CN108011124A - 基于固态纤维的电池系统和形成其的方法 - Google Patents

基于固态纤维的电池系统和形成其的方法 Download PDF

Info

Publication number
CN108011124A
CN108011124A CN201711031402.8A CN201711031402A CN108011124A CN 108011124 A CN108011124 A CN 108011124A CN 201711031402 A CN201711031402 A CN 201711031402A CN 108011124 A CN108011124 A CN 108011124A
Authority
CN
China
Prior art keywords
battery system
solid state
state battery
fibre
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711031402.8A
Other languages
English (en)
Inventor
D·帕克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of CN108011124A publication Critical patent/CN108011124A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • H01M4/765Tubular type or pencil type electrodes; tubular or multitubular sheaths or covers of insulating material for said tubular-type electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • B64C3/185Spars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/26Construction, shape, or attachment of separate skins, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/022Electrodes made of one single microscopic fiber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明涉及基于固态纤维的电池系统和形成其的方法。固态电池系统和形成固态电池系统的方法。固态电池系统具有形成为图案的多个纤维电池单元。每个纤维电池单元具有纤维内芯,其可以是碳石墨纤维、碳纳米管纤维、硼纳米管纤维或氮化硼纳米管纤维并且用作阳极。另外,纤维电池单元具有在纤维内芯上形成的电解质层和在电解质层上形成的外导电层(阴极)。第一端子电连接至多个纤维电池单元的每一个的纤维内芯。第二端子电连接至多个纤维电池单元的每一个的外导电层。固态电池系统可以被并入用于交通工具比如航空器的复合零件。

Description

基于固态纤维的电池系统和形成其的方法
技术领域
本公开内容涉及基于固态纤维的电池系统和形成这样的基于固态纤维的电池系统的方法,并且更具体地涉及可以被并入潜在(underlying)交通工具比如航空器的结构的基于固态纤维的电池系统。
背景技术
电动马达驱动的航空器的设计中的持续存在的问题是解决相对低的功率重量比,其由在飞行期间操作电动马达所需的重电池所产生。常规电池例如锂电池是重的并且相对于化石燃料其能量/功率密度相对低。正在研究可能能够增加所得的功率重量比的其它能量存储技术,但是其对于具体实施还不够成熟。
已经做出一些尝试以形成包括整体式电池(integral battery)的航空器结构。然而,这样的结构通常增加包括常规电池的内层,其具有例如在外部支持层之间的平面结构,其增加了这种结构的重量并且降低了这种结构的结构完整性。
因此,对于克服上述问题的能量存储系统存在需要。
发明内容
在一个方面中,固态电池系统包括形成为图案的多个纤维电池单元。每个纤维电池单元具有纤维内芯,在纤维内芯上形成的电解质层,和在电解质层上形成的外导电层。进一步地,第一端子电连接至多个纤维电池单元的每一个的纤维内芯。最后,第二端子电连接至多个纤维电池单元的每一个的外导电层。
在进一步的实施例中,纤维内芯可以由碳石墨纤维、碳纳米管纤维、硼纳米管纤维或氮化硼纳米管纤维形成。电解质层可以由固体电解质形成。固体电解质可以是玻璃态材料比如锂离子导电材料或结晶材料比如β-氧化铝(boron-Alumina)。外导电层可以由镁插层化合物、锂插层化合物或第1族或第2族金属形成。在一个进一步的实施例中,多个纤维电池单元可以形成为具有至少一排纤维电池单元的平面构造。在可选的进一步的实施例中,多个纤维电池单元形成为网格或编织图案。
固态电池系统可以被并入用于交通工具的复合零件中,比如用于航空器的纤维机翼蒙皮或用于航空器的纤维翼梁。
在第二方面中,描述了形成固态电池的方法。电解质层在纤维芯上形成。外导电层在电解质层上形成以形成纤维电池单元。多个纤维电池单元形成为图案。第一端子电连接至每个纤维电池单元的纤维芯。最后,第二端子电连接至每个纤维电池单元的外导电层。在进一步的实施例中,在电解质层形成之后的固化期间施加电场和/或磁场至电解质层。
在第三方面中,描述了形成固态电池的方法。电解质层在纤维芯上形成以形成部分纤维电池单元。多个部分纤维电池单元形成为图案。第一端子电连接至每个纤维电池单元的纤维芯。最后,外导电层在每个部分纤维电池单元的电解质层上形成。在进一步的实施例中,在电解质层形成之后的固化期间施加电场和/或磁场至电解质层。
已经讨论的特征、功能和优势可以在各个实施例中独立地实现或可以在又其它实施例中组合实现,参考以下描述和附图可见其进一步细节。
附图说明
结合附图将最好地理解以下详细描述——其通过实施例的方式给出并且不旨在将本公开内容唯一地限于其,其中:
图1A是根据本公开内容的实施例用于电池系统的固态纤维电池单元的侧面透视图,和图1B是其横截面图;
图2是根据本公开内容的实施例用于电池系统的固态纤维电池单元的线性阵列的图;
图3是根据本公开内容的一个实施例形成用于电池系统的固态纤维电池单元系统的方法的流程图;和
图4是根据本公开内容的另一实施例形成用于电池系统的固态纤维电池的方法的流程图。
具体实施方式
在本公开内容中,遍及附图相同的参考数字指相同的元件,其图解了本公开内容的各种示例性实施例。
碳石墨纤维、碳纳米管纤维、硼纳米管纤维和氮化硼纳米管纤维和由其形成的结构具有高硬度、高抗拉强度、低重量、高耐化学性、高温度耐受性和低热膨胀。这使得由碳石墨纤维、碳纳米管纤维、硼纳米管纤维和氮化硼纳米管纤维形成的复合结构普遍用于航空航天、土木工程、军事和赛车运动应用中。
本公开内容描述了由具有同轴结构的多个纤维电池单元形成的固态电池系统,其包括用作电池阳极的内部纤维芯,在内部碳芯上形成的固体电解质层,和在固体电解质层上形成并且用作电池阴极的外导电层。通过至少部分地由多个这样的纤维电池单元(例如,平行的或编织图案)形成复合纤维结构,所得的结构将具有复合结构的以上叙述的全部益处(因为每个纤维电池单元的芯是碳纤维或硼纤维)并且还将用作能量存储设备(电池)。这与以层形成的结构——常规的电池插入其内层中——有很大不同,因为本公开内容的固态电池系统有助于所得结构的结构完整性,而不增加重量和降低其结构完整性,如将常规的电池并入层状结构的内层时会发生。尤其重要的是,当所得结构是用于航空器的复合零件例如机翼蒙皮或翼梁时确保维持零件的结构完整性。另外,每个纤维电池单元的同轴结构提供比平面结构显著更高的表面积,和包括由同轴纤维电池单元形成的电池的结构零件将具有比包括整体式内部平面电池的结构零件高得多的能量存储能力。
现参考图1A和1B,纤维电池单元100包括纤维内芯110、电解质层120和外导电层130。纤维内芯110用作纤维电池单元100的阳极并且可以由碳石墨纤维、碳纳米管纤维、硼纳米管纤维或氮化硼纳米管纤维组成。电解质层120用作纤维电池单元100的电解质并且是固体电解质(即,快离子导体)。例如,电解质层120可以是玻璃态固体电解质比如玻璃态锂离子导电玻璃态材料,或结晶固体电解质比如β-氧化铝。还可以使用其它类型的固体电解质。外导电层130用作纤维电池单元100的阴极并且可以是镁插层化合物或锂插层化合物或第1族或第2族金属。可选地,外导电层130可以是与基体材料——比如环氧树脂、玻璃或热塑性聚合物——混合的镁插层化合物或锂插层化合物或第1族或第2族金属。纤维电池单元100包括在电解质层120上的外导电层130(阴极),电解质层120转而在导电纤维内芯110(阳极)上,并且由此形成允许电能存储在其中的电池单元结构。
现参考图2,多个纤维电池单元100的固态电池系统200形成为图案。具体而言,显示纤维电池单元100形成为可以被并入结构零件例如航空器机翼或翼梁的大体平面线性构造。固态电池系统200包括三行纤维电池单元100,但是行数是任意的并且可以基于具体应用选择。显示的列数仅仅是示例性的并且实际数目取决于具体应用。另外,图2中显示纤维电池单元100并排对齐。在其它实施例中,纤维电池单元100可以以可选的图案布置,例如成束以形成期望的形状,以网格或形成柔性织物的编织图案布置,或编织的以形成圆柱形管或鞘。具体而言,纤维电池单元100的布置可以形成为几乎任何尺寸或形状的束,提供优于常规电池的优势。固态电池系统200包括电连接至每个纤维电池单元100的纤维内芯110(即,电池单元阳极)的第一导电端子250和电连接至每个纤维电池单元100的外导电层130(即,电池单元阴极)的第二导电端子260。连接至每个电池单元100的阳极的第一导电端子250用作固态电池系统200的负端子,并且连接至每个电池单元100的阴极的第二导电端子260用作固态电池系统200的正端子。当被并入由碳纤维层或硼纤维层形成的结构时,固态电池系统200提供维持该结构的所有特质——例如高硬度、高抗拉强度和低重量——的能量存储系统,因为每个电池单元100包括纤维内芯110,纤维内芯110也包括这样的特质。
现参考图3,显示了描述根据第一种方法形成固态电池系统的流程图300。首先,在步骤310,在适合于期望应用的预定长度的导电纤维阳极上形成固体电解质。如上所讨论,导电纤维阳极可以是碳石墨纤维、碳纳米管纤维、硼纳米管纤维或氮化硼纳米管纤维。固体电解质可以是玻璃态固体电解质或结晶固体电解质。通过加热玻璃态固体电解质至其拉伸温度(drawing temperature)并且然后拉伸导电纤维阳极通过加热的玻璃态固体电解质,可以在导电纤维阳极上形成电解质层。本领域普通技术人员将容易认识到,存在在导电纤维阳极上形成电解质层的其它方式。接下来,在任选的步骤320,在电解质层的硬化(固化)期间施加电场和/或磁场。这将对齐电解质层中的插层位点和减小阳极和阴极之间的离子平均自由程,从而通过减小其内电阻提高纤维电池单元的性能。在步骤330,外导电层在固体电解质上形成。如上所讨论,外导电层可以是镁插层化合物或锂插层化合物或第1族或第2族金属。在该情况下,外导电层可以以任何常规的方式——例如通过溅射、电镀、拉伸、成形等——在固体电解质上形成。可选地,外导电层130可以是与基体材料——比如环氧树脂、玻璃或热塑性聚合物——混合的镁插层化合物或锂插层化合物或第1族或第2族金属。在此,外导电层也可以以常规的方式——例如铸造、烧结、真空树脂注入、整合(integration)为预浸料树脂等——在固体电解质上形成。在步骤330完成之后,实现如图1中显示的纤维电池单元100。最后,在步骤340,多个纤维电池单元(比如图1中的纤维电池单元100)形成为图案,该图案可以例如形成结构元件的一部分。具体而言,在该步骤中,多个纤维电池单元100可以形成为适合于包括在期望的结构零件中的固态电池系统(如图2中显示的固态电池系统200)。这需要将多个纤维电池单元100粘附到合适的图案(例如线性图案,其中纤维电池单元并排布置并且分层堆叠,如图2中所显示),并且将正端子连接至每个纤维电池单元100的阴极和将负端子连接至每个纤维电池单元100的阳极。一旦完成了固态电池系统,在其产生期间其接着可以被并入期望的结构零件,暴露端子用于连接至外部电路,用于固态电池系统的充电和使用。
现参考图4,显示了描述根据第二种方法形成固态电池系统的流程图400。首先,在步骤410,以关于上述第一种方法的步骤310相同的方式在适合于期望应用的预定长度的导电纤维阳极上形成固体电解质。步骤410的结果将是部分线性纤维电池单元。接下来,在任选的步骤420,由于关于上述第一种方法的步骤320以上讨论的相同原因,在电解质层的硬化(固化)期间施加电场和/或磁场。在步骤430,多个部分纤维电池单元(即,每个覆盖有电解质层的导电纤维阳极)形成为可以形成结构元件的一部分的图案。该步骤与上述步骤340类似,但是部分纤维电池单元(即,不具有外导电层)形成在一起,而不是如第一种方法中的完整的纤维电池单元。具体而言,将多个部分纤维电池单元粘附成合适的图案(例如,线性图案,其中部分纤维电池单元并排布置并且分层堆叠),并且将负端子连接至每个部分纤维电池单元的阳极(即,至导电纤维阳极)。最后,在步骤440,外导电层在每个部分纤维电池单元的固体电解质层上形成。如上所讨论,外导电层可以由与基体材料——比如环氧树脂、玻璃或热塑性聚合物——混合的活性组分——比如镁插层化合物或锂插层化合物——组成。可选地,第1族或第2族金属可以与这样的基体材料混合。外导电层可以以任何常规的方式——例如铸造、烧结、真空树脂注入、整合为预浸料树脂等——形成。而且,可以将正端子连接至外导电层,尽管,在该方法中,外导电层以可允许外表面本身用作正端子的方式形成。一旦施加了外导电层(和增加了正端子,如果必要),固态电池系统完成并且然后可以在其产生期间并入期望的结构零件,如关于上述第一种方法所讨论。
此外,本公开内容包括根据下述条款的实施例:
条款1.一种固态电池系统(200),其包括:
形成为图案的多个纤维电池单元(100),每个纤维电池单元(100)包括:
纤维内芯(110);
在纤维内芯(110)上形成的电解质层(120);和
在电解质层(120)上形成的外导电层(130);
第一端子(250),其电连接至多个纤维电池单元的每一个的纤维内芯(110);和
第二端子(260),其电连接至多个纤维电池单元的每一个的外导电层(130)。
条款2.根据条款1所述的固态电池系统,其中所述纤维内芯(110)由碳石墨纤维或碳纳米管纤维形成。
条款3.根据条款1所述的固态电池系统,其中所述纤维内芯(110)由硼纳米管纤维或氮化硼纳米管纤维形成。
条款4.根据条款1所述的固态电池系统,其中所述电解质层(120)由固体电解质形成。
条款5.根据条款4所述的固态电池系统,其中所述固体电解质是玻璃态材料。
条款6.根据条款5所述的固态电池系统,其中所述玻璃态材料是锂离子导电材料。
条款7.根据条款4所述的固态电池系统,其中所述固体电解质是结晶材料。
条款8.根据条款7所述的固态电池系统,其中所述结晶材料是β-氧化铝。
条款9.根据条款1所述的固态电池系统,其中所述外导电层(130)包括镁插层化合物。
条款10.根据条款1所述的固态电池系统,其中所述外导电层(130)包括锂插层化合物。
条款11.根据条款1所述的固态电池系统,其中所述外导电层(130)包括第1族或第2族金属化合物。
条款12.根据条款1所述的固态电池系统,其中所述多个纤维电池单元(100)形成为具有至少一行纤维电池单元的平面构造。
条款13.根据条款1所述的固态电池系统,其中所述多个纤维电池单元(100)形成为网格或编织图案。
条款14.根据条款1所述的固态电池系统,其中所述图案是用于交通工具的复合零件的一部分。
条款15.根据条款1所述的固态电池系统,其中所述图案是用于航空器的机翼蒙皮的一部分。
条款16.根据条款1所述的固态电池系统,其中所述图案是用于航空器的翼梁的一部分。
条款17.一种形成固态电池(200)的方法(300),其包括下述步骤:
在纤维内芯(110)上形成(310)电解质层(120);
在所述电解质层(120)上形成(330)外导电层(130)以形成纤维电池单元(100);
使多个纤维电池单元(100)形成(340)为图案;
电连接第一端子(250)至所述每个纤维电池单元(100)的纤维内芯(110);和
电连接第二端子(260)至所述每个纤维电池单元(100)的外导电层(130)。
条款18.根据条款17所述的方法,进一步包括在所述电解质层(120)形成之后的固化期间施加(320)电场和/或磁场至所述电解质层(120)的步骤。
条款19.一种形成固态电池(200)的方法(400),其包括下述步骤:
在纤维内芯(110)上形成(410)电解质层(120)以形成部分纤维电池单元;
使多个部分纤维电池单元形成(430)为图案;
电连接第一端子(250)至所述每个纤维电池单元的纤维芯;和
在每个部分纤维电池单元的电解质层(120)上形成(440)外导电层(130)。
条款20.根据条款19所述的方法,进一步包括在所述电解质层(120)形成之后的固化期间施加(420)电场和/或磁场至所述电解质层(120)的步骤。
虽然已经具体显示并且参考优选的实施例和其各个方面描述了本公开内容,但是本领域普通技术人员将认识到可以做出各种变化和改变,而不背离公开内容的精神和范围。所附权利要求旨在被解释为包括本文描述的实施例、上面提到的替代方案和所有其等价形式。

Claims (15)

1.一种固态电池系统(200),其包括:
形成为图案的多个纤维电池单元(100),每个纤维电池单元(100)包括:
纤维内芯(110);
在所述纤维内芯(110)上形成的电解质层(120);和
在所述电解质层(120)上形成的外导电层(130);
第一端子(250),其电连接至所述多个纤维电池单元的每一个的所述纤维内芯(110);和
第二端子(260),其电连接至所述多个纤维电池单元的每一个的所述外导电层(130)。
2.根据权利要求1所述的固态电池系统(200),其中所述纤维内芯(110)由碳石墨纤维或碳纳米管纤维形成。
3.根据权利要求1或2所述的固态电池系统(200),其中所述纤维内芯(110)由硼纳米管纤维或氮化硼纳米管纤维形成。
4.根据权利要求1或2所述的固态电池系统(200),其中所述电解质层(120)由固体电解质形成。
5.根据权利要求4所述的固态电池系统(200),其中所述固体电解质是锂离子导电材料。
6.根据权利要求4所述的固态电池系统(200),其中所述固体电解质是结晶材料。
7.根据权利要求6所述的固态电池系统(200),其中所述结晶材料是β-氧化铝。
8.根据权利要求1或2所述的固态电池系统(200),其中所述外导电层(130)包括镁插层化合物。
9.根据权利要求1或2所述的固态电池系统(200),其中所述外导电层(130)包括锂插层化合物。
10.根据权利要求1或2所述的固态电池系统(200),其中所述外导电层(130)包括第1族或第2族金属化合物。
11.根据权利要求1或2所述的固态电池系统(200),其中所述图案选自:用于交通工具的复合零件的一部分、用于航空器的机翼蒙皮的一部分和用于航空器的翼梁的一部分。
12.一种形成固态电池(200)的方法(300),其包括下述步骤:
在纤维内芯(110)上形成(310)电解质层(120);
在所述电解质层(120)上形成(330)外导电层(130)以形成纤维电池单元(100);
使多个纤维电池单元(100)形成(340)为图案;
电连接第一端子(250)至每个所述纤维电池单元(100)的所述纤维内芯(110);和
电连接第二端子(260)至每个所述纤维电池单元(100)的所述外导电层(130)。
13.根据权利要求12所述的方法,进一步包括在所述电解质层(120)形成之后的固化期间施加(320)电场和/或磁场至所述电解质层(120)的步骤。
14.一种形成固态电池(200)的方法(400),其包括下述步骤:
在纤维内芯(110)上形成(410)电解质层(120)以形成部分纤维电池单元;
使多个部分纤维电池单元形成(430)为图案;
电连接第一端子(250)至每个所述纤维电池单元的所述纤维芯;和
在每个所述部分纤维电池单元的所述电解质层(120)上形成(440)外导电层(130)。
15.根据权利要求14所述的方法,进一步包括在所述电解质层(120)形成之后的固化期间施加(420)电场和/或磁场至所述电解质层(120)的步骤。
CN201711031402.8A 2016-11-01 2017-10-30 基于固态纤维的电池系统和形成其的方法 Pending CN108011124A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/340,480 US10522874B2 (en) 2016-11-01 2016-11-01 Solid state fiber-based battery system and method of forming same
US15/340,480 2016-11-01

Publications (1)

Publication Number Publication Date
CN108011124A true CN108011124A (zh) 2018-05-08

Family

ID=60481680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711031402.8A Pending CN108011124A (zh) 2016-11-01 2017-10-30 基于固态纤维的电池系统和形成其的方法

Country Status (4)

Country Link
US (1) US10522874B2 (zh)
JP (1) JP7383369B2 (zh)
CN (1) CN108011124A (zh)
GB (1) GB2558369B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109760819A (zh) * 2018-12-24 2019-05-17 中国兵器工业导航与控制技术研究所 一种航空器及航空器的结构电池部件
CN112751073A (zh) * 2020-12-02 2021-05-04 电子科技大学 结构一体化电池及其制备方法、带电池的设备
CN112839868A (zh) * 2018-10-10 2021-05-25 想像航空有限公司 带有集成动力单元的飞机翼梁以及相关联的系统和方法
CN113328129A (zh) * 2021-05-26 2021-08-31 电子科技大学 一种电池、电池骨架、结构化电池、结构件及生产工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304737B1 (ko) 2018-05-31 2021-09-24 주식회사 엘지에너지솔루션 리튬 이차 전지 제조방법
US20230402614A1 (en) * 2022-06-10 2023-12-14 Honda Motor Co., Ltd. Current collector for lithium battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372387B1 (en) * 1998-03-31 2002-04-16 Canon Kabushiki Kaisha Secondary battery having an ion conductive member and manufacturing process thereof
US20050271796A1 (en) * 2001-09-12 2005-12-08 Neudecker Bernd J Thin-film electrochemical devices on fibrous or ribbon-like substrates and method for their manufacture and design
US20120315539A1 (en) * 2008-05-07 2012-12-13 Nanocomp Technologies, Inc. Nanostructure composite batteries and methods of making same from nanostructure composite sheets
CN103765660A (zh) * 2011-08-31 2014-04-30 旭硝子株式会社 锂离子传导性固体电解质的制造方法以及锂离子二次电池
CN104145355A (zh) * 2011-12-21 2014-11-12 罗纳德·罗杰斯基 能量存储装置
US20150064603A1 (en) * 2013-08-28 2015-03-05 Florida State University Research Foundation, Inc. Flexible electrical devices and methods
CN104737335A (zh) * 2012-09-03 2015-06-24 丝沃锐斯康普有限公司 一种电池半电池、一种电池及其制造
JP2015520923A (ja) * 2012-05-08 2015-07-23 バテル・メモリアル・インスティテュートBattelle Memorial Institute 構造用途のための多機能セル
US20160293993A1 (en) * 2015-04-03 2016-10-06 Intel Corporation Constrained anode fiber for rechargeable battery

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101335B2 (ja) 1984-11-26 1994-12-12 株式会社日立製作所 全固体リチウム電池
JP3019326B2 (ja) 1989-06-30 2000-03-13 松下電器産業株式会社 リチウム二次電池
US5283136A (en) 1992-06-03 1994-02-01 Ramot University Authority For Applied Research And Industrial Development Ltd. Rechargeable batteries
US5989300A (en) 1997-06-05 1999-11-23 Eshraghi; Ray R. Process of producing electrochemical products or energy from a fiberous electrochemical cell
US20030068559A1 (en) 2001-09-12 2003-04-10 Armstrong Joseph H. Apparatus and method for the design and manufacture of multifunctional composite materials with power integration
JP2012523677A (ja) 2009-04-13 2012-10-04 アプライド マテリアルズ インコーポレイテッド 金属化カーボンナノチューブおよびナノファイバを含む複合材料
US20100330419A1 (en) * 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes
WO2011098793A1 (en) * 2010-02-09 2011-08-18 Bae Systems Plc Component including a rechargeable battery
US9831043B2 (en) * 2010-09-09 2017-11-28 California Institute Of Technology Electrochemical energy storage systems and methods
US8686484B2 (en) 2011-06-10 2014-04-01 Everspin Technologies, Inc. Spin-torque magnetoresistive memory element and method of fabricating same
DE102011084019A1 (de) 2011-10-05 2013-04-11 Varta Microbattery Gmbh Batterie mit faser- oder fadenförmiger Elektrode
EP2768059B1 (en) * 2011-10-13 2016-05-18 LG Chem, Ltd. Cable-type secondary battery
US9692039B2 (en) * 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
JP6017872B2 (ja) * 2012-07-26 2016-11-02 小島プレス工業株式会社 リチウムイオン二次電池及びその製造方法並びに製造装置
JP2015534209A (ja) * 2012-08-23 2015-11-26 ナノコンプ テクノロジーズ,インク. ナノ構造複合カソードを持つ電池
JP2014143183A (ja) * 2012-12-27 2014-08-07 Showa Denko Kk マグネシウムイオン二次電池用正極活物質及びその製造方法、マグネシウムイオン二次電池用正極並びにマグネシウムイオン二次電池
KR20170078461A (ko) 2015-12-29 2017-07-07 숭실대학교산학협력단 섬유형 이차 전지 및 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372387B1 (en) * 1998-03-31 2002-04-16 Canon Kabushiki Kaisha Secondary battery having an ion conductive member and manufacturing process thereof
US20050271796A1 (en) * 2001-09-12 2005-12-08 Neudecker Bernd J Thin-film electrochemical devices on fibrous or ribbon-like substrates and method for their manufacture and design
US20120315539A1 (en) * 2008-05-07 2012-12-13 Nanocomp Technologies, Inc. Nanostructure composite batteries and methods of making same from nanostructure composite sheets
CN103765660A (zh) * 2011-08-31 2014-04-30 旭硝子株式会社 锂离子传导性固体电解质的制造方法以及锂离子二次电池
CN104145355A (zh) * 2011-12-21 2014-11-12 罗纳德·罗杰斯基 能量存储装置
JP2015520923A (ja) * 2012-05-08 2015-07-23 バテル・メモリアル・インスティテュートBattelle Memorial Institute 構造用途のための多機能セル
CN104737335A (zh) * 2012-09-03 2015-06-24 丝沃锐斯康普有限公司 一种电池半电池、一种电池及其制造
US20150064603A1 (en) * 2013-08-28 2015-03-05 Florida State University Research Foundation, Inc. Flexible electrical devices and methods
US20160293993A1 (en) * 2015-04-03 2016-10-06 Intel Corporation Constrained anode fiber for rechargeable battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839868A (zh) * 2018-10-10 2021-05-25 想像航空有限公司 带有集成动力单元的飞机翼梁以及相关联的系统和方法
CN109760819A (zh) * 2018-12-24 2019-05-17 中国兵器工业导航与控制技术研究所 一种航空器及航空器的结构电池部件
CN112751073A (zh) * 2020-12-02 2021-05-04 电子科技大学 结构一体化电池及其制备方法、带电池的设备
CN112751073B (zh) * 2020-12-02 2024-01-05 电子科技大学 结构一体化电池及带电池的设备
CN113328129A (zh) * 2021-05-26 2021-08-31 电子科技大学 一种电池、电池骨架、结构化电池、结构件及生产工艺

Also Published As

Publication number Publication date
US20180123165A1 (en) 2018-05-03
GB2558369A (en) 2018-07-11
US10522874B2 (en) 2019-12-31
JP2018107119A (ja) 2018-07-05
JP7383369B2 (ja) 2023-11-20
GB2558369B (en) 2019-12-18
GB201717495D0 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
CN108011124A (zh) 基于固态纤维的电池系统和形成其的方法
Wu et al. In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface
US8790818B2 (en) Multifunctional composite
US20130316236A1 (en) Anode Material Including Nanofibers For A Lithium Ion Cell
CN107112595A (zh) 用于电池装置的非晶阴极材料
KR20140009497A (ko) 바이폴라 전고체 전지
JP2003017127A (ja) 電池システム
KR101404063B1 (ko) 무선 충전이 가능한 케이블형 이차전지
JP2016076359A (ja) 全固体リチウム二次電池および蓄電装置
CN103620850A (zh) 具有新型结构的电极组件和使用其的二次电池
US9865880B2 (en) Component including a rechargeable battery
KR101404062B1 (ko) 무선 충전이 가능한 케이블형 이차전지
CN102142532B (zh) 一种钠硫电池用基于立体编织的碳硫复合电极
KR101815212B1 (ko) 직물형 섬유기반 구조전지 복합재
Ahmadi et al. Investigating the impact of thickness, calendering and channel structures of printed electrodes on the energy density of LIBs-3D simulation and validation
Park et al. Effect of cell pressure on the electrochemical performance of all‐solid‐state lithium batteries with zero‐excess Li metal anode
Yamada et al. High Cathode Loading and Low‐Temperature Operating Garnet‐Based All‐Solid‐State Lithium Batteries–Material/Process/Architecture Optimization and Understanding of Cell Failure
Bouton et al. A structural battery with carbon fibre electrodes balancing multifunctional performance
KR102707193B1 (ko) 내부 단락 평가용 전지 셀 및 이를 이용한 전지 셀의 내부 단락 평가 방법
KR20160060171A (ko) 전고체배터리용 양극과, 그 제조방법, 및 이를 포함하는 전고체배터리
CN115966652B (zh) 一种点阵式碳纤维结构电池及其制备方法
EP2535970A1 (en) Component including a rechargeable battery
US11515539B2 (en) Volume-expansion accommodable anode-free solid-state battery
CN112652737B (zh) 基于碳纤维的复合材料结构电池及手机外壳
US10153494B2 (en) Electrode having electrically actuated fibers for electron conduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180508