CN107974625A - 一种lpg船储罐用高韧性、低屈强比低温钢及其制造方法 - Google Patents

一种lpg船储罐用高韧性、低屈强比低温钢及其制造方法 Download PDF

Info

Publication number
CN107974625A
CN107974625A CN201711167491.9A CN201711167491A CN107974625A CN 107974625 A CN107974625 A CN 107974625A CN 201711167491 A CN201711167491 A CN 201711167491A CN 107974625 A CN107974625 A CN 107974625A
Authority
CN
China
Prior art keywords
steel
temperature
low
rolling
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711167491.9A
Other languages
English (en)
Inventor
战国锋
李书瑞
刘文斌
王宪军
杨秀利
郭斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN201711167491.9A priority Critical patent/CN107974625A/zh
Publication of CN107974625A publication Critical patent/CN107974625A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明属于低合金钢制造领域,具体涉及一种LPG船储罐用高韧性、低屈强比低温钢及其制造方法,该低温钢的原料化学成分的质量百分比为C:0.08~0.23、Si≤0.30、Mn:0.85~1.50、P≤0.004、S≤0.002、Alt:0.015~0.050、Ni:1.00~1.30、N≤0.004,还包括Mo、Nb、Ti和Ca中的至少一种,以上元素的质量百分比为:Mo≤0.10、Nb≤0.05、Ti≤0.036、Ca≤0.005,除上述化学成分外,其余为Fe和不可避免的杂质。制造该低温钢的方法包括炼钢工艺、轧钢工艺和加工、热处理工艺。本发明钢通过成分设计、夹杂物控制、轧制和热处理后,钢板除了具有优良的低温韧性及良好的焊接性能外,屈强比也较低,可用于制造LPG船用储罐,使用安全性能大大提高。

Description

一种LPG船储罐用高韧性、低屈强比低温钢及其制造方法
技术领域
本发明属于低合金钢制造领域,具体涉及一种LPG船储罐用高韧性、低屈强比低温钢及其制造方法。
背景技术
屈强比为材料屈服强度与抗拉强度的比值,钢材具备较低的屈强比可以在严重的负荷变形下,提高钢材的抗变形能力,即屈强比越低,材料从开始塑性变形到断裂所需要的形变能就越大,从而提高了其抗大变形的能力,可以有效保证安全性。但在LPG船及LPG储罐材料的应用中,使用温度达到了-80℃,不仅对材料的屈强比有严格规定,对钢材的低温韧性也有着极高的要求,因此,需要合理保证屈强比与低温韧性的匹配以适应市场对该类型钢种的要求。
在本发明提出之前,市场上尚未有针对此应用的专门的低屈强比LPG船用储罐用钢。专利CN201210121739.9中提出了一种LPG(液化石油气)船储罐用钢板,其重量百分含量的组分组成:C:0.14%~0.16%,Si:0.20%~0.40%,Mn:1.05%~1.10%,P≤0.012%,S≤0.005%,Cr:0.30%~0.35%,Ni:0.40%~0.45%,Mo:0.25%~0.30%,Nb:0.02%~0.03%,V:0.035%~0.040%,Ti:0.01%~0.02%,B:0.0015%~0.0020%,N≤0.010%,Cu≤0.20%,Al总:0.02%~0.05%,余量为Fe和不可避免的杂质;其使用温度为-20℃,强度高,屈服强度高于690MPa,且屈强比偏高。专利CN103774050中提出了一种低屈强比高塑性钢,其组分及含量为:C:0.07~0.09%,Si:0.15~0.20%,Mn:1.30~1.50%,P:≤0.008%,S:≤0.004%,Ti:0.010~0.015%,Cr:0.10~0.20%,Ni:0.15~0.20%,Cu:0.20~0.25%,Al:0.025~0.030%,余量为Fe及不可避免的杂质;该钢具低的屈强比,较好的塑性,但主要用于常温环境,并未涉及在在-80℃下使用。专利CN103122436则提出了一种-70℃使用的正火型低温压力容器用钢,其成分及组成为:为C:0.09~0.12%、Si:0.15~0.50%、Mn:1.2~1.6%、P:≤0.015%、S:≤0.005%、Nb:0.02~0.04%、Ni:0.40~0.80%、Ti:0.006~0.010%、Alt:0.020~0.034%,余量为Fe和不可避免的杂质;该钢经正火热处理等工序得到-70℃正火型低温压力容器钢板,可用于制造-70℃低温压力容器设备,但使用温度仅能达到-70℃,且屈强比较高,均超过0.72。专利CN103014554公开一种低屈强比管线钢,其成分质量百分比为:C:0.05~0.08%,Si:0.15~0.30%,Mn:1.55~1.85%,P≤0.015%,S≤0.005%,Al:0.015~0.04%,Nb:0.015~0.025%,Ti:0.01~0.02%,Cr:0.20~0.40%,Mo:0.18~0.30%,N:≤0.006%,O≤0.004%,Ca≤0.005%,Ni≤0.40%,其中,Ca/s≥1.5,余量为铁和不可避免杂质。其屈服强度在500MPa以上,屈强比在0.70以上,主要用于地震高发区以及抗大应变输送管线用钢管。
发明内容
为了克服现有技术的缺陷,本发明的目的是提供一种LPG船储罐用低屈强比、高强度、高韧性低温压力容器用钢及其制造方法,能克服已有钢种屈强比偏高,低温韧性与屈强比匹配不佳的问题,采用可行的生产工艺,适合大生产操作,获得良好的低温韧性、拉伸性能的压力容器用钢。
为实现上述目的,本发明提供一种LPG船储罐用高韧性、低屈强比低温钢,该低温钢的原料化学成分的质量百分比为C:0.08~0.23、Si≤0.30、Mn:0.85~1.50、P≤0.004、S≤0.002、Alt:0.015~0.050、Ni:1.00~1.30、N≤0.004,还包括Mo、Nb、Ti和Ca中的至少一种,以上元素的质量百分比为:Mo≤0.10、Nb≤0.05、Ti≤0.036、Ca≤0.005,除上述化学成分外,其余为Fe和不可避免的杂质。
优选的,所述低温钢的原料化学成分的质量百分比为,C:0.08~0.15、Si:0~0.20、Mn:0.85~1.50、P≤0.004、S≤0.002、Alt:0.015~0.050、Ni:1.00~1.30、Nb:0.01~0.03、Ti:0.008~0.032、N≤0.004、Ca:0.002~0.005。
优选的,所述低温钢的原料化学成分的质量百分比为,C:0.08~0.12、Si:0.15~0.30、Mn:0.85~1.20、P≤0.004、S≤0.002、Alt:0.015~0.050、Ni:1.00~1.30、N≤0.004、Mo≤0.10、Ca:0.002~0.005。本发明中各元素及主要工艺的作用:
因该钢种要求在-80℃下具备优异的低温韧性,因此,炼钢时要严格控制钢水的纯净度,防止P、S和其他杂质元素对该钢低温韧性的影响。Mn、Nb、Ti、Ni的设计成分保证了钢的强度、韧性和焊接性能,其中Ni合金主要用来提高钢的低温韧性,Ti合金可以细化钢板焊接热影响区组织,提高韧性水平,Mo可以提高钢板SR后的性能稳定性。通过调整C、Mn等对强度敏感元素的含量来控制其屈强比;设置P≤0.004%,S≤0.002%,N≤0.004%,主要是考虑到这几个元素对该钢低温韧性影响较大,要严格限制其含量。
(1)合金元素对钢低温性能的影响
C是提高钢材强度最有效的元素,随着C含量的增加,钢中Fe3C增加,淬硬性也增加,钢的抗拉强度和屈服强度提高。但是,增加钢中C含量,钢的延伸率和冲击韧性下降,尤其是对低温韧性影响较大。同时,由于C元素间隙固溶强化的影响,其含量增加易使钢屈强比升高,因此设计其质量百分比低于0.23%。
Si与碳的亲和力很弱,在钢中不与碳化合,但能溶入铁素体,产生固溶强化作用,使得铁素体的强度和硬度提高,但塑性和韧性却有所下降,根据Pikering关系其对屈服强度的影响较高,其含量不宜过高,因此本发明钢的Si的质量百分比控制在0.30%以内。
Mn是提高钢的屈服强度和抗拉强度的主要元素之一,根据Pikering关系其对屈服强度的影响同样较大,同时Mn元素是一种易偏析的元素,当偏析区Mn、C含量达到一定比例时,在钢材生产和焊接过程中会产生马氏体相,该相会表现出很高的硬度,对钢板低温韧性和抗氢致开裂性能有较大影响。因此,综合考虑将Mn的质量百分比限定在0.85%~1.50%范围内。
Al是钢中的主要脱氧元素,一定含量的Al还能细化钢板的晶粒,提高钢板的强度和韧性。但是当Al含量偏高时,易导致钢中夹杂增多,对钢的韧性不利,同时会降低钢的淬硬性和韧性,降低钢的抗氢致开裂性能。因此将本发明钢中Alt的质量百分比控制在0.015%~0.050%以内。
Ni能与铁以任何比例互熔,通过细化铁素体晶粒来改善钢的低温韧性,可以明显降低钢板的低温韧脆转变温度。针对-80℃的使用要求,本发明钢将Ni的质量百分比设定在1.00%~1.30%。
Ti是一种强烈的碳化物和氮化物形成元素,形成的TiN、Ti(CN)等粒子非常稳定,能够在形核时有效的阻止晶粒长大,因此能够细化晶粒,提高钢板的强度和韧性。钢板在焊接时Ti的作用也比较明显,能够有效细化焊接热影响区组织。考虑钢板低温韧性要求和对焊接性能的影响,设计Ti的质量百分比控制在0.036%以内。
Mo是有效提高钢板回火稳定性的元素,能够提高钢板强度和抗氢致开裂性能。如果添加量过高,会导致钢板低温韧性下降,因此,本发明钢Mo的质量百分比控制在0.10%以内。
Nb是一种强碳化物形成元素,在钢中形成NbC、Nb(CN)等第二相质点,阻碍奥氏体晶粒的长大,细化晶粒,提高钢板的强度和低温韧性。但其含量过高时易产生晶间裂纹,且造成屈强比的上升。因此,综合考虑将本发明的Nb含量控制在0.05%以内。
Ca是钢进行Ca-Si处理时增加的元素,其含量不高时元素本身对钢板性能无明显影响,但经过Ca-Si处理后,钢中夹杂物相貌发生变化,尺寸降低,球化率提高,有利于钢的抗硫化氢腐蚀性能。但考虑到Ca-Si处理后钢中杂质元素增加,因此,加入量不宜过大,该钢将处理后Ca质量百分比控制在0.005%以内。
(2)杂质元素和气体对钢低温性能的影响
LPG船用储罐用钢使用在极低温度下,钢中的杂质元素和气体对钢板的低温韧性影响较大,因此要尽可能的降低。
P在钢中除了形成可引起钢红脆(热脆)和塑性降低的易熔共晶夹杂物外,还对氢原子重新组合过程起抑制作用,使得钢增氢效果增加,从而提高钢的脆性,降低低温韧性水平和抗氢致开裂性能。S含量过高则会使钢板具有各向异性且韧性降低,使得钢的稳定性急剧恶化。因此,对于该钢应将P控制在0.004%以内,S控制在0.002%以内。
另外,该钢应尽量减少钢中气体含量,减小钢的偏析。同时,为了减少钢的时效影响,将N的含量控制在0.004%以内。
本发明提供一种LPG船储罐用高韧性、低屈强比低温钢的制造方法,包括以下步骤:
1)炼钢工艺:采用铁水K-S脱硫技术进行深度脱硫,进行转炉顶底复合吹炼,LF加热炉中进行Ca-Si处理,在RH真空炉进行真空处理及成分微调,真空处理时间不小于15min;
2)轧钢工艺:轧制前铸坯加热温度为1260~1300℃,在铸坯表面涂防氧化涂层,加热速率为8~13min/cm,钢坯在轧制时进行四阶段轧制,即粗轧一阶段→待温→粗轧二阶段→中间坯→待温→精轧,粗轧一阶段开轧温度不小于1200℃,然后进行待温,粗轧二阶段开轧温度不小于1100℃。中间坯厚度70~100mm,精轧开轧温度不大于920℃,精轧终轧温度为770~830℃,精轧道次设定在5~9次。
3)加工、热处理工艺:正火+回火热处理,其工艺制度见表1。
表1热处理制度
采用上述制造工艺的理由在于:
(1)炼钢工艺:该钢冶炼时在LF炉进行Ca-Si处理,通过对夹杂物进行变性,能够有效降低夹杂物尺寸,改变夹杂物的形状,有利于提高钢的低温冲击韧性及抗腐蚀性能。同时,通过较长时间(不低于15min)的真空处理,可较好的降低钢中杂质、气体含量,有利于钢的低温韧性的提高。
(2)轧钢工艺:该钢合金含量较高,按合金钢工艺进行轧制。轧制前铸坯加热温度为1260~1300℃,加热速率为8~13min/cm,确保铸坯温度均匀钢。同时,由于Ni元素的存在,钢坯表面易产生氧化铁皮层,需在铸坯加热前涂抹防氧化涂层。该钢坯在轧制时进行四阶段轧制,即粗轧一阶段→待温→粗轧二阶段→中间坯→待温→精轧。与常规低合金钢轧制工艺相比,主要是粗轧采取了两阶段轧制,一阶段大压下后待温,同时确保避开混晶温度区间,然后进行二阶段轧制,该轧制工艺对提高钢板韧性有较好效果。
粗轧时,根据成品钢板厚度,控制本阶段轧制结束时中间坯的厚度。精轧时,待温避开奥氏体部分再结晶区温度后,开始奥氏体未再结晶区控制轧制。精轧终轧后,形变位错将发生回复和多边形化,从而细化组织,提高钢板的低温韧性。轧制时,要考虑钢的临界点温度,避免出现混晶现象。因此综合考虑,钢的粗轧一阶段开轧温度不小于1200℃,粗轧二阶段开轧温度不小于1100℃,精轧开轧温度不大于920℃,精轧轧终轧温度770℃~830℃,精轧道次设定在5~9次。
(3)加工、热处理工艺:由于该钢要在低温环境下长期使用且屈强比较低,所以针对该钢的特点,设计热处理工艺为正火+回火热处理。正火+回火后该钢的组织是一种较稳定的铁素体+珠光体组织。正火温度分别设计为850~950℃,是为了让钢充分奥氏体化,获得稳定的组织。回火温度设计为450~650℃,是为了提高组织的稳定性,并适当粗化晶粒以控制细晶强化对屈强比的影响,同时也可以根据不同回火温度调整钢板强度范围。
对比现有技术中-70℃的低温压力容器设备,当使用温度再降低10℃后,钢板的低温性能会发生较大变化,必须对其进行重新设计。温度铁素体钢存在明显的韧脆转变温度,当使用温度低于韧脆转变温度时,钢板发生断裂时为脆性断裂,易造成重大事故,因此低温压力容器的使用温度有严格要求。提高Ni元素含量以降低韧脆转变温度或者细化钢板组织均可有效提高钢板低温韧性,但本钢种存在屈强比与低温韧性的匹配问题,当晶粒过度细化后,钢板的低温韧性会大幅提高,但屈强比也会明显升高,同时,Ni元素含量也需适量,过高的Ni元素含量会使屈强比升高并增加成本。因此,对于-80℃下低温韧性及屈强比的要求,一方面,对钢板化学成分进行控制,适当增加Ni元素含量,降低其韧脆转变温度,使其符合-80℃要求,控制晶粒细化元素如Nb元素含量,避免钢板组织过度细化,另一方面优化热处理工艺,采用正火+回火的热处理工艺改善钢板低温韧性,同时对热处理工艺参数进行控制,通过提高回火温度适当粗化晶粒以降低屈强比,通过两种手段的协调控制达到低温韧性与屈强比的合理匹配。
本发明的有益效果是:1)在成分设计上控制C、Mn元素含量,以降低钢板屈强比,同时添加一定量的Ni元素保证其低温冲击韧性,同时添加一定量的Ti、Mo、Nb等微合金元素改善其焊接性能,严格控制P、S、N含量;2)并在炼钢工艺中进行Ca-Si处理,使得该钢在具有优良的低温韧性能同时具有较低的屈强比;3)加工热处理工艺中采用正火+回火得到稳定的软相铁素体+硬相珠光体组织,利用钢中软相和硬相比例的不同控制其屈强比。
本发明钢通过成分设计、夹杂物控制、轧制和热处理后,钢板除了具有优良的低温韧性及良好的焊接性能外,屈强比也较低,可用于制造-80℃低温环境下使用的LPG船用储罐,使用安全性能大大提高。
具体实施方式
以下通过实施例对本发明作进一步的阐述,但不限制本发明。凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
表2为本发明实施例成分及重量百分比取值;表3和表4为各实施例的工艺;表5本发明实施例与对比钢种的力学检验结果。
表2本发明实施例与对比钢种化学成分(wt%)
表3本发明实施例与对比钢种的主要工艺过程
表4本发明实施例与对比钢种的热处理工艺过程
表5本发明实施例与对比钢种的力学检验结果
从表5可以看出,本发明钢种屈强比低,低温冲击性能好,具备优良的抗变形能力和低温韧性,且生产工艺简单,生产成本较低,钢质纯净,可用于制造-80℃低温环境下使用的LPG船用储罐。

Claims (4)

1.一种LPG船储罐用高韧性、低屈强比低温钢,其特征在于:该低温钢的原料化学成分的质量百分比为C:0.08~0.23、Si≤0.30、Mn:0.85~1.50、P≤0.004、S≤0.002、Alt:0.015~0.050、Ni:1.00~1.30、N≤0.004,还包括Mo、Nb、Ti和Ca中的至少一种,以上元素的质量百分比为:Mo≤0.10、Nb≤0.05、Ti≤0.036、Ca≤0.005,除上述化学成分外,其余为Fe和不可避免的杂质。
2.根据权利要求1所述的LPG船储罐用高韧性、低屈强比低温钢,其特征在于:所述低温钢的原料化学成分的质量百分比为,C:0.08~0.15、Si:0~0.20、Mn:0.85~1.50、P≤0.004、S≤0.002、Alt:0.015~0.050、Ni:1.00~1.30、Nb:0.01~0.03、Ti:0.008~0.032、N≤0.004、Ca:0.002~0.005。
3.根据权利要求1所述的LPG船储罐用高韧性、低屈强比低温钢,其特征在于:所述低温钢的原料化学成分的质量百分比为,C:0.08~0.12、Si:0.15~0.30、Mn:0.85~1.20、P≤0.004、S≤0.002、Alt:0.015~0.050、Ni:1.00~1.30、N≤0.004、Mo≤0.10、Ca:0.002~0.005。
4.一种LPG船储罐用高韧性、低屈强比低温钢的制造方法,其特征在于:包括以下步骤:
1)炼钢工艺:采用铁水K-S脱硫技术进行深度脱硫,进行转炉顶底复合吹炼,LF加热炉中进行Ca-Si处理,在RH真空炉进行真空处理及成分微调,真空处理时间不小于15min;
2)轧钢工艺:轧制前铸坯加热温度为1260~1300℃,在铸坯表面涂防氧化涂层,加热速率为8~13min/cm,钢坯在轧制时进行四阶段轧制,即粗轧一阶段→待温→粗轧二阶段→中间坯→待温→精轧,粗轧一阶段开轧温度不小于1200℃,然后进行待温,粗轧二阶段开轧温度不小于1100℃。中间坯厚度70~100mm,精轧开轧温度不大于920℃,精轧终轧温度为770~830℃,精轧道次设定在5~9次;
3)加工、热处理工艺:正火+回火热处理,其工艺制度见下表。
表 热处理制度
CN201711167491.9A 2017-11-21 2017-11-21 一种lpg船储罐用高韧性、低屈强比低温钢及其制造方法 Pending CN107974625A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711167491.9A CN107974625A (zh) 2017-11-21 2017-11-21 一种lpg船储罐用高韧性、低屈强比低温钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711167491.9A CN107974625A (zh) 2017-11-21 2017-11-21 一种lpg船储罐用高韧性、低屈强比低温钢及其制造方法

Publications (1)

Publication Number Publication Date
CN107974625A true CN107974625A (zh) 2018-05-01

Family

ID=62010889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711167491.9A Pending CN107974625A (zh) 2017-11-21 2017-11-21 一种lpg船储罐用高韧性、低屈强比低温钢及其制造方法

Country Status (1)

Country Link
CN (1) CN107974625A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136752A (zh) * 2018-08-10 2019-01-04 武汉钢铁集团鄂城钢铁有限责任公司 一种420MPa级低屈强比耐海洋大气腐蚀桥梁用钢及其生产方法
CN109161789A (zh) * 2018-08-17 2019-01-08 南京钢铁股份有限公司 一种lpg船用低温钢板及其生产方法
CN110172646A (zh) * 2019-06-24 2019-08-27 南京钢铁股份有限公司 一种船用储罐p690ql1钢板及制造方法
CN114807762A (zh) * 2022-04-29 2022-07-29 鞍钢股份有限公司 一种具有优良低温韧性的300MPa级低温钢及其制造方法
CN115747616A (zh) * 2022-11-29 2023-03-07 南京钢铁股份有限公司 一种p690ql2船用储罐钢的冶炼方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498100A (zh) * 2013-10-21 2014-01-08 武汉钢铁(集团)公司 一种可用于-196℃的低Ni高Mn经济型低温钢及其制造方法
CN103540838A (zh) * 2013-09-29 2014-01-29 舞阳钢铁有限责任公司 一种低温容器用钢板及生产方法
CN104988420A (zh) * 2015-07-13 2015-10-21 武汉钢铁(集团)公司 -120℃低温条件下压力容器用低镍钢板及其生产方法
CN106467951A (zh) * 2016-09-12 2017-03-01 武汉钢铁股份有限公司 用于‑70℃的高强度、高韧性、低屈强比低温钢及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540838A (zh) * 2013-09-29 2014-01-29 舞阳钢铁有限责任公司 一种低温容器用钢板及生产方法
CN103498100A (zh) * 2013-10-21 2014-01-08 武汉钢铁(集团)公司 一种可用于-196℃的低Ni高Mn经济型低温钢及其制造方法
CN104988420A (zh) * 2015-07-13 2015-10-21 武汉钢铁(集团)公司 -120℃低温条件下压力容器用低镍钢板及其生产方法
CN106467951A (zh) * 2016-09-12 2017-03-01 武汉钢铁股份有限公司 用于‑70℃的高强度、高韧性、低屈强比低温钢及其制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136752A (zh) * 2018-08-10 2019-01-04 武汉钢铁集团鄂城钢铁有限责任公司 一种420MPa级低屈强比耐海洋大气腐蚀桥梁用钢及其生产方法
CN109136752B (zh) * 2018-08-10 2020-03-31 武汉钢铁集团鄂城钢铁有限责任公司 一种420MPa级低屈强比耐海洋大气腐蚀桥梁用钢及其生产方法
CN109161789A (zh) * 2018-08-17 2019-01-08 南京钢铁股份有限公司 一种lpg船用低温钢板及其生产方法
CN110172646A (zh) * 2019-06-24 2019-08-27 南京钢铁股份有限公司 一种船用储罐p690ql1钢板及制造方法
CN114807762A (zh) * 2022-04-29 2022-07-29 鞍钢股份有限公司 一种具有优良低温韧性的300MPa级低温钢及其制造方法
CN114807762B (zh) * 2022-04-29 2023-10-20 鞍钢股份有限公司 一种具有优良低温韧性的300MPa级低温钢及其制造方法
CN115747616A (zh) * 2022-11-29 2023-03-07 南京钢铁股份有限公司 一种p690ql2船用储罐钢的冶炼方法
CN115747616B (zh) * 2022-11-29 2024-06-14 南京钢铁股份有限公司 一种p690ql2船用储罐钢的冶炼方法

Similar Documents

Publication Publication Date Title
CN106467951B (zh) 用于-70℃的高强度、高韧性、低屈强比低温钢及其制造方法
CN110184532B (zh) 一种具有优良-60℃超低温冲击韧性的耐磨钢板及其生产方法
CN107974625A (zh) 一种lpg船储罐用高韧性、低屈强比低温钢及其制造方法
CN104789866B (zh) 630MPa级调质型低温球罐用高强高韧性钢板及其制造方法
CN103103441B (zh) 一种﹣140℃下具有高韧性的压力容器用钢及生产方法
CN110499474A (zh) 耐高温400hb耐磨钢板及其生产方法
WO2022022066A1 (zh) 一种极地海洋工程用钢板及其制备方法
CN113737087B (zh) 一种超高强双相钢及其制造方法
WO2007114490A1 (ja) 高強度ばね用熱処理鋼
CN102925814B (zh) 一种抗硫化氢应力腐蚀压力容器用钢及其生产方法
CN103498100A (zh) 一种可用于-196℃的低Ni高Mn经济型低温钢及其制造方法
JP3562192B2 (ja) 高周波焼入用部品およびその製造方法
CN107130172B (zh) 布氏硬度400hbw级整体硬化型高韧性易焊接特厚耐磨钢板及其制造方法
CN103088269B (zh) 一种﹣120℃下具有高韧性的压力容器用钢及生产方法
CN108588570A (zh) 一种600℃中温耐酸腐蚀压力容器钢及其制备方法
CN105369131A (zh) 一种压力容器用钢板q420r钢的生产方法
CN107937807A (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN114107811A (zh) 一种700MPa级抗大线能量焊接用钢及其制造方法
CN102691006B (zh) 抗高回火参数sr脆化的低温镍钢及其制造方法
CN111850399A (zh) 具有良好耐磨性耐蚀塑料模具钢及其制备方法
CN108342649A (zh) 一种耐酸腐蚀的调质高强度压力容器用钢及生产方法
CN104988404A (zh) -196℃低温条件下压力容器用低镍钢板及其生产方法
CN102586696A (zh) 应用于深冷环境的7Ni钢及其制备工艺
CN115927952B (zh) 一种690MPa级抗氢致延迟断裂的低焊接裂纹敏感性调质钢及其制造方法
CN114875331B (zh) 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180501