CN108054434A - 一种一次电纺柔性超薄锂离子电池的制备方法 - Google Patents

一种一次电纺柔性超薄锂离子电池的制备方法 Download PDF

Info

Publication number
CN108054434A
CN108054434A CN201711286057.2A CN201711286057A CN108054434A CN 108054434 A CN108054434 A CN 108054434A CN 201711286057 A CN201711286057 A CN 201711286057A CN 108054434 A CN108054434 A CN 108054434A
Authority
CN
China
Prior art keywords
graphene
preparation
carbon nano
cathode
electrospinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711286057.2A
Other languages
English (en)
Inventor
杨震宇
陈德良
李超锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN201711286057.2A priority Critical patent/CN108054434A/zh
Publication of CN108054434A publication Critical patent/CN108054434A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种一次电纺柔性超薄锂离子电池的制备方法,按配比称取石墨烯、碳纳米管及溶剂,超声分散制成石墨烯/碳纳米管胶体溶液;利用高压静电喷雾装置在集流体上喷涂石墨烯/碳纳米管复合膜负极;按比例制备固体电解质材料,利用高压静电纺丝装置直接在形成的负极上电纺固体电解质薄膜;最后采用制备的正极材料纺丝液在形成的电解质薄膜上电纺一层正极;最后附上一层集流体;即得到锂离子电池。优点是:电纺的负极是一维碳管二维石墨烯复合的三维结构,具有良好的导电性;电纺的固体电解质与正负极接触性能良好,可以通过调控厚薄改善电解质膜的离子电导率;而且正负极薄膜厚度从10微米起可调,从而制备不同容量的电池(0.25Wh‑5Wh)。

Description

一种一次电纺柔性超薄锂离子电池的制备方法
技术领域
本发明涉及电化学技术领域,尤其涉及一种一次电纺柔性超薄锂离子电池的制备方法。
背景技术
随着科学技术的发展以及人们物质文化需求的提高,便携式及可穿戴电子产品与器件备受关注,包括可卷曲显示器,电子纸,柔性电池等。因此,柔性轻薄的锂离子电池将有很大的发展潜力和市场需求。
目前市场上的锂离子电池大都采用分离的部件如集流体、工作电极、电解质和隔膜,柔性较差,且重量、体积较大。在发生折叠或弯曲等形变时,锂离子电池各部件的相对移动会极大地损坏器件结构,导致超级电容器性能变差,循环稳定性降低。因此,减轻减薄锂离子电池及寻找一种集成化且低成本柔性超薄锂离子电池的制备方法对研究与开发新型储能装置及器件具有重要的价值和意义。
发明内容
为了解决现有的锂离子电池制备方法的不足,本发明目的在于提供一种一次电纺柔性超薄锂离子电池的制备方法。
本发明采取的技术方案是:
本发明的一次电纺柔性超薄锂离子电池的制备方法的具体步骤如下:
(1)按配比称取石墨烯、碳纳米管及溶剂,超声分散制成石墨烯/碳纳米管胶体溶液;
(2)利用高压静电喷雾装置在集流体上静电喷涂石墨烯/碳纳米管复合膜负极;
(3)按比例制备固体电解质材料,利用高压静电纺丝装置直接在形成的负极上电纺固体电解质薄膜;
(4)采用制备的正极材料纺丝液在形成的电解质薄膜上电纺一层正极;最后附上一层金属箔集流体;即得到本发明一次电纺柔性超薄锂离子电池。
步骤(1)中,石墨烯溶液的浓度5mg/ml;碳纳米管溶液浓度是0.5mg/ml,溶剂是水、乙醇、乙二醇、NMP或二元混合溶液,石墨烯溶液和碳纳米管溶液二者体积比是1:1或2:1。
步骤(2)中,静电喷涂电压12KV,恒温温度50摄氏度;石墨烯/碳纳米管复合膜负极膜厚度10-100微米。
步骤(3)中,固体电解质材料的组成是:10wt%PEO+(0.5mol/L)LiClO4(高氯酸锂)或5wt%PVDF+5wt%PEO+(0.5mol/L)LiClO4或10wt%PVDF+(0.5mol/L)LiClO4;溶剂是NMP,DMF及其混合物。
步骤(3)中,静电纺丝电压15-20KV,恒温温度50摄氏度;纺丝膜厚度10-100微米。
步骤(4)中,正极材料浆料的组成是:80%磷酸铁锂+10%导电剂+10%PVDF浆料或80%三元材料+10%导电剂+10%PVDF;溶剂是NMP。
步骤(4)中,静电喷涂电压15-20KV,恒温温度50摄氏度;纺丝膜厚度10-100微米。
本发明的积极效果如下:
本发明的优点是,电纺的负极是一维碳管二维石墨烯复合的三维结构,具有良好的导电性,薄膜电导率可达1000S/m;电纺的固体电解质与正负极接触性能良好,可以通过调控厚薄改善电解质膜的离子电导率;而且正负极薄膜厚度从10微米起可调,从而制备不同容量的电池(0.25Wh-5Wh)。静电纺丝技术先后电纺/电喷分步一次成型,容量可调,制作方便。电池质量比容量可达360Wh/kg。
附图说明
图1是柔性超薄锂离子电池结构示意图
具体实施方式
下面的实施例是对本发明的进一步详细描述。
实施例1
按体积配比1:1称取石墨烯(5mg/ml)和碳纳米管(0.5mg/ml)在水和乙醇混合溶剂中,超声分散制成石墨烯/碳纳米管胶体溶液;第一步,利用高压静电喷雾装置在集流体上喷涂石墨烯/碳纳米管复合膜负极(12KV),负极膜厚度10微米。第二步,按比例10wt%PEO+(0.5mol/L)LiClO4(高氯酸锂)+DMF制备固体电解质材料,高压静电纺丝直接在上一步形成的负极上电纺一层10微米固体电解质薄膜(18KV);第三步,采用制备正极浆料(80%磷酸铁锂+10%导电剂+10%PVDF)在第二步形成的电解质薄膜上静电喷涂一层10微米的正极(12KV);最后附上一层集流体;即得到本发明连续电纺柔性超薄超级电容器(容量约0.25Wh,电池质量比容量约300Wh/kg)。
实施例2
按体积配比1:1称取石墨烯(5mg/ml)和碳纳米管(0.5mg/ml)在水和乙二醇混合溶剂中,超声分散制成石墨烯/碳纳米管胶体溶液;第一步,利用高压静电喷雾装置在集流体上喷涂石墨烯/碳纳米管复合膜负极(12KV),负极膜厚度50微米。第二步,按比例5wt%PVDF+5wt%PEO(0.5mol/L)LiClO4+DMF制备固体电解质材料,高压静电纺丝直接在上一步形成的负极上电纺一层50微米固体电解质薄膜(18KV);第三步,采用制备正极浆料(80%三元材料+10%导电剂+10%PVDF)在第二步形成的电解质薄膜上静电喷涂一层50微米的正极(12KV);最后附上一层集流体;即得到本发明连续电纺柔性超薄超级电容器(容量约1.3Wh,电池质量比容量可达340Wh/kg)。
实施例3
按体积配比2:1称取石墨烯(5mg/ml)和碳纳米管(0.5mg/ml)在NMP和乙二醇混合溶剂中,超声分散制成石墨烯/碳纳米管胶体溶液;第一步,利用高压静电喷雾装置在集流体上喷涂石墨烯/碳纳米管复合膜负极(12KV),负极膜厚度100微米。第二步,按比例5wt%PVDF+5wt%PEO(0.5mol/L)LiClO4+DMF制备固体电解质材料,高压静电纺丝直接在上一步形成的负极上电纺一层30微米固体电解质薄膜(18KV);第三步,采用制备正极浆料(80%三元材料+10%导电剂+10%PVDF)在第二步形成的电解质薄膜上静电喷涂一层100微米的正极(12KV);最后附上一层集流体;即得到本发明连续电纺柔性超薄超级电容器(容量约5Wh,电池质量比容量可达360
Wh/kg)。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种一次电纺柔性超薄锂离子电池的制备方法,其特征在于:所述方法的具体步骤如下:
(1)按配比称取石墨烯、碳纳米管及溶剂,超声分散制成石墨烯/碳纳米管胶体溶液;
(2)利用高压静电喷雾装置在集流体上喷涂石墨烯/碳纳米管复合膜负极;
(3)按比例制备固体电解质材料,利用高压静电纺丝装置直接在形成的负极上电纺固体电解质薄膜;
(4)采用制备的正极材料纺丝液在形成的电解质薄膜上电纺一层正极;最后附上一层金属箔集流体;即得到本发明一次电纺柔性超薄锂离子电池。
2.如权利要求1所述的制备方法,其特征在于:步骤(1)中,石墨烯溶液的浓度5mg/ml;碳纳米管溶液浓度是0.5mg/ml,溶剂是水、乙醇、乙二醇、NMP或二元混合溶液,石墨烯溶液和碳纳米管溶液二者体积比是1:1或2:1或1:2。
3.如权利要求1所述的制备方法,其特征在于:步骤(2)中,静电喷涂电压12KV,恒温温度50摄氏度;石墨烯/碳纳米管复合膜负极膜厚度10-100微米。
4.如权利要求1所述的制备方法,其特征在于:步骤(3)中,固体电解质材料的组成是:10wt%PEO+(0.5mol/L)LiClO4(高氯酸锂)或5wt%PVDF+5wt%PEO(0.5mol/L)LiClO4或10wt%PVDF+(0.5mol/L)LiClO4或其二元混合物;溶剂是NMP,DMF及其混合物。
5.如权利要求1所述的制备方法,其特征在于:步骤(3)中,静电纺丝电压15-20KV,恒温温度50摄氏度;纺丝膜厚度约10-100微米。
6.如权利要求1所述的制备方法,其特征在于:步骤(4)中,正极材料纺丝液的组成是:80%磷酸铁锂+10%导电剂+10%PVDF浆料或80%三元材料+10%导电剂+10%PVDF;溶剂是NMP。
7.如权利要求1所述的制备方法,其特征在于:步骤(4)中,静电喷涂电压15-20KV,恒温温度50摄氏度;纺丝膜厚度10-100微米。
CN201711286057.2A 2017-12-07 2017-12-07 一种一次电纺柔性超薄锂离子电池的制备方法 Pending CN108054434A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711286057.2A CN108054434A (zh) 2017-12-07 2017-12-07 一种一次电纺柔性超薄锂离子电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711286057.2A CN108054434A (zh) 2017-12-07 2017-12-07 一种一次电纺柔性超薄锂离子电池的制备方法

Publications (1)

Publication Number Publication Date
CN108054434A true CN108054434A (zh) 2018-05-18

Family

ID=62122869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711286057.2A Pending CN108054434A (zh) 2017-12-07 2017-12-07 一种一次电纺柔性超薄锂离子电池的制备方法

Country Status (1)

Country Link
CN (1) CN108054434A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494335A (zh) * 2018-11-06 2019-03-19 苏州华骞时代新能源科技有限公司 一种锂电池凝胶聚合物隔膜、制备方法和静电纺丝装置
CN109860720A (zh) * 2019-01-30 2019-06-07 浙江锋锂新能源科技有限公司 一种复合电解质层的制备方法和固态电池
CN110137560A (zh) * 2019-04-26 2019-08-16 中国航发北京航空材料研究院 一种一体化复合电极材料及其制备方法与应用
CN110931845A (zh) * 2019-11-04 2020-03-27 浙江锋锂新能源科技有限公司 一种复合正极片、制备方法及固液混合锂蓄电池
CN111554882A (zh) * 2020-05-13 2020-08-18 中科(马鞍山)新材料科创园有限公司 一种三元正极极片及其涂布方法和应用
CN114079029A (zh) * 2020-08-14 2022-02-22 北京石墨烯研究院 柔性电池及其制备方法
CN115084448A (zh) * 2022-07-18 2022-09-20 洛阳理工学院 固态锂电池用固体电解质/电极一体化材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226239A (zh) * 2014-05-09 2016-01-06 纳米新能源(唐山)有限责任公司 静电涂布制备锂离子薄膜电极方法、电极和包括其的电池
CN106549185A (zh) * 2015-09-17 2017-03-29 中国科学院金属研究所 一种具有一体化结构的锂离子电池及其制备方法
CN107221709A (zh) * 2017-06-09 2017-09-29 清华大学 一种柔性快充的锂金属电池制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226239A (zh) * 2014-05-09 2016-01-06 纳米新能源(唐山)有限责任公司 静电涂布制备锂离子薄膜电极方法、电极和包括其的电池
CN106549185A (zh) * 2015-09-17 2017-03-29 中国科学院金属研究所 一种具有一体化结构的锂离子电池及其制备方法
CN107221709A (zh) * 2017-06-09 2017-09-29 清华大学 一种柔性快充的锂金属电池制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494335A (zh) * 2018-11-06 2019-03-19 苏州华骞时代新能源科技有限公司 一种锂电池凝胶聚合物隔膜、制备方法和静电纺丝装置
CN109494335B (zh) * 2018-11-06 2021-08-06 苏州华骞时代新能源科技有限公司 一种锂电池凝胶聚合物隔膜、制备方法和静电纺丝装置
CN109860720A (zh) * 2019-01-30 2019-06-07 浙江锋锂新能源科技有限公司 一种复合电解质层的制备方法和固态电池
CN109860720B (zh) * 2019-01-30 2022-08-05 浙江锋锂新能源科技有限公司 一种复合电解质层的制备方法和固态电池
CN110137560A (zh) * 2019-04-26 2019-08-16 中国航发北京航空材料研究院 一种一体化复合电极材料及其制备方法与应用
CN110931845A (zh) * 2019-11-04 2020-03-27 浙江锋锂新能源科技有限公司 一种复合正极片、制备方法及固液混合锂蓄电池
CN111554882A (zh) * 2020-05-13 2020-08-18 中科(马鞍山)新材料科创园有限公司 一种三元正极极片及其涂布方法和应用
CN114079029A (zh) * 2020-08-14 2022-02-22 北京石墨烯研究院 柔性电池及其制备方法
CN115084448A (zh) * 2022-07-18 2022-09-20 洛阳理工学院 固态锂电池用固体电解质/电极一体化材料及其制备方法与应用
CN115084448B (zh) * 2022-07-18 2024-05-17 洛阳理工学院 固态锂电池用固体电解质/电极一体化材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN108054434A (zh) 一种一次电纺柔性超薄锂离子电池的制备方法
Zhu et al. Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries
Nguyen et al. Extraordinary cycling stability of Ni3 (HITP) 2 supercapacitors fabricated by electrophoretic deposition: cycling at 100,000 cycles
Wang et al. Vertically-aligned nanostructures for electrochemical energy storage
CN105098160B (zh) 一种掺杂石墨烯的中空多孔的碳/硅纳米纤维锂电池负极材料及其制备方法
Wang et al. Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors
CN102544502B (zh) 用于锂二次电池的正极负极导电添加剂及其制备方法和相关锂二次电池的制备方法
Mao et al. High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries
CN108615865A (zh) 一种锂硫电池正极材料及其制备方法
CN105261760A (zh) 锂离子电池水性正极复合集流体、正极片及其制备方法、锂离子电池
CN106981374B (zh) 功能化氧化石墨烯修饰聚合物凝胶电解质及其制备方法和应用
CN110993358A (zh) 一种柔性锌离子电容器
Fang et al. Fabrication and supercapacitive properties of a thick electrode of carbon nanotube–RuO2 core–shell hybrid material with a high RuO2 loading
CN112038688B (zh) 一维纳米形貌llzo基固态电解质材料的制备方法
CN106784745A (zh) 钠离子电池用四氧化三钴碳纳米纤维的电纺丝制备方法
CN106548876A (zh) 表层氧化的碳纳米管阵列/石墨烯/二氧化锰复合材料电极及其制备方法和应用
CN104795252A (zh) 超薄Ti3C2纳米片自组装的超级电容器电极的制备方法
Wu et al. A high performance flexible recyclable supercapacitor with polyaniline by casting in unconventional proportion
CN109637846A (zh) 一种高电压平面型超级电容器及其制备方法
CN109192543A (zh) 一种氧化石墨烯基粘结剂及其制备方法以及电极片
CN108269966A (zh) 一种通过冷压-材料分级级配制备固体电极的方法
CN107910195A (zh) 一种混合型超级电容器
CN105552434A (zh) 一种三层结构的全固态聚合物电解质膜的制备方法
CN105206430A (zh) 聚苯胺纳米管阵列/石墨烯复合材料电极及其制备方法和应用
CN102915844A (zh) 一种制备碳片/二氧化锰纳米片的分级复合材料的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yang Zhenyu

Inventor after: Chen Deliang

Inventor after: Li Chao

Inventor before: Yang Zhenyu

Inventor before: Chen Deliang

Inventor before: Li Chaofeng

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20180518

RJ01 Rejection of invention patent application after publication