单元1的数据处理器14连接。Each pulse shaping module 636 includes a pulse discriminator 636a, a pulse shaping circuit 636b, and a second analog-to-digital converter 636c; the input end of each pulse discriminator 636a is correspondingly connected to the output end of a third signal amplifier 636c, each The output end of the pulse discriminator 636a is correspondingly connected to the input end of a pulse shaping circuit 636b, and the output end of each pulse shaping circuit 636b is correspondingly connected to the input end of a second analog/digital converter 636c, and each second analog/digital converter The output terminal of 636c is correspondingly connected to the input terminal of a photon counter 637 , and the output terminal of each photon counter 637 is correspondingly connected to the data processor 14 of the main control unit 1 .
每个脉冲整形模块636用于将获取的有效雪崩模拟信号整形转化成标准数字信号输出至主控单元的数字处理器14中,经数字处理器14分析处理后,在波形显示器上对应的显示区域处显示出相应的OTDR检测光波形信号。Each pulse shaping module 636 is used to shape and convert the obtained effective avalanche analog signal into a standard digital signal and output it to the digital processor 14 of the main control unit. After being analyzed and processed by the digital processor 14, the corresponding display area on the waveform display The corresponding OTDR detection optical waveform signal is shown at .
在本实施例中,第一雪崩光电二极管621a及第二雪崩光电二极管631a选用的为InGaAs或InP雪崩光电二极管。In this embodiment, the first avalanche photodiode 621 a and the second avalanche photodiode 631 a are InGaAs or InP avalanche photodiodes.
最后说明,以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。Finally, the above descriptions are only embodiments of the present utility model, and are not intended to limit the patent scope of the present utility model. Any equivalent structure or equivalent process conversion made by using the specification of the utility model and the contents of the accompanying drawings, or directly or indirectly Applications in other relevant technical fields are all included in the scope of patent protection of the utility model in the same way.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721758792.4U CN207720138U (en) | 2017-12-16 | 2017-12-16 | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721758792.4U CN207720138U (en) | 2017-12-16 | 2017-12-16 | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207720138U true CN207720138U (en) | 2018-08-10 |
Family
ID=63056049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201721758792.4U Expired - Fee Related CN207720138U (en) | 2017-12-16 | 2017-12-16 | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207720138U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108075828A (en) * | 2017-12-16 | 2018-05-25 | 国网湖北省电力有限公司信息通信公司 | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal |
CN110178065A (en) * | 2019-04-11 | 2019-08-27 | 深圳市亚派光电器件有限公司 | Light emission component and preparation method thereof |
-
2017
- 2017-12-16 CN CN201721758792.4U patent/CN207720138U/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108075828A (en) * | 2017-12-16 | 2018-05-25 | 国网湖北省电力有限公司信息通信公司 | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal |
CN108075828B (en) * | 2017-12-16 | 2024-08-23 | 国网湖北省电力有限公司信息通信公司 | OTDR device based on multichannel optical fiber optical signal monitoring |
CN110178065A (en) * | 2019-04-11 | 2019-08-27 | 深圳市亚派光电器件有限公司 | Light emission component and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108075828B (en) | OTDR device based on multichannel optical fiber optical signal monitoring | |
CN107957276B (en) | Phase-sensitive optical time domain reflectometer based on frequency drift compensation and its measurement method | |
CN106940444B (en) | Coherent Doppler wind-observation laser radar based on microwave differential gain | |
CN101764646B (en) | Wavelength-encoding optical time domain reflection test device and measurement method thereof | |
CN103323215B (en) | A kind of light time domain reflection measuring apparatus and method | |
CN102739311B (en) | Fiber failure positioner and localization method thereof based on chaos visible laser | |
CN104075802B (en) | A kind of photon counting-type faint optical signal measurement mechanism of high dynamic range and method | |
CN103148878B (en) | Based on the Brillouin optical time-domain reflectometer method and apparatus of Synchronous data dispose technology | |
CN106017521A (en) | Measuring apparatus and measuring method | |
CN108801153B (en) | Optical fiber length measuring method and measuring device | |
CN102506904A (en) | Spontaneous Brillouin scattering optical time domain reflectometer based on superconductive nanowire single-proton detector | |
CN107063431A (en) | A kind of optical fiber vibration sensing system and method based on double light path | |
CN104697557B (en) | Circular frequency shifting based BOTDR (Brillouin Optical Time Domain Reflectometer) coherent detection device and method | |
CN107389106A (en) | A kind of φ OTDR quadrature phase demodulations system and phase demodulating method | |
CN101963516B (en) | Polarization-sensitive distributed perturbation sensing and measuring method and system | |
CN103575504A (en) | Optical time-domain reflectometer based on superconductivity nanowire single photon detector | |
CN106768277A (en) | A kind of distributed optical fiber vibration sensing device based on coherent phase detection | |
CN207720138U (en) | A kind of OTDR devices based on multi-channel optical fibre optical monitoring signal | |
CN109347544B (en) | Optical fiber time domain reflectometer based on ultra-low noise near-infrared single photon detection system | |
RU2458325C1 (en) | Method of measuring temperature distribution and device for realising said method | |
CN102445285B (en) | Peak searching method of Brillouin optical time domain reflectometer (BOTDR) system | |
CN110702239B (en) | A time-domain reflectometry method for infinitely scattered single-photon probe light | |
CN203572631U (en) | Optical time-domain reflectometer based on superconducting nanowire single-photon detector | |
CN107167225A (en) | A kind of distributed optical fiber stress and the sensor-based system and its method for sensing of vibration | |
RU136660U1 (en) | OPTICAL REFLECTOMETER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180810 Termination date: 20211216 |