CN107974656B - 一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法 - Google Patents
一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法 Download PDFInfo
- Publication number
- CN107974656B CN107974656B CN201711125773.2A CN201711125773A CN107974656B CN 107974656 B CN107974656 B CN 107974656B CN 201711125773 A CN201711125773 A CN 201711125773A CN 107974656 B CN107974656 B CN 107974656B
- Authority
- CN
- China
- Prior art keywords
- titanium alloy
- layer
- sample
- solid solution
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3464—Sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5873—Removal of material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种兼顾钛合金耐磨、抗疲劳性能Cr‑Zr‑Ti固溶层的制备方法,利用等离子表面合金化技术在钛合金表面开发一种强韧综合性能优异的Cr‑Zr‑Ti固溶层,为解决钛合金关键零部件需同时兼顾耐磨与抗疲劳提供新的技术途径。通过渗Zr处理和对TC4钛合金进行渗Zr再渗Cr处理,并将经过处理的试样取出,去除对疲劳性能不利的沉积层和化合物层,则剩余的渗层为Cr和Zr元素在TC4基体表面形成的扩散层,即Cr‑Zr‑Ti固溶层;其硬度与韧性匹配良好,具有优异的强韧综合性能,可使TC4钛合金的磨损率降低,并使疲劳寿命提高,制备的Cr‑Zr‑Ti固溶层扩散层在兼顾抗磨和抗疲劳方面拥有巨大潜力。
Description
技术领域
本发明涉及钛合金表面改性与强化技术领域,具体地说,涉及金属材料表面中使用固体渗入金属元素的制备方法。
背景技术
众所周知,钛合金的硬度低、耐磨性能差,在与其自身或其它工程材料的摩擦接触中易于磨损,极大地限制了其工程应用。而且,作为广泛应用于航空、航天和生物医学等行业的重要材料,钛合金在某些应用中除了经受着摩擦接触外,往往还承受着交变疲劳载荷,如微动疲劳损伤。这就要求表面处理需同时兼顾钛合金的抗磨与抗疲劳性能。但是除离子注入技术之外,表面合金化、等离子喷涂、电镀以及物理或化学气相沉积等技术制备的硬质耐磨层均对钛合金的疲劳性能不利。单一的表面处理技术难以获得硬度和韧性的良好匹配,因而同时改善钛合金的耐磨与抗疲劳性能是当前表面改性中的一个技术难点。
在众多可有效改善钛合金耐磨性的表面处理方法中,表面合金化技术,如等离子表面合金化、化学热氧化等,因渗层与基体为冶金结合而在高接触载荷工况下有极大的应用潜力。钛合金表面的合金化层一般是由沉积层或化合物层和扩散层构成;沉积层的硬度高而韧性低,扩散层通常主要是渗入元素和Ti元素形成的固溶体,其成分和结构梯度变化,硬度与韧性的匹配一般较好,故具有同时改善钛合金抗磨与抗疲劳的潜力。在文献(Effects of combined plasma chromizing and shot peening on the fatigueproperties of a Ti6Al4V alloy,Applied Surface Science 353(2015):995-1002)中提出,剥除Cr合金化层中对疲劳性能有害的的Cr沉积层和Cr与Ti的化合物层而仅保留Cr-Ti固溶层,即Cr扩散层,试样的疲劳性能有明显恢复。但是,Cr-Ti固溶层的硬度不高,未能充分发挥扩散层兼顾抗磨和抗疲劳的潜力,因而需进一步设计制备出强韧综合性能优异的扩散层。
目前,利用等离子表面合金化技术制备Cr-Zr-Ti固溶层,即Cr和Zr的扩散层的方法及其应用在国内外研究领域尚未见报导,开发具有良好硬度与韧性匹配的Cr-Zr-Ti固溶层的制备方法对于解决钛合金关键零部件需同时兼顾抗磨与抗疲劳的问题具有重要意义。
发明内容
为了避免现有技术存在的不足,本发明提出一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法。旨在利用等离子表面合金化技术在钛合金表面开发一种强韧综合性能优异的Cr-Zr-Ti固溶层,以便为解决钛合金关键零部件需同时兼顾耐磨与抗疲劳的技术提出新途径。
本发明解决其技术问题所采用的技术方案是:
一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法,其特征在于包括以下步骤:
步骤1.装炉,溅射清洗试样和靶材;将两块Zr靶悬挂于源极,将经过机械抛光并清洗干净的钛合金试样悬挂于靶材中间的工件极,调节试样和靶材之间的距离,抽真空至极限真空度10-3Pa,然后通入流量为40sccm的氩气,在20~30Pa下分别对靶材和试样进行溅射清洗10~15min;
步骤2.渗Zr处理;真空炉中气压调节为40Pa,源极电压为650V,工件电压为380V,在粒子轰击和辅助加热电源的共同作用下工件升温至800℃,并在此温度下渗Zr处理3小时,然后关闭辅助加热电源,交替降低源极和工件电压,使工件随炉冷却至室温;
步骤3.对步骤2中的渗Zr试样再进行渗Cr处理;打开真空炉,用两块Cr靶替换两块Zr靶,调节好渗Zr试样和Cr靶的距离,抽真空至极限真空度10-3Pa,通入氩气后分别溅射清洗Cr靶和渗Zr试样,然后依次进行升温、渗Cr和冷却的操作,其中,源极电压为700V,工件极电压为400V,800℃下渗Cr处理2小时;
步骤4.剥除扩散层顶部的沉积层和化合物层,获得Cr-Zr-Ti固溶层;将经过先渗Zr再渗Cr处理的试样取出,放入热盐酸溶液中,当不再有气泡产生时取出试样并用水清洗干净,用1500#SiC水砂纸沿着疲劳试样纵向打磨以去掉腐蚀坑,再用丙酮和酒精清洗干净,则剩余的渗层为Cr和Zr元素在TC4基体表面形成的扩散层,即Cr-Zr-Ti固溶层。
有益效果
本发明提出的一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法,利用等离子表面合金化技术在钛合金表面开发一种强韧综合性能优异的Cr-Zr-Ti固溶层,以便为解决钛合金关键零部件需同时兼顾耐磨与抗疲劳提供新的技术途径。通过技术方案中的渗Zr处理和对TC4钛合金进行渗Zr再渗Cr处理,并将经过先渗Zr再渗Cr处理的试样取出,去除对疲劳性能不利的沉积层和化合物层,则剩余的渗层为Cr和Zr元素在TC4基体表面形成的扩散层,即Cr-Zr-Ti固溶层,其硬度与韧性匹配良好,具有优异的强韧综合性能,可使TC4钛合金的磨损率降低一半,并使TC4钛合金的疲劳寿命提高68倍,制备的Cr-Zr-Ti固溶层达到了同时提高钛合金耐磨和抗疲劳性能的目的,并证实了扩散层在兼顾抗磨和抗疲劳方面拥有巨大潜力。
附图说明
下面结合附图和实施方式对本发明一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法作进一步详细说明。
图1为钛合金疲劳试样形状和尺寸。
图2为TC4钛合金表面先渗Zr再渗Cr试样的剖面形貌。
图3为Cr-Zr-Ti固溶层试样的剖面硬度分布。
图4a、图4b为TC4钛合金基材与Cr-Zr-Ti固溶层试样的磨损轮廓和磨损率。
图5为TC4钛合金基材与Cr-Zr-Ti固溶层试样的疲劳寿命对比。
具体实施方式
本实施例是一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法。
参阅图1~图5,应用兼顾钛合金耐磨、抗疲劳性能的Cr-Zr-Ti固溶层的制备方法对TC4钛合金圆片试样进行分析,具体步骤如下:
(1)将用以磨损测试的TC4钛合金圆片进行机械抛光,试样尺寸F30×6mm,将TC4钛合金疲劳试样进行纵向抛光,并使用丙酮、酒精清洗干净,吹风干燥后备用;
(2)将两块Zr靶悬挂于真空炉的源极上,Zr靶尺寸为180×150×6mm,再将清洗干净的试样悬挂于靶材中间的工件极上,调节试样和靶材的距离为30~35mm,抽真空至极限真空度2×10-3Pa;
(3)通入流量为40sccm的氩气,使真空炉中气压保持在20~30Pa,逐渐调节源极电压至650~700V,溅射清洗靶材10min之后再将源极电压降低至0V,调节工件电压至500V,溅射清洗试样15min之后再将工件电压降低至0V;
(4)调节真空炉中气压至40Pa,先将源极电压逐渐调节至650V,再将工件电压逐渐调节至380V,工件将会迅速升温,用红外测温仪实时监测工件温度;
(5)当工件升温速率明显减慢时打开辅助加热电源,在0~120A范围内调节电流,使工件升温至800℃,并在此温度下渗Zr处理3小时,然后关闭辅助加热电源,交替降低源极和工件电压,使工件缓慢降温,并随炉冷却至室温;
(6)打开真空炉,先将两块Zr靶取下,再换上两块同尺寸的Cr靶,而经过渗Zr处理的试样不动,只需调节渗Zr试样和靶材的距离为28~32mm,抽真空至极限真空度2×10-3Pa,然后按照步骤(3)对渗Zr试样和Cr靶进行溅射清洗,接着按照步骤(4)和(5)进行升温和渗Cr处理,但需将源极电压调节至700V,工件电压调节至400V,渗Cr处理在800℃下进行2小时;
(7)将经过先渗Zr再渗Cr处理后的试样取出,放入38~42℃的热HCl溶液中,当不再有气泡产生时取出试样并用水清洗干净,接着用1500#SiC水砂纸沿着疲劳试样纵向轻轻打磨以去掉腐蚀坑,再用丙酮和酒精清洗干净;经过以上处理,对疲劳性能不利的Cr沉积层和Cr与Ti的金属间化合物层被完全剥除,而剩余的渗层为Cr和Zr元素在TC4基体表面形成的扩散层,即Cr-Zr-Ti固溶层;
(8)采用球盘磨损试验机测试Cr-Zr-Ti固溶层试样的耐磨性能,与GCr15钢球对磨时,在5N的载荷下跑和150m时,Cr-Zr-Ti固溶层可将钛合金的磨损率降低一半;用旋转弯曲疲劳试验机测试Cr-Zr-Ti固溶层试样的疲劳性能,最大应力水平为700MPa时,Cr-Zr-Ti固溶层试样的疲劳寿命是TC4钛合金基材的68倍。
Claims (1)
1.一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法,其特征在于包括以下步骤:
步骤1.装炉,溅射清洗试样和靶材;将两块Zr靶悬挂于源极,将经过机械抛光并清洗干净的钛合金试样悬挂于靶材中间的工件极,调节试样和靶材之间的距离,抽真空至极限真空度10-3Pa,然后通入流量为40sccm的氩气,在20~30Pa下分别对靶材和试样进行溅射清洗10~15min;
步骤2.渗Zr处理;真空炉中气压调节为40Pa,源极电压为650V,工件电压为380V,在粒子轰击和辅助加热电源的共同作用下工件升温至800℃,并在此温度下渗Zr处理3小时,然后关闭辅助加热电源,交替降低源极和工件电压,使工件随炉冷却至室温;
步骤3.对步骤2中的渗Zr试样再进行渗Cr处理;打开真空炉,用两块Cr靶替换两块Zr靶,调节好渗Zr试样和Cr靶的距离,抽真空至极限真空度10-3Pa,通入氩气后分别溅射清洗Cr靶和渗Zr试样,然后依次进行升温、渗Cr和冷却的操作,其中,源极电压为700V,工件极电压为400V,800℃下渗Cr处理2小时;
步骤4.剥除扩散层顶部的沉积层和化合物层,获得Cr-Zr-Ti固溶层;将经过先渗Zr再渗Cr处理的试样取出,放入热盐酸溶液中,当不再有气泡产生时取出试样并用水清洗干净,用1500#SiC水砂纸沿着疲劳试样纵向打磨以去掉腐蚀坑,再用丙酮和酒精清洗干净,则剩余的渗层为Cr和Zr元素在TC4基体表面形成的扩散层,即Cr-Zr-Ti固溶层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711125773.2A CN107974656B (zh) | 2017-11-15 | 2017-11-15 | 一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711125773.2A CN107974656B (zh) | 2017-11-15 | 2017-11-15 | 一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107974656A CN107974656A (zh) | 2018-05-01 |
CN107974656B true CN107974656B (zh) | 2019-10-22 |
Family
ID=62013574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711125773.2A Active CN107974656B (zh) | 2017-11-15 | 2017-11-15 | 一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107974656B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111575643A (zh) * | 2020-05-29 | 2020-08-25 | 太原理工大学 | 一种在钛合金表面制备钽扩散层的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1063315A (zh) * | 1991-01-19 | 1992-08-05 | 大连理工大学 | 多离子束高能级增强射注技术 |
US20160053365A1 (en) * | 2014-08-20 | 2016-02-25 | Honeywell International Inc. | Encapsulated composite backing plate |
CN104988460B (zh) * | 2015-06-18 | 2017-09-19 | 南京航空航天大学 | 钛合金表面耐磨Cr‑Si复合涂层及其制备方法 |
CN105839061B (zh) * | 2016-03-28 | 2018-11-09 | 南京航空航天大学 | γ-TiAl合金表面的NiCoCrAlY/ZrO2复合涂层及制备方法 |
-
2017
- 2017-11-15 CN CN201711125773.2A patent/CN107974656B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107974656A (zh) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101488302B1 (ko) | 알루미늄 다이캐스팅 금형용 코팅재 및 이의 제조방법 | |
CN102965613B (zh) | 一种钛合金低温表面渗氮方法 | |
Oskouei et al. | The effect of a heat treatment on improving the fatigue properties of aluminium alloy 7075-T6 coated with TiN by PVD | |
CN104480478B (zh) | 一种渗氮pvd复合涂层及其制备方法 | |
CN106884149A (zh) | 水环境耐磨涂层、其制备方法及应用 | |
CN109183020A (zh) | 一种铝合金表面复合梯度改性层的制备方法 | |
CN104862649B (zh) | 一种钛合金表面梯度Ni/TiN复合改性层的制备方法 | |
CN107962356B (zh) | 一种航天钛合金tc4表面减摩耐磨强化层的制备方法 | |
CN107523790A (zh) | 一种AlCrSiCuN纳米多层涂层及其制备方法 | |
CN103014599A (zh) | 一种奥氏体不锈钢复合表面处理工艺 | |
CN103590002A (zh) | 一种镍基高温合金Al-Cr涂层的制备方法 | |
Zhang et al. | Effect of TiN/Ti composite coating and shot peening on fretting fatigue behavior of TC17 alloy at 350 C | |
CN100537805C (zh) | 耐磨、耐腐蚀备件及其表面处理工艺 | |
JPH06507210A (ja) | 炭素質材料上に窒化チタンを形成するための表面処理および蒸着方法 | |
Oskouei et al. | Restoring the tensile properties of PVD-TiN coated Al 7075-T6 using a post heat treatment | |
CN108411244A (zh) | 一种提高M50NiL轴承钢表面摩擦学性能的方法 | |
CN110423989A (zh) | 一种低残余应力的硬质类金刚石薄膜的制备方法 | |
CN107937875A (zh) | 一种烧结钕铁硼磁体表面防护涂层的制备方法 | |
CN107974656B (zh) | 一种兼顾钛合金耐磨、抗疲劳性能Cr-Zr-Ti固溶层的制备方法 | |
CN105734487B (zh) | 一种钛合金齿轮表面制备强韧性钼梯度改性层的方法 | |
Liu et al. | Investigation on microstructure and properties of Al18B4O33 whisker reinforced AlMgSi matrix composite after shot peening | |
Xia et al. | Corrosion behavior and wear resistance of Zr-2.5 Nb alloy after thermal oxy-nitriding treatment | |
CN110983257A (zh) | 提高钛合金表面耐腐蚀及防冰性能的表面处理方法 | |
CN102978579A (zh) | 一种轴承钢表面Ta薄膜的制备方法 | |
CN114934247B (zh) | 一种适用于规则轮廓tc4钛合金的表面高频感应处理硬化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |