CN108054341B - 一种石墨烯/硅碳复合材料的制备方法 - Google Patents

一种石墨烯/硅碳复合材料的制备方法 Download PDF

Info

Publication number
CN108054341B
CN108054341B CN201711408928.3A CN201711408928A CN108054341B CN 108054341 B CN108054341 B CN 108054341B CN 201711408928 A CN201711408928 A CN 201711408928A CN 108054341 B CN108054341 B CN 108054341B
Authority
CN
China
Prior art keywords
silicon
graphene
composite material
carbon composite
tubular furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711408928.3A
Other languages
English (en)
Other versions
CN108054341A (zh
Inventor
范才河
曾广胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201711408928.3A priority Critical patent/CN108054341B/zh
Publication of CN108054341A publication Critical patent/CN108054341A/zh
Application granted granted Critical
Publication of CN108054341B publication Critical patent/CN108054341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯/硅碳复合材料的制备方法,以可溶性有机物为碳源,与氧化石墨烯分散液混合,首先在铜箔上进行第一次气相沉积,形成过渡层,为后面硅的沉积提供一个稳定,牢固,有一定韧性的附着点,同时提高了电极的导电性。该碳网络过渡层表面分布有纳米点或者纳米线,可以在第二次气相沉积过程中起生长引导作用,生成特定的形状。使用该方法制备得到石墨烯/硅碳复合材料由多个纳米级颗粒组合而成,有好的机械强度和韧性,可以有效的减轻由于硅的体积膨胀导致的活性材料的脱落。同时,通过本发明的方法制得的材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高的特点。

Description

一种石墨烯/硅碳复合材料的制备方法
技术领域
本发明属于复合材料的制备技术领域,更具体的,涉及一种石墨烯/硅碳复合材料的制备方法。
背景技术
锂离子电池由于具有比能量大,工作电压高,安全性好,环境污染小等优点,在各种便携式电子设备,电动汽车和新能源存储等领域有广阔的应用前景。一般说来,负极材料作为锂离子电池储锂的主体,在充放电过程中实现锂离子的嵌入和脱出,是提高锂离子电池比容量,循环性,充放电等相关性能的关键。目前商业化的负极材料主要是以石墨为主的传统碳材料,而石墨理论的比容量只有372mAh/g,这很大程度上限制了锂离子电池总比容量的进一步提高。因此,发展新型的具有高比容量的负极材料十分紧迫。
硅被认为是最有潜力的新一代高容量锂离子电池负极材料,与传统的石墨负极材料相比,硅具有极高的质量比容量(4200mAh/g)是天然石墨的十多倍。硅在合金材料中的堆积密度与锂相近,因此硅还具有很高的体积比容量;不同于石墨类材料,硅的高比容量源于硅锂的合金化过程,因而硅负极材料不会与电解液发生溶剂共嵌入,进而对电解液的适用范围更广;相比于炭材料,硅有更高的脱嵌锂电位,可有效避免大倍率充放电过程中锂的析出,能够提高电池的安全性。但由于硅的体积膨胀,在充放电过程中会使其结构被破坏,使活性材料从集流体上脱落,且不断形成不可逆电解质膜,最终导致硅负极材料低的可逆容量、差的循环稳定性和倍率性能。硅碳复合纳米结构是抑制体积膨胀一种非常有效的途径。这主要是因为碳材料导电性能良好、体积变化小。硅材料被包覆以后,可增强材料的导电性能,避免硅纳米颗粒之间的团聚以及材料的膨胀,从而增长循环寿命,提高倍率性能。
石墨烯作为一种新型碳纳米材料,由单层sp2碳原子紧密堆积成二维蜂窝状结构。研究表明,石墨烯具有优异的电学、力学性能,高的理论比表面积,这些特性决定了其在锂离子电池领域的巨大应用潜力,已有不少研究者开展了利用石墨烯复合来改善锂离子电极材料电化学性能的研究。因此,制备硅碳复合纳米结构锂离子电池负极材料具有良好的经济效益和广阔的市场前景。
发明内容
针对上述技术问题,本发明的目的是提供一种石墨烯/硅碳复合材料的制备方法,本发明方法制备过程简单,通过本发明的方法制得的材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高的特点。
本发明的目的通过以下技术方案予以实现:
一种石墨烯/硅碳复合材料的制备方法,包括以下步骤:
S1.将可溶性有机物溶于1~10mg/mL氧化石墨烯分散液中,混合均匀得混合溶液;超声分散处理形成悬浮液,加入三口烧瓶,置于超声雾化器上进行超声雾化,频率为20000Hz,时间为30min,形成混合雾珠;
S2.将步骤S1中三口烧瓶的一个口用橡胶塞密封,一个口接入惰性气体,另一个口连接管式炉,经过超声雾化后的混合雾珠,在惰性气体的保护下通入管式炉中进行气相沉积,所述气相沉积在预先水平放置在管式炉中的铜箔基体上进行,在400℃下沉积1h后,关闭超声雾化器;
S3.管式炉以5℃/min升温至800℃,再打开三口烧瓶橡胶塞,加入质量浓度分别为50%、50%的苯和三甲基氯硅烷混合溶液,塞紧橡胶塞,打开超声雾化器继续以20000Hz的频率进行超声雾化,在混合雾珠被完全通入管式炉后,关闭超声雾化器,混合雾珠在管式炉中进行气相沉积,6h后取出冷却至室温,在铜箔表面得到石墨烯/硅碳复合材料;
其中,在步骤S3中,保持三口烧瓶中惰性气体气流500mL/min。
优选地,所述氧化石墨烯分散液采用Hummer法制备得到。
优选地,所属惰性气体为氩气。
与现有技术相比,本发明的有益效果是:
(1)本发明方法首先利用气相沉积先在基底上生成一层过渡层的碳,为后面硅的沉积提供一个稳定,牢固,有一定韧性的附着点,同时提高了电极的导电性。该碳网络过渡层表面分布有纳米点或者纳米线,可以在第二次气相沉积过程中起生长引导作用,生成特定的形状。使用该方法制备得到石墨烯/硅碳复合材料由多个纳米级颗粒组合而成,有好的机械强度和韧性,可以有效的减轻由于硅的体积膨胀导致的活性材料的脱落。同时,通过本发明的方法制得的材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高的特点。
(2)本发明方法以铜箔为基底材料,在基底上生成复合材料之后可以直接切片作为锂离子电池负极材料,使用该负极片可以不使用粘结剂,避免了粘结剂变性和粘结剂本身带来的电极性能降低。同时,本发明以有机硅作为硅源,可以避免使用SiH4而造成的安全隐患;也不需要使用氢氟酸处理,整个过程没有有毒有害废弃物产生,实现绿色生产。
具体实施方式
下面结合具体实施例进一步说明本发明。以下实施例仅为示意性实施例,并不构成对本发明的不当限定,本发明可以由发明内容限定和覆盖的多种不同方式实施。除非特别说明,本发明采用的试剂、化合物和设备为本技术领域常规试剂、化合物和设备。
实施例1
本实施例提供一种石墨烯/硅碳复合材料的制备方法,包括以下步骤:
S1.采用Hummer法制备一定浓度的氧化石墨烯分散液,调节氧化石墨烯分散液的浓度为10mg/ml,将5%方形酸溶于10mg/mL氧化石墨烯分散液中,混合均匀得混合溶液;超声分散处理形成悬浮液,加入三口烧瓶,置于超声雾化器上进行超声雾化,频率为20000Hz,时间为30min,形成混合雾珠;
S2.将步骤S1中三口烧瓶的一个口用橡胶塞密封,一个口接入惰性气体,另一个口连接管式炉,经过超声雾化后的混合雾珠,在惰性气体的保护下通入管式炉中进行气相沉积,所述气相沉积在预先水平放置在管式炉中的铜箔基体上进行,在400℃下沉积1h后,关闭超声雾化器;
S3.管式炉以5℃/min升温至800℃,再打开三口烧瓶橡胶塞,加入质量浓度分别为50%、50%的苯和三甲基氯硅烷混合溶液,塞紧橡胶塞,打开超声雾化器继续以20000Hz的频率进行超声雾化,在混合雾珠被完全通入管式炉后,关闭超声雾化器,混合雾珠在管式炉中进行气相沉积,6h后取出冷却至室温,在铜箔表面得到石墨烯/硅碳复合材料;
其中,在步骤S3中,保持三口烧瓶中惰性气体气流500mL/min。
本发明得到的沉积有石墨烯/硅碳复合材料的铜箔,可直接利用冲头冲成极片,在充满氩气的手套箱中,以锂片为对电极,隔膜是聚丙烯微孔膜,电解液是体积比1:1的碳酸二甲酯(DMC)和碳酸亚乙酯(EC)混合1molL-1的六氟磷锂(LiPF6),组装成电池,在NEWARE测试系统上进行电化学性能测试。
将制得的石墨烯/硅碳复合材料组装成锂离子电池在0.1C倍率下进行充放电和在5C倍率下进行充放电测试,在0.1C倍率下充放电时,首次充放电循环充电容量最高达2189mAh/g,在5C倍率下充放电时,在循环500次以后,容量保持率为98.6%。
发明人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (3)

1.一种石墨烯/硅碳复合材料的制备方法,其特征在于,包括以下步骤:
S1.将方形酸溶于1~10mg/mL氧化石墨烯分散液中,混合均匀得混合溶液;超声分散处理形成悬浮液,加入三口烧瓶,置于超声雾化器上进行超声雾化,频率为20000Hz,时间为30min,形成混合雾珠;
S2.将步骤S1中三口烧瓶的一个口用橡胶塞密封,一个口接入惰性气体,另一个口连接管式炉,经过超声雾化后的混合雾珠,在惰性气体的保护下通入管式炉中进行气相沉积,所述气相沉积在预先水平放置在管式炉中的铜箔基体上进行,在400℃下沉积1h后,关闭超声雾化器;
S3.管式炉以5℃/min升温至800℃,再打开三口烧瓶橡胶塞,加入质量浓度分别为50%、50%的苯和三甲基氯硅烷混合溶液,塞紧橡胶塞,打开超声雾化器继续以20000Hz的频率进行超声雾化,在混合雾珠被完全通入管式炉后,关闭超声雾化器,混合雾珠在管式炉中进行气相沉积,6h后取出冷却至室温,在铜箔表面得到石墨烯/硅碳复合材料;
其中,在步骤S3中,保持三口烧瓶中惰性气体气流500mL/min。
2.根据权利要求1所述石墨烯/硅碳复合材料的制备方法,其特征在于,所述氧化石墨烯分散液采用Hummer法制备得到。
3.根据权利要求1所述石墨烯/硅碳复合材料的制备方法,其特征在于,所述惰性气体为氩气。
CN201711408928.3A 2017-12-22 2017-12-22 一种石墨烯/硅碳复合材料的制备方法 Active CN108054341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711408928.3A CN108054341B (zh) 2017-12-22 2017-12-22 一种石墨烯/硅碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711408928.3A CN108054341B (zh) 2017-12-22 2017-12-22 一种石墨烯/硅碳复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108054341A CN108054341A (zh) 2018-05-18
CN108054341B true CN108054341B (zh) 2020-09-15

Family

ID=62131530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711408928.3A Active CN108054341B (zh) 2017-12-22 2017-12-22 一种石墨烯/硅碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108054341B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546100B (zh) * 2018-10-16 2020-06-05 中航锂电(洛阳)有限公司 一种硅碳复合薄膜电极及锂离子电池
CN109888194A (zh) * 2019-04-03 2019-06-14 山东星火科学技术研究院 石墨烯/硅/碳复合材料的夹层结构电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1458298A (zh) * 2003-04-18 2003-11-26 天津大学 液相源雾化微波等离子体化学气相沉积制备薄膜的方法
CN103346026A (zh) * 2013-07-02 2013-10-09 上海利物盛工贸有限公司 一种超级电容器纳米硅碳复合电极材料的制备方法
CN104332613A (zh) * 2014-11-18 2015-02-04 东莞市翔丰华电池材料有限公司 一种锂离子电池硅碳复合负极材料及其制备方法
CN106887567A (zh) * 2016-04-30 2017-06-23 山东大学 一种碳包覆硅/石墨烯复合材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748381A (zh) * 2009-12-31 2010-06-23 中国地质大学(北京) 一种高性能掺杂类金刚石膜的制备方法
CN103159208A (zh) * 2011-12-14 2013-06-19 海洋王照明科技股份有限公司 一种制备石墨烯的方法
CN104269515B (zh) * 2014-09-19 2016-08-17 清华大学深圳研究生院 一种锂离子电池负极片及其制备方法、锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1458298A (zh) * 2003-04-18 2003-11-26 天津大学 液相源雾化微波等离子体化学气相沉积制备薄膜的方法
CN103346026A (zh) * 2013-07-02 2013-10-09 上海利物盛工贸有限公司 一种超级电容器纳米硅碳复合电极材料的制备方法
CN104332613A (zh) * 2014-11-18 2015-02-04 东莞市翔丰华电池材料有限公司 一种锂离子电池硅碳复合负极材料及其制备方法
CN106887567A (zh) * 2016-04-30 2017-06-23 山东大学 一种碳包覆硅/石墨烯复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Carbon-Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy-Density Li-Ion Battery;Daniel Adjei Agyeman等;《Advanced Energy Materials》;20161026;第6卷(第20期);第1600904页 *

Also Published As

Publication number Publication date
CN108054341A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN106784617B (zh) 一种锂离子电池正极极片,其制备方法及使用该极片的电池
Sun et al. Boosting the electrochemical performance of lithium/sulfur batteries with the carbon nanotube/Fe3O4 coated by carbon modified separator
Wu et al. LiFePO4 cathode material
Zhang et al. A facile synthesis of 3D flower-like NiCo2O4@ MnO2 composites as an anode material for Li-ion batteries
Zeng et al. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries
CN103346304B (zh) 一种用于锂二次电池负极的锡碳复合材料及其制备方法
CN103187559B (zh) 一种硒-微孔载体复合物,其制备方法和用途
CN114050246A (zh) 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池
CN104347857A (zh) 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
Jiang et al. In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries
Li et al. Preparation of NiO–Ni/natural graphite composite anode for lithium ion batteries
CN108075125A (zh) 一种石墨烯/硅碳负极复合材料及其制备方法和应用
CN102544492B (zh) 一种具有夹层薄片结构的磷酸铁锂/石墨烯复合材料及其制法和用途
CN105355877A (zh) 一种石墨烯-金属氧化物复合负极材料及其制备方法
Deng et al. High-performance SiMn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries
CN116231091B (zh) 锂二次电池用电解液、二次电池和用电装置
CN113401897B (zh) 一种黑磷基石墨复合锂离子电池负极材料的制备方法
CN102800865A (zh) 一种全固体离子传导动力的锂电池
Pan et al. Achieving Dendrite–free lithium Plating/Stripping from mixed Ion/Electron–Conducting scaffold Li2S@ Ni NWs-NF for stable lithium metal anodes
Yu et al. Hydrothermal synthesis of spindle-shape and craggy-faced LiFePO4/C composite materials for high power Li-ion battery
CN108054341B (zh) 一种石墨烯/硅碳复合材料的制备方法
Pang et al. Controlled fabrication of iron oxalate hydrate microstructures and study of their electrochemical properties
Li et al. LiNi0. 5Mn1. 5O4 porous micro-cubes synthesized by a facile oxalic acid co-precipitation method as cathode materials for lithium-Ion batteries
CN107994218B (zh) 一种硅碳复合材料、其制备方法及其作为锂离子电池负极材料的应用
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant