CN108026629B - 切削工具用硬涂层 - Google Patents

切削工具用硬涂层 Download PDF

Info

Publication number
CN108026629B
CN108026629B CN201680053510.2A CN201680053510A CN108026629B CN 108026629 B CN108026629 B CN 108026629B CN 201680053510 A CN201680053510 A CN 201680053510A CN 108026629 B CN108026629 B CN 108026629B
Authority
CN
China
Prior art keywords
layer
thin layer
thin
thermal expansion
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680053510.2A
Other languages
English (en)
Other versions
CN108026629A (zh
Inventor
朴帝勋
金范植
安承洙
金耕逸
李东烈
安鲜蓉
金永钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korloy Inc
Original Assignee
Korloy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korloy Inc filed Critical Korloy Inc
Publication of CN108026629A publication Critical patent/CN108026629A/zh
Application granted granted Critical
Publication of CN108026629B publication Critical patent/CN108026629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明的硬涂层通过PVD法在切削工具用基材的表面上形成,所述硬涂层的特征在于包括下述薄膜层,所述薄膜层的总厚度为0.5~10μm,且整体组成为Al1‑a‑bTiaMebN(0.2<a≤0.6,0<b≤0.15),其中,Me是热膨胀系数大于2.7×10‑6/℃且小于9.35×10‑6/℃的氮化物构成元素,其中,所述薄膜层具有下述结构,其中薄层A、B和C的纳米多层结构重复层叠至少一次,薄层B布置在薄层A和薄层C之间,所述薄膜层满足kA>kB>kC的关系,其中,kA是薄层A的热膨胀系数,kB是薄层B的热膨胀系数,并且kC是薄层C的热膨胀系数,薄层A的组成为Ti1‑aAlaN(0.3≤a<0.7),薄层B的组成为Ti1‑y‑zAlyMezN(0.3≤y<0.7,0.01≤z<0.5),并且薄层C的组成为Al1‑xTixN(0.3≤x<0.7)。

Description

切削工具用硬涂层
技术领域
本发明涉及切削工具用硬涂层,并且更具体地涉及包括构成纳米多层结构的AlTiMeN层的硬涂层,该硬涂层即使在切削过程期间发生相分解,也可以减轻热裂纹的发生,并因此可以适用于中低速断续切削。
背景技术
为了开发高硬度切削工具材料,自1980年代晚期就已经提出了基于TiN的各种多层膜体系。
例如,当通过交替重复地层叠厚度为几纳米的TiN或VN而形成多层膜时,尽管单层的晶格常数不同,但在层之间形成匹配界面以形成所谓的具有唯一晶格常数的超晶格,并且因此可以实现至少两倍于各个单层膜的一般硬度的高硬度。已经进行了各种尝试将这种现象应用于切削工具用薄膜。
用于这种超晶格涂层的增强机制包括Koehler模型、Hall-Petch关系和相干应变模型等,并且,在材料A和B交替沉积时,这些增强机制通过控制材料A和B的晶格常数和弹性模量的差异以及层压周期来增加硬度。
最近,例如,如专利文献1(韩国专利公开第2013-0123238号)所公开的那样,已经提出了具有各种纳米多层结构的切削工具用硬涂层,其中具有各种组成的氮化物如AlTiN、TiAlN、AlTiMeN等(其中,Me是金属元素)交替层叠以实现与单层膜相比显著改善的物理性能。
然而,诸如AlTiN、TiAlN或AlTiMeN等氮化物薄膜具有以下限制:在切削过程期间由于高温和高压而发生相分解成AlN、TiN或MeN,并且由于相分解的AlN或TiN等的热膨胀系数的差异过大,在诸如中低速断续铣削加工等切削加工过程的初期容易出现热裂纹,从而缩短了工具寿命。
发明内容
技术问题
为了解决传统技术的上述限制而提供本发明,并且本发明的目的在于提供一种切削工具用硬涂层,其包括如AlTiN、TiAlN或AlTiMeN等氮化物层,并且解决了由于热裂纹导致的工具寿命缩短的限制。
技术方案
作为解决上述限制的手段,本发明提供了一种硬涂层,其通过PVD法在切削工具用基材的表面上形成,该硬涂层的特征在于包括下述薄膜层,该薄膜层的总厚度为0.5~10μm,且整体组成为Al1-a-bTiaMebN(0.2<a≤0.6,0<b≤0.15),其中,Me是热膨胀系数大于2.7×10-6/℃且小于9.35×10-6/℃的氮化物构成元素,其中,所述薄膜层具有下述结构,其中薄层A、B和C的纳米多层结构重复层叠至少一次,薄层B布置在薄层A和薄层C之间,所述薄膜层满足kA>kB>kC的关系,其中,kA是薄层A的热膨胀系数,kB是薄层B的热膨胀系数,并且kC是薄层C的热膨胀系数,薄层A的组成为Ti1-aAlaN(0.3≤a<0.7),薄层B的组成为Ti1-y-zAlyMezN(0.3≤y<0.7,0.01≤z<0.5),并且薄层C的组成为Al1-xTixN(0.3≤x<0.7)。
这里,薄层A、薄层B和薄层C的热膨胀系数可以是单个元素氮化物各自的固有热膨胀系数乘以相应的组成比得到的值。
另外,Me可以包括选自Si和第4a、5a和6a族元素中的一种或多种。
另外,Me可以包括选自Si、Zr、Hf、V、Ta和Cr中的一种或多种。
另外,Me氮化物的热膨胀系数与AlN和TiN的热膨胀系数之差可以为至少1.0×10-6/℃。
有益效果
本发明的硬涂层包含中的AlTiMeN氮化物层形成为多层纳米结构体,并且构成该多层纳米结构体的薄层A、薄层B和薄层C被配置为使得薄层B设置在薄层A和薄层C之间,并且在薄层的热膨胀系数之间,薄层B的热膨胀系数满足kA>kB>KC的关系。因此,即使在切削过程中出现相分解,也可以显著减少热裂纹的发生,并且因此在中低速断续铣削加工等切削过程期间,可以显著延长工具寿命。
附图说明
图1是用于示出本发明的一个实施方式的纳米结构的视图。
图2是用于示出本发明的另一个实施方式的纳米结构的视图。
具体实施方式
下文将基于本发明的示例性优选实例来更详细地描述本发明,不过,本发明并不限于以下实例。
为了解决包括TiAlN、AlTiN和AlTiMeN等层的切削工具用硬涂层在切削过程中由于相分解导致的热裂纹的限制,发明人进行了深入的研究。结果,发明人发现,如图1所示,由纳米多层结构形成整体组成为Al1-a-bTiaMebN(0.2<a≤0.6,0<b≤0.15)的薄层,所述纳米多层结构由通过交替重复地层叠AlTiMeN层设置在AlTiN薄层和TiAlN薄层之间的结构形成,并且当将热膨胀系数在AlTiMeN和AlTiN的热膨胀系数之间的氮化物用于AlTiMeN层时,切削过程期间由相分解导致的热裂纹的发生显著减少,且可延长工具寿命。由此,发明人做出了本发明。
本发明的硬涂层通过PVD法形成在切削工具用基材的表面上,并且该硬涂层的特征在于包括下述薄膜层,该薄膜层的总厚度为0.5~10μm,且整体组成为Al1-a-bTiaMebN(0.2<a≤0.6,0<b≤0.15),其中,Me是热膨胀系数大于2.7×10-6/℃且小于9.35×10-6/℃的氮化物构成元素,其中,所述薄膜层具有下述结构,其中薄层A、B和C的纳米多层结构重复层叠至少一次,薄层B布置在薄层A和薄层C之间,所述薄膜层满足kA>kB>kC的关系,其中,kA是薄层A的热膨胀系数,kB是薄层B的热膨胀系数,并且kC是薄层C的热膨胀系数,薄层A的组成为Ti1-aAlaN(0.3≤a<0.7),薄层B的组成为Ti1-y-zAlyMezN(0.3≤y<0.7,0.01≤z<0.5),并且薄层C的组成为Al1-xTixN(0.3≤x<0.7)。
当本发明的硬涂层的厚度为0.5μm以下时,难以表现出薄膜中固有的特性,并且当厚度大于10μm时,考虑到由于通过PVD法形成的薄膜的制造特性而使薄膜中积聚的压缩应力与薄膜的厚度和时间周期成比例的事实,该厚度有利地为0.5~10μm。
另外,Me含量(b)有利地为0.15以下,因为当不添加Me时,难以减轻AlTiN和TiAlN之间的热膨胀系数差异,并且当Me含量(b)大于0.15时,由于在切削过程中产生的高温所致的相分解氮化物中,MeN本身的硬度低于TiN的硬度,所以薄膜的整体耐磨性降低。
在薄层A中,Al含量(a)有利地为0.3~0.7,因为当Al含量(a)小于0.3时,原子半径小于Ti的Al被替换并且Al的可溶解量减少,由此薄膜的硬度和耐磨性降低,在切削过程中在高温气氛下TiO2氧化物的形成变得容易,并且薄膜内部的Ti元素扩散到外部,因此由于Ti元素的耗尽,高温硬度可能会降低,并且当Al含量(a)大于0.7时,由于六方相B4结构的形成而使脆性增大,因此耐磨性降低,并且工具寿命可能会缩短。
在薄层B中,Al含量(y)有利地为0.3~0.7,因为当Al含量(a)小于0.3时,原子半径小于Ti的Al被替换并且Al的可溶解量减少,由此薄膜的硬度和耐磨性降低,在切削过程中在高温气氛下TiO2氧化物的形成变得容易,并且薄膜内部的Ti元素扩散到外部,因此由于Ti元素的消耗,高温硬度可能会降低,并且当Al含量(a)大于0.7时,由于六方相B4结构的形成而使脆性增大,因此耐磨性降低,并且工具寿命可能会缩短。
另外,Me含量(z)有利地为0.01~0.5,因为:当Me含量(z)小于0.01时,由于渗透或置换溶液增强效应,晶粒细化效果和硬度增大效果不令人满意,并且由于在切削过程中产生的高温引起的相分解MeN氮化物的含量,减轻相分解AlN和TIN之间的热膨胀系数差异的优点不令人满意;并且当Me含量(z)大于0.5时,由于高温所致的相分解氮化物中自身强度低于TiN的MeN的含量增大,因此存在耐磨性减小的趋势。
下表1显示了各个金属元素的氮化物的热膨胀系数。
[表1]
类别 热膨胀系数(×10<sup>-6</sup>/℃) 硬度(GPa)
AlN 2.7 12
TiN 9.35 23
ZrN 7.24 27
HfN 6.9 16.3
VN 8.7 14.2
NbN 10.1 13.3
TaN 8 21
CrN 3.5 22
Si<sub>3</sub>N<sub>4</sub> 3.2 17
上表1中的热膨胀系数值取自“耐火碳化物和氮化物手册(handbook ofrefractory carbide and nitrides,Hugh O,Pierson)”。
另外,Me有利地是氮化物形成元素,使得当将Me加入到AlTiN中时,其热膨胀系数有利地落入2.7×10-6/℃和9.35×10-6/℃之间,如上表1所示,其是AlN和TiN的热膨胀系数。
另外,Me有利地是热膨胀系数与AlTiN或TiAlN的热膨胀系数之差为至少1.0×10-6/℃的氮化物形成元素。然而,由于添加Me时形成的氮化物的微观结构得到细化并且可改善薄膜的物理性质,所以合意的是,Me可以考虑添加Me时的热膨胀系数和由于添加Me而改善薄膜特性的程度来进行选择。
例如,Me可以包括选自Si和第4a、5a和6a族元素中的一种或多种。更有利地,Me可以包括选自Si、Zr、Hf、V、Ta和Cr中的一种或多种。
实施例
在本发明中,当如图1和2所示进行交替重复层叠(其中添加Si、Zr、Hf、V、Ta、Cr或Si或者同时添加V和Si作为AlTiMeN薄膜中包含的Me元素)时,可制备出具有以下层叠纳米结构的硬涂层,其中薄层C位于薄层A和薄层B之间,并且为了与这些实例进行比较,制备了相应比较例的具有如下表的层叠结构的硬涂层。
此时,使用型号为APMT1604PDSR-MM的WC-10重量%Co硬质合金来形成其上形成有硬涂层的基板。
另外,构成硬涂层的纳米多层中的各层均通过作为物理气相沉积(PVD)的电弧离子镀法形成,从而形成具有图1和图2所示的截面结构的硬涂层。
具体而言,在本发明的实施例中,通过使用AlTi、TiAl和AlTiMe弧靶在由WC-10重量%Co形成的硬质合金基板上进行电弧离子镀,并且此时,初始真空压力为8.5×10-5Torr以下,并且将N2注入为反应气体。另外,使用以下方法:将反应气体压力设定为50mTorr以下,将涂布温度设定为400~500℃,且涂布过程中施加-20V~-150V的基板偏压。根据使用的设备的特性和条件,涂布条件可以设定为与本发明的实施例不同。
施加了以下多层薄膜结构,其中通过上述涂布方法使层叠纳米结构的硬涂层按照以下顺序依次层叠:TiAlN-AlTiMeN-AlTiN(实施例),TiAlN-AlTiMeN-AlTiN-AlTiMeN(实施例),TiAlN-AlTiN(比较例),TiAlN-AlTiN-TiAlN-AlTiMeN(比较例)。
本发明实施例的硬涂层通过以15~20nm的厚度层叠上述纳米多层的各个单元层13~20次来完成,使得硬涂膜的厚度落在2.7~3.4μm的范围内。
同时,如果需要,在根据本发明的实施例形成的硬涂层上显然可以形成具有各种形状的薄膜。另外,本发明的实施例的硬涂层使用物理气相沉积法(PVD),并且可以具有约10μm的最大薄膜厚度。
[表2]
含Zr的A-B-C三层重复层叠结构
Figure GDA0001597694130000061
[表3]
含Zr的A-B-C-B四层重复层叠结构
Figure GDA0001597694130000071
[表4]
含Zr的其他层叠结构
Figure GDA0001597694130000081
[表5]
不含AlTiMeN的比较例
Figure GDA0001597694130000082
[表6]
含Hf的A-B-C三层重复层叠结构
Figure GDA0001597694130000091
[表7]
含Hf的A-B-C-B四层重复层叠结构
[表8]
含Hf的其他层叠结构
Figure GDA0001597694130000111
[表9]
含V的A-B-C三层重复层叠结构
Figure GDA0001597694130000121
[表10]
含V的A-B-C-B四层重复层叠结构
[表11]
含V的其他层叠结构
Figure GDA0001597694130000141
[表12]
含Nb的A-B-C三层重复层叠结构
Figure GDA0001597694130000151
[表13]
含Nb的A-B-C-B四层重复层叠结构
[表14]
含Ta的A-B-C三层重复层叠结构
[表15]
含Ta的A-B-C-B四层重复层叠结构
Figure GDA0001597694130000181
[表16]
含Ta的其他层叠结构
Figure GDA0001597694130000191
[表17]
含Cr的A-B-C三层重复层叠结构
Figure GDA0001597694130000201
[表18]
含Cr的A-B-C-B四层重复层叠结构
Figure GDA0001597694130000211
[表19]
含Si的A-B-C三层重复层叠结构
Figure GDA0001597694130000221
[表20]
含Si的A-B-C-B四层重复层叠结构
Figure GDA0001597694130000222
[表21]
含V和Si的层叠结构
Figure GDA0001597694130000231
切削性能测试结果
对于如上所述形成的硬涂层,进行耐热裂纹测试、耐铣削磨损测试和耐铣削冲击测试,并评估切削性能。
此时,所使用的I/S型号是APMT1604PDSR-MM,并且所使用的切削机型号是AMC3063HS。
(1)耐热性评估条件
-要切削的工件:STS316(100×200×300)
-切削速度:120m/分钟
-每齿进给量:0.25mm/齿
-切削深度:10mm
-径向切削深度:5mm
-采用干式切削,并且在加工780cm后批量比较工具尖部的状态。
(2)耐铣削磨损特性评估条件
-要切削的工件:SCM440(100×200×300)
-切削速度:250m/分钟
-每齿进给量:0.1mm/齿
-切削深度:10mm
-径向切削深度:5mm
-采用干式切削。
(3)耐铣削冲击特性评估条件
-要切削的工件:SCM440 3组隔膜板(100×200×300)
-切削速度:180m/分钟
-每齿进给量:0.15mm/齿
-切削深度:10mm
-径向切削深度:5mm
-采用干式切削。
上述切削性能测试结果示出在下表中。
[表22]
含Zr的薄膜测试结果
Figure GDA0001597694130000241
[表23]
含Hf的薄膜测试结果
Figure GDA0001597694130000251
[表24]
含V的薄膜测试结果
Figure GDA0001597694130000252
[表25]
含Nb的薄膜测试结果
Figure GDA0001597694130000261
[表26]
含Ta的薄膜测试结果
Figure GDA0001597694130000262
[表27]
含Cr的薄膜测试结果
Figure GDA0001597694130000271
[表28]
含Si的薄膜测试结果
Figure GDA0001597694130000272
[表29]
含V和Si的薄膜测试结果
Figure GDA0001597694130000273
如表22所示,在不包含AlTiZrN层的比较例5的情况下,可以发现,不仅薄膜的硬度低,而且热裂纹数目为8,超过了其他实施例或比较例。因此,可以发现,物理性质比其他硬涂层相对更差,特别是在耐铣削磨损性方面。
另外,可以发现,虽然比较例1-1~1-4和1-6~1-8包括AlTiZrN层,但热裂纹数目仍较大,耐铣削冲击性非常低,因此硬涂层的整体物理性质低于本发明的实施例1-1~1-5。
类似地,如表23所示,在包含AlTiHfN层的本发明实施例2-1~2-5的情况下,可以发现热裂纹数目少于比较例2-1~2-4和2-6~2-8,或整体物理性质(包括耐铣削磨损性和耐铣削冲击性)显著改善。
这种趋势同样出现在含V、Ta、Cr、Si、V和Si的硬涂层中。
同时,如表25所示,可以发现,当使用包含热膨胀系数不在TiAlN和AlTiN的热膨胀系数之间的Nb的AlTiNbN层时,不仅出现大量的热裂纹,而且表现出低耐铣削磨损性和低耐铣削冲击性。
另外,根据本发明的实施例,可以发现,包括含Zr、Ta、Si、V或Si的AlTiMeN层的硬涂层表现出更高的物理性质,因此,这些组分可以更有利地使用。
也就是说,如通过实施例和比较例证实的,本发明的硬涂层可以保持高耐铣削磨损性和耐铣削冲击性,同时显著减少热裂纹,因此可以有助于改善切削工具的使用寿命。

Claims (3)

1.一种硬涂层,其通过PVD法在切削工具用基材的表面上形成,所述硬涂层的特征在于包括下述薄膜层,所述薄膜层的总厚度为0.5~10μm,且整体组成为Al1-a-bTiaMebN,其中0.2<a≤0.6,0<b≤0.15,其中,Me是热膨胀系数大于2.7×10-6/℃且小于9.35×10-6/℃的氮化物构成元素,其中,所述薄膜层具有下述结构,其中薄层A、B和C的纳米多层结构重复层叠至少一次,薄层B布置在薄层A和薄层C之间,所述薄膜层满足kA>kB>kC的关系,其中,kA是薄层A的热膨胀系数,kB是薄层B的热膨胀系数,并且kC是薄层C的热膨胀系数,薄层A的组成为Ti1-aAlaN,其中0.3≤a<0.7,薄层B的组成为Ti1-y-zAlyMezN,其中0.3≤y<0.7,0.01≤z<0.5,并且薄层C的组成为Al1-xTixN,其中0.3≤x<0.7,其中,Me氮化物的热膨胀系数与AlN和TiN的热膨胀系数之差为至少1.0×10-6/℃。
2.如权利要求1所述的硬涂层,其中,Me包括选自Si和第4a、5a和6a族元素中的一种或多种。
3.如权利要求1所述的硬涂层,其中,Me包括选自Si、Zr、Hf、V、Ta和Cr中的一种或多种。
CN201680053510.2A 2015-09-18 2016-08-29 切削工具用硬涂层 Active CN108026629B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0132111 2015-09-18
KR1020150132111A KR101753104B1 (ko) 2015-09-18 2015-09-18 절삭공구용 경질피막
PCT/KR2016/009561 WO2017047949A1 (ko) 2015-09-18 2016-08-29 절삭공구용 경질피막

Publications (2)

Publication Number Publication Date
CN108026629A CN108026629A (zh) 2018-05-11
CN108026629B true CN108026629B (zh) 2020-01-31

Family

ID=58289181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680053510.2A Active CN108026629B (zh) 2015-09-18 2016-08-29 切削工具用硬涂层

Country Status (5)

Country Link
US (1) US10738376B2 (zh)
KR (1) KR101753104B1 (zh)
CN (1) CN108026629B (zh)
DE (1) DE112016004255T5 (zh)
WO (1) WO2017047949A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583493B2 (en) * 2015-04-27 2020-03-10 Tungaloy Corporation Coated cutting tool
EP3228726A1 (en) * 2016-04-08 2017-10-11 Seco Tools Ab Coated cutting tool
ES2767356T3 (es) * 2017-05-19 2020-06-17 Walter Ag Herramienta de corte de metal con revestimiento multicapa
KR102064172B1 (ko) 2017-09-01 2020-01-09 한국야금 주식회사 내마모성과 인성이 우수한 경질피막
US11370033B2 (en) * 2018-03-07 2022-06-28 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing the same
US11298748B2 (en) 2018-03-07 2022-04-12 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing the same
JP2022512808A (ja) 2018-10-26 2022-02-07 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーン Tiおよび/またはSiでマイクロ合金されたバナジウム窒化アルミニウム(VAIN)
KR102112084B1 (ko) * 2018-11-30 2020-05-18 한국야금 주식회사 절삭공구용 경질피막
MX2021009078A (es) * 2019-02-01 2021-09-08 Oerlikon Surface Solutions Ag Pfaeffikon Revestimiento de herramientas de alto rendimiento para el endurecimiento por presion de metales laminados de acero de ultra alta resistencia revestidos y no revestidos.
DE102019103363A1 (de) * 2019-02-11 2020-08-13 Oerlikon Surface Solutions Ag Beschichtetes Werkzeug für die Bearbeitung von schwer zu bearbeitenden Materialien
WO2020213259A1 (ja) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 切削工具
KR102172454B1 (ko) * 2020-08-24 2020-10-30 주식회사 와이지-원 다층 피복 절삭 소재, 그 제조 방법 및 이를 포함하는 기계가공용 절삭 공구 인서트
KR102244795B1 (ko) * 2021-03-11 2021-04-27 주식회사 와이지-원 우수한 윤활성과 내마모성을 가지는 다층 피복 절삭 소재, 그 제조 방법 및 이를 포함하는 기계가공용 절삭 공구 인서트
CN113355630B (zh) * 2021-08-10 2021-10-29 北京航天天美科技有限公司 铝合金表面硬度涂层的制备方法
JP7319600B6 (ja) * 2021-12-10 2023-08-18 株式会社タンガロイ 被覆切削工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034859A (ja) * 2001-07-23 2003-02-07 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP4132931B2 (ja) * 2002-04-11 2008-08-13 株式会社神戸製鋼所 硬質皮膜被覆工具およびその製造方法
JP2013146778A (ja) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp 耐摩耗性および耐熱衝撃性にすぐれた複合部材
CN103334082A (zh) * 2013-06-09 2013-10-02 华南理工大学 一种切削刀具材料表面的Ti/TiN/TiAlN复合镀层及其制备方法
CN203360554U (zh) * 2013-06-09 2013-12-25 华南理工大学 一种切削刀具材料表面的复合镀层
CN104044308A (zh) * 2013-03-12 2014-09-17 三菱综合材料株式会社 表面包覆切削工具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10262174B4 (de) 2001-07-23 2007-03-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Harte verschleissfeste Schicht, Verfahren zum Bilden derselben und Verwendung
JP2005082822A (ja) * 2003-09-05 2005-03-31 Ion Engineering Research Institute Corp 硬質厚膜被膜およびその形成方法
JP4346020B2 (ja) * 2003-12-24 2009-10-14 株式会社不二越 硬質皮膜被覆工具
JP4453902B2 (ja) 2004-02-12 2010-04-21 日立ツール株式会社 硬質皮膜及び硬質皮膜被覆工具
JP4824989B2 (ja) 2005-11-02 2011-11-30 株式会社神戸製鋼所 硬質皮膜
KR100876366B1 (ko) * 2008-04-24 2008-12-31 한국야금 주식회사 절삭공구용 다층경질 박막
KR101351845B1 (ko) * 2012-05-02 2014-01-16 한국야금 주식회사 절삭공구용 경질피막
JP6270131B2 (ja) * 2014-01-22 2018-01-31 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034859A (ja) * 2001-07-23 2003-02-07 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP4132931B2 (ja) * 2002-04-11 2008-08-13 株式会社神戸製鋼所 硬質皮膜被覆工具およびその製造方法
JP2013146778A (ja) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp 耐摩耗性および耐熱衝撃性にすぐれた複合部材
CN104044308A (zh) * 2013-03-12 2014-09-17 三菱综合材料株式会社 表面包覆切削工具
CN103334082A (zh) * 2013-06-09 2013-10-02 华南理工大学 一种切削刀具材料表面的Ti/TiN/TiAlN复合镀层及其制备方法
CN203360554U (zh) * 2013-06-09 2013-12-25 华南理工大学 一种切削刀具材料表面的复合镀层

Also Published As

Publication number Publication date
KR101753104B1 (ko) 2017-07-05
CN108026629A (zh) 2018-05-11
US20180245201A1 (en) 2018-08-30
KR20170034013A (ko) 2017-03-28
WO2017047949A1 (ko) 2017-03-23
US10738376B2 (en) 2020-08-11
DE112016004255T5 (de) 2018-06-14

Similar Documents

Publication Publication Date Title
CN108026629B (zh) 切削工具用硬涂层
EP2072636B1 (en) Method of making a coated cutting tool
CN104302805B (zh) 切削工具用硬质涂层
JP4960211B2 (ja) 被覆された切削工具
JP6486885B2 (ja) コーティングされた切断ツール
KR101284766B1 (ko) 절삭공구용 경질피막
JP2017042906A (ja) 強断続切削加工においてすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
DE102010039035A1 (de) Schneidwerkzeug mit mehrlagiger Beschichtung
EP2987890B1 (en) A coated cutting tool
US20170152602A1 (en) Laminated hard film and cutting tool
WO2016047585A1 (ja) 複合焼結体切削工具
JP5099500B2 (ja) 表面被覆切削工具
KR101351844B1 (ko) 절삭공구용 경질피막
JP5817998B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
KR102395885B1 (ko) 절삭공구용 경질피막
KR20230073856A (ko) 내마모성과 인성이 우수한 경질피막을 포함하는 절삭공구
US20210404052A1 (en) Hard coating for cutting tool
KR102074132B1 (ko) 절삭공구용 경질피막
JP5569740B2 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP5569739B2 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP2012143829A (ja) 表面被覆wc基超硬合金製切削工具
JP2011195846A (ja) 表面被覆wc基超硬合金製切削工具
KR102175284B1 (ko) 절삭공구용 경질피막 및 이의 제조방법
JP2010207930A (ja) 表面被覆切削工具
CN117620238A (zh) 涂覆切削工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant