CN107994084A - 一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法 - Google Patents

一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法 Download PDF

Info

Publication number
CN107994084A
CN107994084A CN201711187129.8A CN201711187129A CN107994084A CN 107994084 A CN107994084 A CN 107994084A CN 201711187129 A CN201711187129 A CN 201711187129A CN 107994084 A CN107994084 A CN 107994084A
Authority
CN
China
Prior art keywords
sputtering
metal composite
composite electrode
magnetron sputtering
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711187129.8A
Other languages
English (en)
Inventor
王荣飞
周志文
杨宇
杨杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201711187129.8A priority Critical patent/CN107994084A/zh
Publication of CN107994084A publication Critical patent/CN107994084A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明涉及一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法,属于太阳能电池电极材料制备技术领域。本发明基于磁控溅射技术,首先在一定溅射条件下,采用直流溅射在硅衬底上生长一定厚度的金属薄膜,然后再继续生长一定厚度的铝薄膜,最后将样品放入快速退火炉中进行退火处理,得到欧姆接触的金属复合电极。该方法具有膜厚容易控制,沉积速率快,制备简单,工艺稳定,线性接触良好等特点,为硅太阳能电池电极的制备提供了比较好的途径。

Description

一种基于磁控溅射技术联合退火工艺制备金属复合电极的 方法
技术领域
本发明涉及太阳能电池电极材料制备技术领域,特别是涉及一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法。
背景技术
太阳能是可再生的清洁能源,不产生任何的环境污染。在太阳能的有效利用当中,硅太阳能电池是近些年来发展最快,最具活力的研究领域。在硅太阳能电池制备过程中,电极的制备成本约占整个器件成本的10%左右,因此降低电极的制备成本,可以有效降低器件的制备成本。铝元素在地壳中的含量仅次于氧和硅,居第三位,是地壳中含量最丰富的金属元素。因此选用铝电极作为太阳能电池的背电极,可以极大的降低器件制备成本。
太阳能电池的背电极可以采用铝电极,但是铝与硅结合时,容易产生“尖楔”现象,即铝薄膜在接触界面处,某些点会像针尖一样扎到Si衬底中,如果尖楔长度较长,pn结就容易短路;尤其是在Si<100>面上时,尖楔更容易垂直扩展,从而使得pn结失效。因此,针对这种现象,需要对硅铝接触界面进行优化。其中,在硅和铝之间插入薄层金、银、铂、铜等金属薄膜,并进行退火,从而在接触界面处形成铝合金,这样就可以有效避免“尖楔”现象;同时退火消除了薄膜残余应力,使得薄膜结晶性更好,降低了接触势垒,因此可以形成良好的欧姆接触电极。采用丝网印刷银导电浆料作为银背电极,同样可以避免这个问题,但是银浆含银量基本需达到70%以上,且印刷背面电极的网版膜厚基本在15μm以上,因此增加了器件的制备成本。与上述工艺进行比较,基于磁控溅射技术联合退火工艺制备金属复合电极具有制备过程简单、工艺稳定、成本低等特点,有利于太阳能电池的产业化发展。
发明内容
本发明目的在于提供一种成本低、工艺简单、制备工艺稳定且易于产业化的基于磁控溅射技术联合退火工艺制备金属复合电极的方法。
基于本发明设计的复合电极是很好的欧姆接触电极,可用于硅太阳能电池,并且可以在一定程度上解决其他制备方法存在的制备过程复杂、制备成本高、工艺不稳定等问题。
本发明通过下列技术方案实现:
(1)清洗:将硅片依次用丙酮和无水乙醇超声清洗15~20min,接着置于体积比为1:1的H2SO4和H2O2的混合溶液中煮沸3~5min,然后再置于3%~5%的氢氟酸溶液中浸泡90~120s,最后用去离子水清洗2~3次,用氮气吹干;
(2)预溅射清除金属靶材表面杂质:将步骤(1)得到的硅片放入磁控溅射样品室内,将样品托转至非溅射位。在溅射腔体真空度≤3.0×10-4Pa下,预先启动金属靶材直流溅射,工艺条件为:纯度5N的Ar气为工作气体,气体流量为10~ 20sccm,溅射气压为3~5Pa,溅射功率为60~80W,溅射时间为5~10min; (3)磁控溅射制备金属薄膜:在步骤(2)完成后,设置溅射参数,将样品托转至溅射位,采用直流溅射技术制备金属薄膜,工艺条件为:5N的Ar气为工作气体,流量为10~20sccm,溅射气压为3~8Pa,溅射功率为60~90W,溅射时间为60~200s,获得60~100nm的金属薄膜;
(4)磁控溅射制备金属薄膜:步骤(3)中,金属薄膜可以是金,银,铂,铜中的一种或几种;
(5)预溅射清除铝靶材表面杂质:在步骤(3)完成后,将样品托转至非溅射位,预先启动铝靶直流溅射,工艺条件为:纯度5N的Ar气为工作气体,气体流量为10~15sccm,溅射气压为1~5Pa,溅射功率为80~100W,溅射时间为6~ 8min;
(6)磁控溅射铝薄膜:在步骤(5)完成后,设置好溅射参数,将样品托转至溅射位,采用直流溅射技术制备铝薄膜,工艺条件为:5N的Ar气为工作气体,流量为10~15sccm,溅射气压为5~7Pa,溅射功率为80~100W,溅射时间为 80~125s,获得300~350nm的铝薄膜;
(7)退火:将步骤(6)得到的样品放入快速退火炉中,在氮气保护下,升温至 300~500℃,保温30~60min后,即可获得接触电阻率为0.09~0.3Ω·cm-2的欧姆接触金属复合电极。
附图说明
图1为本发明所述基于磁控溅射技术联合退火工艺制备金属复合电极的流程示意图;
图2为本发明实施实例1制备的银铝复合电极的I-V曲线图;
图3为本发明实施实例2制备的银铝复合电极的I-V曲线图;
图4为本发明实施实例3制备的银铝复合电极的I-V曲线图。

Claims (5)

1.一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法,其特征在于包括如下步骤:
(1)清洗:使用标准硅片清洗步骤除去硅基底上的污染物,再置于3%~5%的氢氟酸溶液中浸泡90~120 s,最后用去离子水清洗2~3次,用氮气吹干;
(2)磁控溅射金属薄膜:将步骤(1)得到的硅片放入磁控溅射样品室内,采用直流溅射技术制备金属薄膜,工艺参数为:5N的Ar气为工作气体,流量为10~20 sccm,溅射气压为3~8 Pa,溅射功率为60~90 W,溅射时间为60~200 s,获得60~100 nm的金属薄膜;
(3)磁控溅射铝薄膜:在步骤(2)得到的样品上采用直流溅射技术制备铝薄膜,工艺参数为:5N的Ar气为工作气体,流量为10~15 sccm,溅射气压为5~7 Pa,溅射功率为80~100W,溅射时间为80~125 s,获得300~350 nm的铝薄膜;
(4)退火:将步骤(3)得到的样品放入快速退火炉中,在氮气保护下,升温至300~500℃,保温30~60 min后,即可获得欧姆接触的金属复合电极。
2.根据权利要求1所述的一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法,其特征在于步骤(2)中,溅射金属薄膜前,溅射腔体真空度≤3.0×10-4 Pa,并且预先启动金属靶材直流溅射,通过预溅射清除靶材表面杂质,具体条件如下:纯度为5N的Ar气为工作气体,气体流量为10~20 sccm,溅射气压为3~5 Pa,溅射功率为60~80 w,溅射时间为5~10 min。
3.根据权利要求1所述的一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法,其特征在于步骤(2)中,金属薄膜可以是金,银,铂,铜中的一种或几种。
4.根据权利要求1所述的一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法,其特征在于步骤(3)中,溅射铝薄膜前,需要预先启动铝靶材直流溅射,通过预溅射清除靶材表面杂质,具体条件如下:纯度5N的Ar气为工作气体,气体流量为10~15 sccm;溅射气压为1~5Pa;射功率为80~100 w;溅射时间为6~8min。
5.根据权利要求1所述的一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法,其特征在于:所制备的金属复合电极的电流-电压特性曲线成线性关系,是典型的欧姆接触,接触电阻率大小为0.09~0.3 Ω·cm2
CN201711187129.8A 2017-11-24 2017-11-24 一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法 Pending CN107994084A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711187129.8A CN107994084A (zh) 2017-11-24 2017-11-24 一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711187129.8A CN107994084A (zh) 2017-11-24 2017-11-24 一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法

Publications (1)

Publication Number Publication Date
CN107994084A true CN107994084A (zh) 2018-05-04

Family

ID=62031799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711187129.8A Pending CN107994084A (zh) 2017-11-24 2017-11-24 一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法

Country Status (1)

Country Link
CN (1) CN107994084A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969071A (zh) * 2020-08-25 2020-11-20 常州时创能源股份有限公司 一种金属化方法和太阳能电池
CN114540767A (zh) * 2022-01-24 2022-05-27 河南农业大学 柔性铝电极薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714591A (zh) * 2009-11-10 2010-05-26 大连理工大学 一种硅光电二极管的制作方法
CN101950769A (zh) * 2010-06-29 2011-01-19 上海大学 一种CdTe薄膜太阳能电池背电极的制备方法
CN103383917A (zh) * 2013-06-26 2013-11-06 北京燕东微电子有限公司 一种低电压二极管及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714591A (zh) * 2009-11-10 2010-05-26 大连理工大学 一种硅光电二极管的制作方法
CN101950769A (zh) * 2010-06-29 2011-01-19 上海大学 一种CdTe薄膜太阳能电池背电极的制备方法
CN103383917A (zh) * 2013-06-26 2013-11-06 北京燕东微电子有限公司 一种低电压二极管及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969071A (zh) * 2020-08-25 2020-11-20 常州时创能源股份有限公司 一种金属化方法和太阳能电池
CN114540767A (zh) * 2022-01-24 2022-05-27 河南农业大学 柔性铝电极薄膜的制备方法
CN114540767B (zh) * 2022-01-24 2024-01-23 河南农业大学 柔性铝电极薄膜的制备方法

Similar Documents

Publication Publication Date Title
EP0179547B1 (en) Thin film solar cell with free tin on transparent conductor
US8728922B2 (en) Method for producing monocrystalline N-silicon solar cells, as well as a solar cell produced according to such a method
US20100243059A1 (en) Solar battery cell
CN107994118B (zh) 钙钛矿太阳能电池、双层金属电极及其制备方法
CN101840953B (zh) 一种制备表面混合调制晶硅太阳能电池的方法
CN109087965B (zh) 一种背面钝化的晶体硅太阳能电池及其制备方法
CN105870405B (zh) 一种采用激光表面重熔技术复合扩散焊和脱合金制备锂离子电池硅负极的方法
CN107994084A (zh) 一种基于磁控溅射技术联合退火工艺制备金属复合电极的方法
CN103904151A (zh) 一种hit太阳能电池及其制备方法
CN103681942B (zh) 晶体硅se太阳电池片的制备方法以及晶体硅se太阳电池片
CN103173733B (zh) 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法
CN111394771B (zh) 一种在铜及其合金表面制备涂层的方法及铜制品
CN102468092B (zh) 热阴极用热子的制备方法
CN103151424B (zh) 一种用改进化学镀工艺在多孔硅表面制备金属电极的方法
CN105826408B (zh) 局部背表面场n型太阳能电池及制备方法和组件、系统
CN102024869B (zh) 太阳能电池的制造方法
CN110034273B (zh) 一种Sn基硫化物和/或氮化物修饰氧化锡的薄膜锂电池负极及其制备和应用
CN101819935B (zh) 可控硅器件的复合平面终端钝化方法
JPH06204511A (ja) 半導体基板用電極ペースト
CN204118098U (zh) 一种Cu电极太阳能电池的生产系统
CN103367134B (zh) 一种基于金属钌修饰的多孔硅表面金属电极制备方法
US20190148582A1 (en) Solar cell, composite electrode thereon and preparation method thereof
CN204237865U (zh) 一种金属预制层合金化设备
CN102903632B (zh) 肖特基二极管NiCr势垒低温合金制造方法
CN106549066A (zh) 一种全背接触高效晶硅电池金属图形化制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180504