CN108043393A - 一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用 - Google Patents

一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用 Download PDF

Info

Publication number
CN108043393A
CN108043393A CN201711355577.4A CN201711355577A CN108043393A CN 108043393 A CN108043393 A CN 108043393A CN 201711355577 A CN201711355577 A CN 201711355577A CN 108043393 A CN108043393 A CN 108043393A
Authority
CN
China
Prior art keywords
palladium
carbon
carbon material
catalyst
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711355577.4A
Other languages
English (en)
Other versions
CN108043393B (zh
Inventor
邱介山
姚秀超
于畅
倪林
魏千兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201711355577.4A priority Critical patent/CN108043393B/zh
Publication of CN108043393A publication Critical patent/CN108043393A/zh
Application granted granted Critical
Publication of CN108043393B publication Critical patent/CN108043393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及催化剂制备技术领域,一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用,其中制备方法,包括以下步骤:(1)将醋酸加入到水中,搅拌制得醋酸水溶液,(2)将醋酸钯及碳材料置于醋酸水溶液中,均匀搅拌制得混合溶液,(3)将步骤2制得的混合溶液置于超声波清洗机中超声分散,取出后再搅拌,(4)将步骤3制得混合后的分散液置于旋转蒸发仪中,干燥制得碳材料原位固载钯纳米粒子的钯/碳材料催化剂。本发明方法具有能耗较少、成本低廉、环境友好、易于规模化使用等特点,将制备的钯/碳催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可达到96%‑99.3%,选择性可达到98%‑100%。

Description

一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备 方法及应用
技术领域
本发明涉及一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用,属于催化剂制备技术领域。
背景技术
钯/碳催化剂由于催化活性高、选择性好,在石油化工、精细化工和有机合成中占有十分重要的地位。自从1872年发现钯/碳对苯环上的硝基加氢还原反应具有催化作用以来,钯/碳催化加氢以其具有转化率高、产率高、流程简单和三废少等优点,引起了科研工作者和业界极大的关注。
目前,钯/碳催化剂的制备方法主要有:化学还原法、生物还原法、超声纳米金属负载法、等离子直接还原法和微乳液法等。其中,化学还原法相对简单,成本较低,易于控制,是工业上最广泛使用的一种方法。但是,该方法容易造成活性组分钯烧结,需要消耗大量时间和能源,而且制备的钯/碳催化剂活性组分聚集严重,分散度很低,因而造成其活性较低。生物还原法利用菌体直接还原负载有Pd2+的载体,可获得分散性较好的负载型的钯/碳催化剂。这种方法绿色环保,但是,该方法需要长时间培养和优选菌体,并且成本较高,生产周期较长。超声纳米金属负载法利用超声装置直接对氯钯酸的水溶液进行处理,然后浸渍在活性炭上,可以得到纳米钯/碳催化剂。该方法工艺简单、易于控制,但是,该方法制备过程中会产生不必要的、难以清除的杂质附着在载体上,而且要求特制的超声发生装置,不适合大规模的生产,这可能会限制其实际应用。等离子直接还原法利用辉光放电等离子体处理浸渍有氯钯酸的活性炭,制备钯/碳催化剂。该方法无需还原剂和稳定剂,不过,该方法制备钯颗粒尺寸较大。微乳液法利用乳液体系内部的微小乳滴作为限域的反应器,将钯纳米粒子限域并负载在活性炭表面,制备得到钯/碳催化剂。该方法可以控制钯纳米粒子在3nm以下,但是,乳化剂中有机溶剂的使用致使该方法成本高,污染大、不符合绿色化工的发展理念。
发明内容
为了克服现有技术中存在的不足,本发明目的是提供一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用。该制备方法具有生产工艺简单、设备需求低、生产周期短、成本低廉、溶剂可回收再利用、绿色环保等特点。采用该方法制备的钯/碳催化剂具有钯纳米粒子尺寸小、杂质较少、选择性好、催化效率高、钯纳米粒子结合牢固不易脱落等优点。
为了实现上述发明目的,解决已有技术中所存在的问题,本发明采取的技术方案是:一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法,包括以下步骤:
步骤1、将15-50ml醋酸加入到50-500ml去离子水中,搅拌1-5min,制得醋酸水溶液;
步骤2、将1-50mg醋酸钯及20-1000mg碳材料置于由步骤1制得的醋酸水溶液中,均匀搅拌30-60min,制得混合溶液,所述碳材料选自炭黑、活性炭、碳纳米管、碳纤维或石墨烯中的一种;
步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在50-100min,超声功率控制在200-400W,取出后再搅拌30-60min;
步骤4、将步骤3制得混合后的分散液置于60-90℃旋转蒸发仪中,干燥6-36h,制得碳材料原位固载钯纳米粒子的钯/碳材料催化剂,旋转蒸发仪中回收的醋酸水溶液可以循环使用。
所述方法,制备的碳材料原位固载钯纳米粒子的钯/碳材料催化剂在苯甲醇选择性氧化制得苯甲醛反应中的应用。
本发明有益效果是:一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法,包括以下步骤:(1)将醋酸加入到水中,搅拌制得醋酸水溶液,(2)将醋酸钯及碳材料置于由步骤1制得的醋酸水溶液中,均匀搅拌制得混合溶液,(3)将步骤2制得的混合溶液置于超声波清洗机中超声分散,取出后再搅拌,(4)将步骤3制得混合后的分散液置于旋转蒸发仪中,干燥制得碳材料原位固载钯纳米粒子的钯/碳材料催化剂。与已有技术相比,本发明所制备的钯/碳催化剂的钯颗粒尺寸依据钯的添加量不同可以进行调节,催化剂体系中几乎无杂质存在。将制备的钯/碳催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可达到96%-99.3%,选择性可达到98%-100%,并可以实现5个催化反应周期,活性无降低。使用本方法制备的钯/碳催化剂将有望极大提升选择性氧化、催化加氢和碳-碳偶联反应体系的催化效率和经济效益。
附图说明
图1是实施例1中制备的钯/炭黑催化剂的X射线衍射分析图。
图2是实施例2中制备的钯/碳纳米管催化剂的X射线衍射分析图。
图3是实施例2中制备的钯/碳纳米管催化剂的透射电镜照片图。
图4是实施例2中制备的钯/碳纳米管催化剂催化苯甲醇选择性氧化为苯甲醛的气相色谱图。
图5是实施例3中制备的钯/石墨烯催化剂的X射线衍射分析图。
图6是实施例3中制备的钯/石墨烯的催化剂的透射电镜照片图。
图7是实施例5中制备的钯/活性炭催化剂的X射线衍射分析图。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
步骤1、将50ml醋酸加入到500ml去离子水中,搅拌5min,制得醋酸水溶液;步骤2、将50mg醋酸钯及500mg炭黑,置于由步骤1制得的醋酸水溶液中,均匀搅拌60min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在100min,超声功率控制在400W,取出后再搅拌60min;步骤4、将步骤3制得混合后的分散液置于90℃旋转蒸发仪中,干燥24h,制得炭黑原位固载钯纳米粒子的钯/炭黑催化剂。从样品的XRD图谱,如图1所示可以看到,钯的(111)、(200)、(220)、(311)、(222)特征衍射峰和炭黑的(002)石墨宽峰。将制备的炭黑负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到96%,选择性可以达到98.2%。
实施例2
步骤1、将30ml醋酸加入到350ml去离子水中,搅拌5min,制得醋酸水溶液;步骤2、将40mg醋酸钯及300mg碳纳米管,置于由步骤1制得的醋酸水溶液中,均匀搅拌60min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在100min,超声功率控制在400W,取出后再搅拌60min;步骤4、将步骤3制得混合后的分散液置于60℃旋转蒸发仪中,干燥36h,制得碳纳米管原位固载钯纳米粒子的钯/碳纳米管催化剂。从样品的XRD图谱,如图2所示可以看到,钯的(111)、(200)、(220)、(311)特征衍射峰和碳纳米管的(002)特征峰。从样品的透射电镜照片图,如图3所示可以看到钯颗粒均匀分散在碳纳米管的表面,钯颗粒尺寸大约在1-2nm。将制备的碳纳米管负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到99.3%,选择性可以达到100%,如图4所示。
实施例3
步骤1、将20ml醋酸加入到200ml去离子水中,搅拌5min,制得醋酸水溶液;步骤2、将20mg醋酸钯及150mg石墨烯,置于由步骤1制得的醋酸水溶液中,均匀搅拌60min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在100min,超声功率控制在350W,取出后再搅拌60min;步骤4、将步骤3制得混合后的分散液置于90℃旋转蒸发仪中,干燥18h,制得石墨烯原位固载钯纳米粒子的钯/石墨烯催化剂。从样品的XRD图谱,如图5所示可以看到,钯的(111)、(200)、(220)特征衍射峰和石墨烯的(002)石墨宽峰。从样品的透射电镜照片图,如图6所示可以看到钯颗粒均匀分散在石墨烯的表面,钯颗粒尺寸大约在1-2nm。将制备的石墨烯负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到99.1%,选择性可以达到99.7%。
实施例4
步骤1、将15ml醋酸加入到50ml去离子水中,搅拌1min,制得醋酸水溶液;步骤2、将1mg醋酸钯及20mg碳纤维,置于由步骤1制得的醋酸水溶液中,均匀搅拌30min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在50min,超声功率控制在200W,取出后再搅拌30min;步骤4、将步骤3制得混合后的分散液置于90℃旋转蒸发仪中,干燥6h,制得碳纤维原位固载钯纳米粒子的钯/碳纤维催化剂。将制备的碳纤维负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到96.6%,选择性可以达到98.7%。
实施例5
步骤1、将20ml醋酸加入到180ml去离子水中,搅拌1min,制得醋酸水溶液;步骤2、将20mg醋酸钯及200mg活性炭,置于由步骤1制得的醋酸水溶液中,均匀搅拌30min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在50min,超声功率控制在200W,取出后再搅拌30min;步骤4、将步骤3制得混合后的分散液置于90℃旋转蒸发仪中,干燥12h,制得活性炭原位固载钯纳米粒子的钯/活性炭催化剂。从样品的XRD图谱,如图7所示可以看到,钯的(111)、(200)、(220)、(311)特征衍射峰和活性炭的(002)石墨宽峰。将制备的活性炭负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到97.7%,选择性可达98.6%。
实施例6
步骤1、将30ml醋酸加入到240ml去离子水中,搅拌1min,制得醋酸水溶液;步骤2、将30mg醋酸钯及400mg炭黑,置于由步骤1制得的醋酸水溶液中,均匀搅拌30min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在50min,超声功率控制在200W,取出后再搅拌30min;步骤4、将步骤3制得混合后的分散液置于90℃旋转蒸发仪中,干燥20h,制得炭黑原位固载钯纳米粒子的钯/炭黑催化剂。将制备的炭黑负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到96.1%,选择性可以达针98.2%。
实施例7
步骤1、将20ml醋酸加入到300ml去离子水中,搅拌2min,制得醋酸水溶液;步骤2、将25mg醋酸钯及200mg碳纳米管,置于由步骤1制得的醋酸水溶液中,均匀搅拌40min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在60min,超声功率控制在250W,取出后再搅拌40min;步骤4、将步骤3制得混合后的分散液置于80℃旋转蒸发仪中,干燥15h,制得碳纳米管原位固载钯纳米粒子的钯/碳纳米管催化剂。将制备的碳纳米管负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到97.3%,选择性可以达到99.9%。
实施例8
步骤1、将20ml醋酸加入到360ml去离子水中,搅拌3min,制得醋酸水溶液;步骤2、将35mg醋酸钯及450mg碳纤维,置于由步骤1制得的醋酸水溶液中,均匀搅拌50min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在80min,超声功率控制在300W,取出后再搅拌40min;步骤4、将步骤3制得混合后的分散液置于90℃旋转蒸发仪中,干燥20h,制得碳纤维原位固载钯纳米粒子的钯/碳纤维催化剂。将制备的碳纤维负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到96.4%,选择性可以达到98.7%。
实施例9
步骤1、将20ml醋酸加入到500ml去离子水中,搅拌4min,制得醋酸水溶液;步骤2、将20mg醋酸钯及1000mg炭黑,置于由步骤1制得的醋酸水溶液中,均匀搅拌40min,制得混合溶液,步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在90min,超声功率控制在250W,取出后再搅拌40min;步骤4、将步骤3制得混合后的分散液置于90℃旋转蒸发仪中,干燥20h,制得炭黑原位固载钯纳米粒子的钯/炭黑催化剂。将制备的炭黑负载钯催化剂应用于苯甲醇选择性氧化制备苯甲醛反应中,苯甲醇转化苯甲醛的转化率可以达到96.4%,选择性可以达到98.2%。

Claims (2)

1.一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法,其特征在于包括以下步骤:
步骤1、将15-50 ml醋酸加入到50-500 ml去离子水中,搅拌1-5 min,制得醋酸水溶液;
步骤2、将1-50 mg醋酸钯及20-1000 mg碳材料置于由步骤1制得的醋酸水溶液中,均匀搅拌30-60 min,制得混合溶液,所述碳材料选自炭黑、活性炭、碳纳米管、碳纤维或石墨烯中的一种;
步骤3、将步骤2制得的混合溶液置于超声波清洗机中超声分散,时间控制在50-100min,超声功率控制在200-400 W,取出后再搅拌30-60 min;
步骤4、将步骤3制得混合后的分散液置于60-90 oC旋转蒸发仪中,干燥6-36 h,制得碳材料原位固载钯纳米粒子的钯/碳材料催化剂。
2.根据权利要求1所述方法,制备的碳材料原位固载钯纳米粒子的钯/碳材料催化剂在苯甲醇选择性氧化制得苯甲醛反应中的应用。
CN201711355577.4A 2017-12-16 2017-12-16 一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用 Active CN108043393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711355577.4A CN108043393B (zh) 2017-12-16 2017-12-16 一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711355577.4A CN108043393B (zh) 2017-12-16 2017-12-16 一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN108043393A true CN108043393A (zh) 2018-05-18
CN108043393B CN108043393B (zh) 2021-06-01

Family

ID=62132868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711355577.4A Active CN108043393B (zh) 2017-12-16 2017-12-16 一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108043393B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621960A (zh) * 2018-11-30 2019-04-16 大连理工大学 一种石墨烯负载纳米CoOOH催化剂的制备方法及应用
CN110075830A (zh) * 2019-04-03 2019-08-02 河南师范大学 纳米碳球固载钯纳米催化剂催化苯甲醇氧化反应制备苯甲醛的方法
CN117732465A (zh) * 2024-02-20 2024-03-22 山西安仑化工有限公司 一种钯/炭黑催化剂的连续制备方法及制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214389A1 (en) * 2004-08-20 2008-09-04 Marco Lopez Platinum/Ruthenium Catalyst for Direct Methanol Fuel Cells
CN102166524A (zh) * 2011-03-04 2011-08-31 南京师范大学 原位还原法制备高合金化碳载PdFe纳米催化剂的方法
CN103381365A (zh) * 2013-07-18 2013-11-06 北京林业大学 一种电化学还原co2制取液体燃料的催化剂及其制备方法
CN107213896A (zh) * 2017-06-22 2017-09-29 黑龙江省科学院石油化学研究院 介孔碳负载钯纳米催化剂的原位制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214389A1 (en) * 2004-08-20 2008-09-04 Marco Lopez Platinum/Ruthenium Catalyst for Direct Methanol Fuel Cells
CN102166524A (zh) * 2011-03-04 2011-08-31 南京师范大学 原位还原法制备高合金化碳载PdFe纳米催化剂的方法
CN103381365A (zh) * 2013-07-18 2013-11-06 北京林业大学 一种电化学还原co2制取液体燃料的催化剂及其制备方法
CN107213896A (zh) * 2017-06-22 2017-09-29 黑龙江省科学院石油化学研究院 介孔碳负载钯纳米催化剂的原位制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621960A (zh) * 2018-11-30 2019-04-16 大连理工大学 一种石墨烯负载纳米CoOOH催化剂的制备方法及应用
CN110075830A (zh) * 2019-04-03 2019-08-02 河南师范大学 纳米碳球固载钯纳米催化剂催化苯甲醇氧化反应制备苯甲醛的方法
CN117732465A (zh) * 2024-02-20 2024-03-22 山西安仑化工有限公司 一种钯/炭黑催化剂的连续制备方法及制备装置
CN117732465B (zh) * 2024-02-20 2024-05-03 山西安仑化工有限公司 一种钯/炭黑催化剂的连续制备方法及制备装置

Also Published As

Publication number Publication date
CN108043393B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Wang et al. Sulfurized graphene as efficient metal-free catalysts for reduction of 4-nitrophenol to 4-aminophenol
Qiao et al. Enhanced catalytic reduction of p-nitrophenol on ultrathin MoS2 nanosheets decorated with noble metal nanoparticles
Julkapli et al. Graphene supported heterogeneous catalysts: An overview
Chen et al. Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions
Zhu et al. The construction of nitrogen-doped graphitized carbon–TiO2 composite to improve the electrocatalyst for methanol oxidation
CN108043393A (zh) 一种碳材料原位固载钯纳米粒子的钯/碳材料催化剂的制备方法及应用
Qiu et al. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol
Yang et al. Palladium nanoparticles anchored on three-dimensional nitrogen-doped carbon nanotubes as a robust electrocatalyst for ethanol oxidation
Zhang et al. In situ synthesis of palladium nanoparticle on functionalized graphene sheets at improved performance for ethanol oxidation in alkaline media
CN102698747B (zh) 一种银/石墨烯复合材料与应用
Mohtasham et al. Hydrothermally exfoliated P-doped g-C3N4 decorated with gold nanorods for highly efficient reduction of 4-nitrophenol
Cho et al. Synthesis of cobalt-impregnated carbon composite derived from a renewable resource: Characterization and catalytic performance evaluation
Zhang et al. Oxidization of carbon nanotubes through hydroxyl radical induced by pulsed O2 plasma and its application for O2 reduction in electro-Fenton
Kumar et al. Nitrogen-rich and porous graphitic carbon nitride nanosheet-immobilized palladium nanoparticles as highly active and recyclable catalysts for the reduction of nitro compounds and degradation of organic dyes
Jiang et al. Biochar-supported magnetic noble metallic nanoparticles for the fast recovery of excessive reductant during pollutant reduction
CN108404989B (zh) 一种金团簇/石墨烯复合催化膜的制备方法
Long et al. Ultrafine Pd nanoparticles@ g-C3N4 for highly efficient dehalogenation of chlorinated environmental pollutant: Structure, efficacy and mechanisms
CN105923625B (zh) 一种石墨烯负载均匀单一氧化物量子点的制备方法
CN1184710C (zh) 铂/多壁纳米碳管电催化剂的制备方法
Lee et al. The microwave-assisted ionic liquid nanocomposite synthesis: platinum nanoparticles on graphene and the application on hydrogenation of styrene
Yilmaz et al. Facile and green solvothermal synthesis of palladium nanoparticle-nanodiamond-graphene oxide material with improved bifunctional catalytic properties
Han et al. Construction of Ag/3D-reduced graphene oxide nanocomposite with advanced catalytic capacity for 4-nitrophenol and methylene blue
Kumari et al. Benefits of tubular morphologies on electron transfer properties in CNT/TiNT nanohybrid photocatalyst for enhanced H 2 production
Jiang et al. Three-Dimensional Network Pd-Ni/γ-Al2O3 catalysts for highly active Catalytic Hydrogenation of Nitrobenzene to Aniline under mild conditions
CN103418374B (zh) 一种以堇青石表面涂覆石墨烯为载体的金属催化剂及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant