CN108046779A - 采用激光选区烧结制备复杂结构空心球陶瓷零件的方法 - Google Patents

采用激光选区烧结制备复杂结构空心球陶瓷零件的方法 Download PDF

Info

Publication number
CN108046779A
CN108046779A CN201711375281.9A CN201711375281A CN108046779A CN 108046779 A CN108046779 A CN 108046779A CN 201711375281 A CN201711375281 A CN 201711375281A CN 108046779 A CN108046779 A CN 108046779A
Authority
CN
China
Prior art keywords
hollow ball
ceramic
labyrinth
sls
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711375281.9A
Other languages
English (en)
Inventor
吴甲民
刘珊珊
史玉升
文世峰
陈敬炎
陈安南
李晨辉
陈芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201711375281.9A priority Critical patent/CN108046779A/zh
Publication of CN108046779A publication Critical patent/CN108046779A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于快速成型技术领域,并公开了采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,包括如下步骤:(1)根据实际需求设计出复杂结构空心球陶瓷零件的三维模型;(2)将由陶瓷空心球组成的原材料粉体进行预烧;(3)将粘结剂和原材料粉体进行混合,以获得SLS用复合陶瓷空心球成型粉体;(4)将步骤(3)中所得SLS用复合陶瓷空心球成型粉体在SLS设备上进行成型,通过调整SLS成型工艺参数得到满足要求的空心球陶瓷素坯;(5)将步骤(4)中所得空心球陶瓷素坯依次进行脱脂和烧结,得到所需的复杂结构空心球陶瓷零件。本发明将SLS技术和陶瓷空心球材料相结合,可以直接制备出更高孔隙率的多孔复杂结构空心球陶瓷零件。

Description

采用激光选区烧结制备复杂结构空心球陶瓷零件的方法
技术领域
本发明属于快速成型技术领域,更具体地,涉及一种采用激光选区烧结制备复杂结构空心球陶瓷零件的方法。
背景技术
多孔陶瓷将陶瓷材料自身的优异性能和气孔特性有效结合,具有良好的化学稳定性、孔隙率高等优异的性能,作为过滤材料、催化剂载体、保温隔热材料、生物功能材料等,已经广泛应用于化工、能源、生物医药、环境保护和航空航天等诸多领域。目前广泛应用的多孔陶瓷大部分由挤压成型、模板法、发泡法、冷冻干燥法、添加造孔剂等传统方法制备。但是这些传统制备方法难以成型复杂结构的多孔陶瓷,而且制备的多孔陶瓷性能和孔隙可控性不强,急需寻找一种新型的多孔陶瓷制备方法。
增材制造(Additive Manufacturing,AM)技术是一种由零件三维数据驱动直接制造零件的方法,在制备复杂形状的零件方面具有其他工艺不可比拟的优势。而其中的激光选区烧结(Selective laser sintering,SLS)技术由于使用的成型材料十分广泛,非常适用于陶瓷粉体材料的成型,所以广泛用于成型复杂结构陶瓷零件。SLS成型陶瓷的原理决定了该工艺更加适用于成型多孔陶瓷零件,由于粘结剂的存在,在烧结后,陶瓷零件内部可以形成大量微观孔隙结构。但是,目前用SLS技术直接成型的多孔陶瓷零件普遍强度较低,并且无法有效调控多孔陶瓷的综合性能。粉末性能对SLS成型陶瓷零件性能有很大影响,要求用于SLS成型的原材料粉末具有良好的流动性和适宜的粒径分布(一般要求10-150μm),但是传统成型过程中,制备适合于SLS成型的粉体不仅流程复杂,成本也较高。
陶瓷空心球是一种尺寸微小形状为球形的新型空心无机非金属材料,具有尺寸稳定、抗冲击能力强、低导热、热稳定性好以及制备成本低等优点。陶瓷空心球本身具有气孔,在制备多孔陶瓷时,可以有效避免造孔剂等其他材料的加入,不会引入杂质和产生其他缺陷。陶瓷空心球的尺寸和成分可以通过调整空心球的制备工艺来进行设计,从而有效控制多孔陶瓷的孔径大小、气孔率和力学性能等。是一种制备多孔陶瓷的理想材料。但是现有的空心球陶瓷制备工艺大多采用干压法和胶态成型法,这些方法依赖于模具,导致产品开发周期长、加工成本高,不利于产品的更新换代,而且,所能成型的形状也受到了模具加工的限制,难以成型甚至无法成型复杂结构陶瓷坯体。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了采用激光选区烧结制备复杂结构空心球陶瓷零件的方法。直接使用陶瓷空心球作为原材料通过SLS技术制备多孔陶瓷,不仅将SLS直接成型复杂结构陶瓷零件的特点和陶瓷空心球制备高性能多孔陶瓷的优点充分结合,还利用陶瓷空心球的特性解决了SLS原材料的问题,保证了零件的成型性能,并使最终成型的多孔陶瓷性能可控。同时,利用陶瓷空心球本身的气孔,加上SLS成型过程中形成的孔隙,可以制备更高孔隙率的多孔陶瓷。
为实现上述目的,按照本发明,提供了采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,包括如下步骤:
(1)根据实际需求设计出复杂结构空心球陶瓷零件的三维模型;
(2)将由陶瓷空心球组成的原材料粉体进行预烧,以增加陶瓷空心球的强度并保证其具备烧结活性;
(3)将粘结剂和步骤(2)中预烧后的原材料粉体进行混合,以获得SLS用复合陶瓷空心球成型粉体;
(4)将步骤(1)的三维模型导入SLS设备,然后将步骤(3)中所得SLS用复合陶瓷空心球成型粉体在SLS设备上进行成型,通过调整SLS成型工艺参数得到满足要求的空心球陶瓷素坯;
(5)将步骤(4)中所得空心球陶瓷素坯依次进行脱脂和烧结,得到所需的复杂结构空心球陶瓷零件。
优选地,步骤(2)中的陶瓷空心球的材料为氧化物、氮化物、碳化物和硅酸铝盐中的一种或多种,陶瓷空心球的内部为完全中空或者多孔;陶瓷空心球的预烧温度根据空心球具体材料来制定,以保证预烧后陶瓷空心球具有烧结活性和强度,从而保证陶瓷空心球能再次被烧结且成型过程中不易溃散,原材料粉体中陶瓷空心球的平均粒径为10μm-150μm。
优选地,步骤(3)中的混合方法为机械混合法、溶解沉淀法或溶剂蒸发法。
优选地,步骤(3)中的粘结剂为有机粘结剂,所述有机粘结剂为热固性聚合物和/或热塑性聚合物,其中热固性聚合物为环氧树脂和/或热固性酚醛树脂,热塑性聚合物为聚丙烯、聚甲基丙烯酸甲酯、硬脂酸、苯乙烯和尼龙中的一种或多种。
优选地,步骤(4)中的SLS成型工艺参数中,根据具体使用的粘结剂种类和SLS用复合陶瓷空心球成型粉体性质,SLS用复合陶瓷空心球成型粉体的预热温度为30℃~150℃,单层铺粉层厚为0.1mm~0.3mm,激光扫描间距为0.1mm~0.3mm,激光功率为5W~20W,扫描速度为1000mm/s~3000mm/s。
优选地,步骤(5)中的脱脂工艺的参数如下:脱脂温度为400℃~600℃,保温1h~3h,升温速率为0.3℃/min~2℃/min。
优选地,所述步骤(5)中的烧结工艺的参数如下:烧结温度为1450℃~1950℃,保温2h~3h。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1)制备工艺简单,不需要模具,可以直接制备出设计的复杂结构多孔陶瓷;
2)采用陶瓷空心球作为原材料,不仅避免造孔剂等杂质的引入和其他缺陷的产生,还能通过调整空心球的制备工艺来控制其尺寸和成分,从而有效调控空心球陶瓷的气孔大小、孔隙率等综合性能;
3)将SLS技术和陶瓷空心球材料相结合,可以制备更高孔隙率的多孔复杂结构空心球陶瓷零件;
4)空心球球形度高从而流动性好,可控的粒径分布完全满足SLS成型要求,不仅解决了SLS成型原材料的问题,避免了传统SLS成型过程中高成本、复杂的粉体制备工艺,还保证了最终多孔空心球陶瓷的成型性能。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
首先根据实际需求优化设计出多孔陶瓷的三维模型。将平均直径为100μm的Al2O3陶瓷空心球在1200℃进行预烧,使其具有一定的机械强度,同时又具有烧结活性。然后采用机械混合法在预烧过的Al2O3陶瓷空心球中均匀混合粘结剂环氧树脂E12,得到Al2O3/E12复合陶瓷空心球粉体。将所得复合陶瓷空心球粉体在SLS设备上进行成型,预热温度为30℃,铺粉层厚为0.15mm,扫描间距为0.11mm,激光功率为7W,扫描速度为2000mm/s,得到多孔陶瓷素坯。最后对素坯进行脱脂等后处理和烧结得到Al2O3空心球陶瓷。素坯脱脂温度为600℃,保温1h,升温速率为0.3℃/min;烧结温度为1550℃,保温2h。所得Al2O3空心球陶瓷的孔隙率为70%,抗弯强度为21MPa。
实施例2
首先根据实际需求优化设计出多孔陶瓷的三维模型。将平均直径为10μm的SiO2-Al2O3陶瓷空心球在1150℃进行预烧,使其具有一定的机械强度,同时又具有烧结活性。然后采用溶解沉淀法在预烧过的SiO2-Al2O3陶瓷空心球上包覆粘结剂尼龙PA12,得到SiO2-Al2O3/PA12复合陶瓷空心球粉体。将所得复合陶瓷空心球粉体在SLS设备上进行成型,预热温度为150℃,铺粉层厚为0.1mm,扫描间距为0.1mm,激光功率为15W,扫描速度为1000mm/s,得到多孔陶瓷素坯。最后对素坯进行脱脂等后处理和烧结得到莫来石多孔陶瓷。素坯脱脂温度为500℃,保温3h,升温速率为1℃/min;烧结温度为1450℃,保温2.5h。所得莫来石多孔陶瓷的孔隙率为81%,抗压强度为6MPa。
实施例3
首先根据实际需求优化设计出多孔陶瓷的三维模型。将平均直径为150μm的Si3N4陶瓷空心球在1600℃进行预烧,使其具有一定的机械强度,同时又具有烧结活性。然后采用机械混合法在预烧过的Si3N4陶瓷空心球中均匀混合粘结剂环氧树脂E12,得到Si3N4/E12复合陶瓷空心球粉体。将所得复合陶瓷空心球粉体在SLS设备上进行成型,预热温度为50℃,铺粉层厚为0.3mm,扫描间距为0.3mm,激光功率为5W,扫描速度为1800mm/s,得到多孔陶瓷素坯。最后对素坯进行脱脂等后处理和烧结得到Si3N4空心球陶瓷。素坯脱脂温度为600℃,保温2h,升温速率为2℃/min;烧结温度为1750℃,保温2h。所得Si3N4空心球陶瓷的孔隙率为75%,抗压强度为34MPa。
实施例4
首先根据实际需求优化设计出多孔陶瓷的三维模型。将平均直径为50μm的SiC陶瓷空心球在1750℃进行预烧,使其具有一定的机械强度,同时又具有烧结活性。然后采用溶解沉淀法在预烧过的SiC陶瓷空心球上包覆粘结剂尼龙PA12,得到SiC/PA12复合陶瓷空心球粉体。将所得复合陶瓷空心球粉体在SLS设备上进行成型,预热温度为150℃,铺粉层厚为0.15mm,扫描间距为0.17mm,激光功率为20W,扫描速度为2200mm/s,得到多孔陶瓷素坯。最后对素坯进行脱脂等后处理和烧结得到SiC空心球陶瓷。素坯脱脂温度为500℃,保温2h,升温速率为0.5℃/min;烧结温度为1950℃,保温3h。所得SiC空心球陶瓷的孔隙率为76%,抗压强度为9MPa。
实施例5
首先根据实际需求优化设计出多孔陶瓷的三维模型。将平均直径为85μm的Al2O3-ZrO2陶瓷空心球在1300℃进行预烧,使其具有一定的机械强度,同时又具有烧结活性。然后采用溶剂蒸发法在预烧过的Al2O3-ZrO2陶瓷空心球上包覆粘结剂硬脂酸,得到Al2O3-ZrO2/硬脂酸复合陶瓷空心球粉体。将所得复合陶瓷空心球粉体在SLS设备上进行成型,预热温度为69℃,铺粉层厚为0.2mm,扫描间距为0.13mm,激光功率为18W,扫描速度为3000mm/s,得到多孔陶瓷素坯。最后对素坯进行脱脂等后处理和烧结得到Al2O3-ZrO2空心球陶瓷。素坯脱脂温度为400℃,保温2h,升温速率为0.8℃/min;烧结温度为1600℃,保温3h。所得Al2O3-ZrO2空心球陶瓷的孔隙率为78%,抗压强度为12MPa。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,包括如下步骤:
(1)根据实际需求设计出复杂结构空心球陶瓷零件的三维模型;
(2)将由陶瓷空心球组成的原材料粉体进行预烧,以增加陶瓷空心球的强度并保证其具备烧结活性;
(3)将粘结剂和步骤(2)中预烧后的原材料粉体进行混合,以获得SLS用复合陶瓷空心球成型粉体;
(4)将步骤(1)的三维模型导入SLS设备,然后将步骤(3)中所得SLS用复合陶瓷空心球成型粉体在SLS设备上进行成型,通过调整SLS成型工艺参数得到满足要求的空心球陶瓷素坯;
(5)将步骤(4)中所得空心球陶瓷素坯依次进行脱脂和烧结,得到所需的复杂结构空心球陶瓷零件。
2.根据权利要求1所述的采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,步骤(2)中的陶瓷空心球的材料为氧化物、氮化物、碳化物和硅酸铝盐中的一种或多种,陶瓷空心球的内部为完全中空或者多孔;陶瓷空心球的预烧温度根据空心球具体材料来制定,以保证预烧后陶瓷空心球具有烧结活性和强度,从而保证陶瓷空心球能再次被烧结且成型过程中不易溃散,原材料粉体中陶瓷空心球的平均粒径为10μm-150μm。
3.根据权利要求1所述的采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,步骤(3)中的混合方法为机械混合法、溶解沉淀法或溶剂蒸发法。
4.根据权利要求1所述的采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,步骤(3)中的粘结剂为有机粘结剂,所述有机粘结剂为热固性聚合物和/或热塑性聚合物,其中热固性聚合物为环氧树脂和/或热固性酚醛树脂,热塑性聚合物为聚丙烯、聚甲基丙烯酸甲酯、硬脂酸、苯乙烯和尼龙中的一种或多种。
5.根据权利要求1所述的采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,步骤(4)中的SLS成型工艺参数中,根据具体使用的粘结剂种类和SLS用复合陶瓷空心球成型粉体性质,SLS用复合陶瓷空心球成型粉体的预热温度为30℃~150℃,单层铺粉层厚为0.1mm~0.3mm,激光扫描间距为0.1mm~0.3mm,激光功率为5W~20W,扫描速度为1000mm/s~3000mm/s。
6.根据权利要求1所述的采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,步骤(5)中的脱脂工艺的参数如下:脱脂温度为400℃~600℃,保温1h~3h,升温速率为0.3℃/min~2℃/min。
7.根据权利要求1所述的采用激光选区烧结制备复杂结构空心球陶瓷零件的方法,其特征在于,所述步骤(5)中的烧结工艺的参数如下:烧结温度为1450℃~1950℃,保温2h~3h。
CN201711375281.9A 2017-12-19 2017-12-19 采用激光选区烧结制备复杂结构空心球陶瓷零件的方法 Pending CN108046779A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711375281.9A CN108046779A (zh) 2017-12-19 2017-12-19 采用激光选区烧结制备复杂结构空心球陶瓷零件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711375281.9A CN108046779A (zh) 2017-12-19 2017-12-19 采用激光选区烧结制备复杂结构空心球陶瓷零件的方法

Publications (1)

Publication Number Publication Date
CN108046779A true CN108046779A (zh) 2018-05-18

Family

ID=62130012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711375281.9A Pending CN108046779A (zh) 2017-12-19 2017-12-19 采用激光选区烧结制备复杂结构空心球陶瓷零件的方法

Country Status (1)

Country Link
CN (1) CN108046779A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251022A (zh) * 2018-09-19 2019-01-22 清华大学 熔模铸造用氧化铝基多孔陶瓷型壳的选区激光烧结技术
CN109734425A (zh) * 2019-02-20 2019-05-10 华中科技大学 一种复相陶瓷铸型的激光选区快速成型方法及其产品
CN110330344A (zh) * 2019-06-19 2019-10-15 华中科技大学 一种基于激光选区烧结制备高孔隙率氮化硅陶瓷的方法
CN114436661A (zh) * 2020-10-30 2022-05-06 西安增材制造国家研究院有限公司 一种氮化硅陶瓷天线罩及其增材制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048304A1 (en) * 2003-08-27 2005-03-03 Jones Ronald D. Decoratively finished thermoplastic product and method for manufacturing same
CN102241515A (zh) * 2010-05-14 2011-11-16 河北勇龙邦大新材料有限公司 一种轻质、高强、高韧性陶瓷及其制备方法
CN106187195A (zh) * 2016-06-29 2016-12-07 华中科技大学 采用激光选区烧结工艺制备碳化硅陶瓷件的方法
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN106673662A (zh) * 2016-12-26 2017-05-17 上海工程技术大学 一种碳化硅陶瓷零件及其制备方法
CN106946572A (zh) * 2017-03-31 2017-07-14 美科特种材料股份有限公司 一种多材料混合型提高强度的泡沫空心陶瓷材料及其制备方法
US20170274456A1 (en) * 2016-03-24 2017-09-28 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3d) structures using 3d printing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048304A1 (en) * 2003-08-27 2005-03-03 Jones Ronald D. Decoratively finished thermoplastic product and method for manufacturing same
CN102241515A (zh) * 2010-05-14 2011-11-16 河北勇龙邦大新材料有限公司 一种轻质、高强、高韧性陶瓷及其制备方法
US20170274456A1 (en) * 2016-03-24 2017-09-28 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3d) structures using 3d printing
CN106187195A (zh) * 2016-06-29 2016-12-07 华中科技大学 采用激光选区烧结工艺制备碳化硅陶瓷件的方法
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN106673662A (zh) * 2016-12-26 2017-05-17 上海工程技术大学 一种碳化硅陶瓷零件及其制备方法
CN106946572A (zh) * 2017-03-31 2017-07-14 美科特种材料股份有限公司 一种多材料混合型提高强度的泡沫空心陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘顺洪等编著: "《研究生教学用书专业课系列 激光制造技术》", 30 June 2011, 华中科技大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251022A (zh) * 2018-09-19 2019-01-22 清华大学 熔模铸造用氧化铝基多孔陶瓷型壳的选区激光烧结技术
CN109734425A (zh) * 2019-02-20 2019-05-10 华中科技大学 一种复相陶瓷铸型的激光选区快速成型方法及其产品
CN109734425B (zh) * 2019-02-20 2020-10-02 华中科技大学 一种复相陶瓷铸型的激光选区快速成型方法及其产品
CN110330344A (zh) * 2019-06-19 2019-10-15 华中科技大学 一种基于激光选区烧结制备高孔隙率氮化硅陶瓷的方法
CN110330344B (zh) * 2019-06-19 2020-12-18 华中科技大学 一种基于激光选区烧结制备高孔隙率氮化硅陶瓷的方法
CN114436661A (zh) * 2020-10-30 2022-05-06 西安增材制造国家研究院有限公司 一种氮化硅陶瓷天线罩及其增材制造方法

Similar Documents

Publication Publication Date Title
CN108046779A (zh) 采用激光选区烧结制备复杂结构空心球陶瓷零件的方法
CN102898141B (zh) 一种高导热氮化铝陶瓷异形件的制备方法
CN106242507B (zh) 一种直接成型3d陶瓷打印用粘土泥料及其制备方法和应用
CN107042309B (zh) 一种水溶性型芯部件及其制备方法
CN101503298B (zh) 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法
CN106278201B (zh) 一种直接成型3d陶瓷打印用瘠性陶瓷粉体浆料及其制备方法和应用
CN105669208A (zh) 用于激光3d打印的酚醛树脂覆膜陶瓷粉末及其制备方法
CN100491288C (zh) 一种纳米多孔生物陶瓷的制备方法
CN103159454B (zh) 一种纳米多孔气凝胶/纤维复合超级绝热材料及其制备方法
CN106316440A (zh) 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN105254309A (zh) 一种3d打印陶瓷工艺
CN101913878A (zh) 一种制备碳化硅颗粒增强氮化硅复相陶瓷零件的方法
CN105084878A (zh) 一种超高孔隙率针状莫来石多孔陶瓷块体材料的制备方法
WO2017114065A1 (zh) 一种环保铸造材料的制备方法
CN109499561B (zh) 一种增材制造三维二氧化钛光催化材料的方法
CN106633652A (zh) 一种双连续相氧化铝/环氧树脂复合材料的制备方法
CN103667762B (zh) 一种低密度多孔金属材料的制备方法
CN107673760A (zh) 一种梯度结构多孔陶瓷材料的制备方法
Fu et al. The role of CuO–TiO 2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting
CN102417366A (zh) 一种孔梯度碳化硅多孔陶瓷及其制备方法
CN108516814A (zh) 一种低温制备高强度莫来石陶瓷的方法
CN109095930A (zh) 一种氮化硼泡沫材料及其制备方法
CN104817290A (zh) 一种高介电耐高温微波介质复合材料的制备方法
CN108395240A (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN110164677A (zh) 一种制备用于3d打印的铁基软磁复合材料丝材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180518