CN114107811A - 一种700MPa级抗大线能量焊接用钢及其制造方法 - Google Patents

一种700MPa级抗大线能量焊接用钢及其制造方法 Download PDF

Info

Publication number
CN114107811A
CN114107811A CN202111362606.6A CN202111362606A CN114107811A CN 114107811 A CN114107811 A CN 114107811A CN 202111362606 A CN202111362606 A CN 202111362606A CN 114107811 A CN114107811 A CN 114107811A
Authority
CN
China
Prior art keywords
equal
less
steel
temperature
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111362606.6A
Other languages
English (en)
Inventor
丁庆丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiujiang Pxsteel Steel And Iron Co ltd
Original Assignee
Jiujiang Pxsteel Steel And Iron Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiujiang Pxsteel Steel And Iron Co ltd filed Critical Jiujiang Pxsteel Steel And Iron Co ltd
Priority to CN202111362606.6A priority Critical patent/CN114107811A/zh
Publication of CN114107811A publication Critical patent/CN114107811A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Abstract

一种700MPa级抗大线能量焊接用钢及其制造方法,属于金属冶金领域。钢的化学成分按重量百分比含量包括C:0.06%~0.12%、Si:0.10%~0.30%、Mn:1.20%~2.00%、Ni:0.20%~0.60%、Cu:0.08~0.30%、Nb:0.030%~0.070%、Mo:0.06~0.25%、Ti:0.007~0.035%、RE:0.003%~0.025%、Cr≤0.20%、P≤0.010%、S≤0.003%、As≤0.005%,余量为Fe及不可避免杂质元素,同时满足:碳当量CEV=C+Mn/6+Cr/5+Mo/4+Si/24+Ni/40+V/14≤0.44%,低焊接裂纹敏感系数Pcm=C+Si/30+(Mn+Cr+Cu)/20+Mo/15+Ni/60+V/10+5B≤0.23%。本发明钢的抗拉强度Rm≥680MPa,屈服强度ReL≥560MPa、屈强比≤0.83,冲击韧性‑50℃KV2≥100J,焊接热影响区(HAZ)冲击韧性‑50℃KV2≥47J,具有优良低温韧性和抗大线能量(≤200KJ/cm)焊接性能。

Description

一种700MPa级抗大线能量焊接用钢及其制造方法
技术领域
本发明属于金属冶金领域,具体涉及一种700MPa级抗大线能量焊接用的高强度钢板及其制造方法。
背景技术
抗大线能量焊接用钢应用越来越广泛,大量应用于海洋平台、船舶、原油储罐、桥梁等行业,焊接效率明显提升,工人劳动强度显著降低。目前国内500MPa、600MPa级别的抗大线能量焊接用钢技术越来越成熟,随着轻量化的需求,提高抗大线能量用钢强度和提升抗大线能量焊接能力均非常必要,同时焊接接头必须有足够的强韧性,从而保证钢材性能的稳定性。
近年来,700MPa级大线能量焊接用钢研究越来越多,焊接线能量也不高,特别是在焊接热影响区低温冲击韧性方面略显不足,经常出现冲击韧性不稳定问题,另外合金成本也较高,工艺较为复杂。
专利CN112813354A为700MPa抗大线能量焊接用建筑钢,合金含量较高,其中Ni含量超过0.8%,Mo含量超过0.4%,V含量超过0.03%。热处理工艺为淬火+回火,工艺流程长,生产成本高。尽管焊接线能量达到200KJ/cm,只具有0℃冲击,不具备低温冲击特性。
专利CN111411302A和CN111411302B为700MPa抗大线能量焊接用容器钢,具有-40℃低温韧性,但其合金含量高,采用较高的贵重合金元素Ni、Zr、V等,还采用淬火+回火长流程生产工艺,屈强比超过0.90,生产成本高。
专利ZL2015 1 0561794.3抗拉强度达到700MPa,合金也较低,焊接线能量也达到150KJ/cm,但其低温韧性只能满足-30℃需求,生产时对[O]要求控制严格。
专利CN110791702A和CN110835711A具有较低的屈强比、优良的抗大线能量焊接性能和-40℃低温韧性,但其强度低,抗拉强度仅为500~600MPa。
发明内容
本发明明其目的就在于提供一种700MPa级抗大线能量焊接用钢及其制造方法,以解决上述背景技术中的问题;采用添加Nb、Ni、Ti、RE等微量合金元素,通过Ti-RE复合添加形成细小的高温复合氧化物,明显提高钢的抗大线能量焊接性能;采用合理的控轧控冷及回火工艺,降低钢的屈强比,具有生产工艺流程短、低温韧性优良的特点。
为实现上述目的而采取的技术方案是,一种700MPa级抗大线能量焊接用钢,该钢的化学成分按重量百分比含量包括:C:0.06%~0.12%、Si:0.10%~0.30%、Mn:1.20%~2.00%、Ni:0.20%~0.60%、Cu:0.08~0.30%、Nb:0.030%~0.070%、Mo :0.06~0.25%、Ti:0.007~0.035%、RE:0.003%~0.025%、Cr≤0.20%、P≤0.010%、S≤0.003%、As≤0.005%,余量为Fe及不可避免杂质元素,同时满足:碳当量CEV=C+Mn/6+Cr/5+Mo/4+Si/24+Ni/40+V/14≤0.44%,低焊接裂纹敏感系数Pcm=C+Si/30+(Mn+Cr+Cu)/20+Mo/15+Ni/60+V/10+5B≤0.23%。
进一步,所述钢的化学成分重量百分比含量包括:C:0.06%~0.10%、Si:0.10%~0.30%、Mn:1.45%~1.80%、Ni:0.20%~0.40%、Cu:0.08~0.25%、Nb:0.030%~0.060%、Mo :0.06~0.20%、Ti:0.008~0.025%、RE:0.005%~0.018%、Cr≤0.20%、P≤0.010%、S≤0.003%、As≤0.005%,余量为Fe及不可避免杂质元素,同时满足:碳当量CEV=C+Mn/6+Cr/5+Mo/4+Si/24+Ni/40+V/14≤0.44%,低焊接裂纹敏感系数Pcm=C+Si/30+(Mn+Cr+Cu)/20+Mo/15+Ni/60+V/10+5B≤0.23%。
一种700MPa级抗大线能量焊接用钢的制造方法,该方法包括以下步骤:
(1)冶炼:高炉冶炼As≤0.005%的铁水并进行铁水预处理,转炉深脱磷、精炼炉深脱硫、并经真空精炼处理及喂Ca-RE线处理;
(2)连铸:采用轻压下、电磁搅拌及氩气保护浇注技术及控制恒拉速,浇注成250mm厚铸坯;
(3)加热:坯料热送,铸坯均热温度为1180~1250℃;
(4)控制轧制:第一阶段终轧温度为1000~1050℃,纵轧前三道次道次压下量≥35mm;第二阶段开轧温度≤930℃,终轧温度780~820℃;
(5)控制冷却:以15~35℃冷却速度控制钢板冷却,返红温度为500~600℃;轧后钢板堆冷24小时;
(6)回火:钢板回火温度为450~600℃,在炉时间为60~150min。出炉后空冷至室温。
有益效果
与现有技术相比本发明具有以下优点。
本发明通过设计钢的元素成分及含量,添加Nb、Ni、Ti、RE等微量合金元素;由于Ti、RE复合添加,更易形成Ti-RE复合细小氧化物,这种高温细小氧化物在浇注过程中,优先析出并弥散分布,可阻止铸坯晶粒长大,细化铸坯晶粒,同时在大线能量焊接过程中,这些Ti-RE复合细小高温氧化物也能抑制焊接热影响区的晶粒长大,细化焊接热影响区晶粒,再通过添加适量的Ni含量,从而显著改善焊接热影响的-50℃低温韧性;微量Nb元素的加入可进一步改善控轧控冷钢的强度和韧性,特别是通过Nb(C、N)析出阻止加热过程中原奥氏体的急剧长大,还能抑制再结晶行为,细化晶粒,再通过780~820℃的近两相区轧制温度进行轧制,可进一步提高组织中位错密度,同时降低钢板的屈强比,从而即保证钢板抗拉强度不低于680MPa,又保证了具有足够的屈服强度;另外本发明采用铸坯热送+控轧控冷+回火的短流程工艺生产制造模式,其中坯料热送温度不低于450℃,这种短流程工艺可大幅降低本发明钢的生产成本。
附图说明
以下结合附图对本发明作进一步详述。
图1为本发明中实施例1钢板的示意图;
图2为本发明中实施例1钢板典型Ti-RE复合氧化物示意图。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
一种700MPa级抗大线能量焊接用钢,该钢板的化学成分重量百分比含量包括:C:0.06%~0.12%、Si:0.10%~0.30%、Mn:1.20%~2.00%、Ni:0.20%~0.60%、Cu:0.08~0.30%、Nb:0.030%~0.070%、Mo :0.06~0.25%、Ti:0.007~0.035%、RE:0.003%~0.025%、Cr≤0.20%、P≤0.010%、S≤0.003%、As≤0.005%,余量为Fe及不可避免杂质元素,同时满足:碳当量CEV=C+Mn/6+Cr/5+Mo/4+Si/24+Ni/40+V/14≤0.44%,低焊接裂纹敏感系数Pcm=C+Si/30+(Mn+Cr+Cu)/20+Mo/15+Ni/60+V/10+5B≤0.23%。
所述钢板抗拉强度Rm≥680MPa,屈服强度ReL≥560MPa、屈强比≤0.83,冲击韧性-50℃KV2≥100J,焊接热影响区(HAZ)冲击韧性-50℃KV2≥47J,具有优良低温韧性和抗大线能量(≤200KJ/cm)焊接性能。
所述钢板的化学成分重量百分比含量包括:C:0.06%~0.10%、Si:0.10%~0.30%、Mn:1.45%~1.80%、Ni:0.20%~0.40%、Cu:0.08~0.25%、Nb:0.030%~0.060%、Mo :0.06~0.20%、Ti:0.008~0.025%、RE:0.005%~0.018%、Cr≤0.20%、P≤0.010%、S≤0.003%、As≤0.005%,余量为Fe及不可避免杂质元素,同时满足:
CEV=C+Mn/6+Cr/5+Mo/4+Si/24+Ni/40+V/14≤0.44%,
Pcm=C+Si/30+(Mn+Cr+Cu)/20+Mo/15+Ni/60+V/10+5B≤0.23%。
本发明钢中主要元素冶金原理及控制要求如下:
C作为是提高钢板强度和硬度的最重要元素,但增加较多碳会增加钢中碳当量,降低钢的低温韧性和塑性,也会降低其抗裂纹敏感性,恶化钢板的焊接性和焊接热影响区低温韧性。因此,C的含量为0.06~0.12%。
Si通过固溶强化提高钢的强度,但添加过量的Si会损害钢的塑性和韧性,也会降低钢的焊接性和焊接热影响的低温韧性。因此,C的含量为0.10~0.30%。
Mn可提高钢板的强度和扩大奥氏体相区,细化铁素体晶粒,从而达到改善钢板的低温韧性。但Mn易发生偏析,影响低温韧性和焊接性。因此,Mn的含量为1.20~2.00%。
P、S、As作为钢中残余的有害元素,会增加钢的冷脆性,降低钢的低温韧性和塑性,恶化焊接热影响区的焊接性能,易产生焊接再加热开裂,故其含量越低越好。因此,P≤0.010%、S≤0.003%、As≤0.005%。
Ni可改善钢的塑性和韧性,同时可明显改善钢的焊接热影响区的低温韧性,适当加入可明显降低其韧脆转变温度,但加入量过多会显著使钢的成本上升。因此,Ni的含量为0.20~0.60%。
Cu可提高基体及焊缝金属的强度和低温韧性,与Ni结合能更好地起到耐腐蚀作用。但含量过高会使塑性显著降低。因此,Cu的含量为0.05~0.30%。
Mo可提高钢的淬透性和回火稳定性,但Mo作为贵重合金,加入过多会增加其成本。因此,Mo的含量为0.05~0.30%。
Nb的加入可明显提高奥氏体再结晶温度,有利于促进晶粒细化,使钢材具有良好的强韧性匹配。当Nb与C、N反应形成Nb(C、N),形成弥散分布的细小碳化物,在高温析出和控轧过程中起到控制晶粒长大和弥散强化的作用。当Nb含量高于0.07%时,则明显使焊接热影响区的韧性恶化,而当Nb含量偏低时,则Nb的加入对钢中晶粒细化效果很不明显。因此,Nb的含量为0.030~0.07%。
Ti、RE与O结合形成X2O3等细小弥散分布氧化物,由于细小氧化物的钉扎作用,明显抑制大线能量焊接条件下焊接热影响区晶粒的粗化,改善焊接热影响区的低温韧性。Ti的过量加入会导致韧性的极度降低。因此,Ti的含量为0.007~0.035%、RE的含量为0.005~0.020%。
一种700MPa级抗大线能量焊接用钢的制造方法,包括以下步骤:
(1)冶炼:高炉冶炼As≤0.005%的铁水并进行铁水预处理,转炉深脱磷、精炼炉深脱硫、并经真空精炼处理及喂Ca-RE线处理;
(2)连铸:采用轻压下、电磁搅拌及氩气保护浇注技术及控制恒拉速,浇注成250mm厚铸坯;
(3)加热:坯料热送,铸坯均热温度为1180~1250℃;
(4)控制轧制:第一阶段终轧温度为1000~1050℃,纵轧前三道次道次压下量≥35mm;第二阶段开轧温度≤930℃,终轧温度780~820℃;
(5)控制冷却:以15~35℃冷却速度控制钢板冷却,返红温度为500~600℃;轧后钢板堆冷24小时;
(6)回火:钢板回火温度为450~600℃,在炉时间为60~150min。出炉后空冷至室温。
实施例
本发明各实施例和对比例所对应的700MPa抗大线能量焊接用钢的化学成分(重量百分比wt%)见表1,剩余为Fe及不可避免的杂质元素。
表1
Figure 723416DEST_PATH_IMAGE002
炼钢连铸工艺:选用As≤0.005%的铁水,并对铁水进行KR预处理,深脱硫,同时按照实施例备料,转炉冶炼深脱磷,精炼炉再深脱硫和真空处理炉进行精炼处理,结束后喂Ca-RE线处理,并进行适当软吹,之后,连铸过程采用轻压下、电磁搅拌及氩气保护浇注技术及控制恒拉速,浇注成250mm厚铸坯。
控制轧制和控制冷却工艺:进入加热炉加热1180-1250℃后,采用两阶段轧制和控制冷却工艺,,第一阶段终轧温度为1000~1050℃,末三道次道次压下量≥35mm;第二阶段终轧温度780~820℃,以15~35℃冷却速度控制钢板冷却,返红温度为500℃~600℃。轧后下线堆冷24小时。
回火工艺:钢板回火温度为450~600℃,在炉时间为60~150min。出炉后空冷至室温。
表2为实施例和对比例主要轧制和回火工艺参数。
表2
Figure 47081DEST_PATH_IMAGE003
回火处理后的钢板,横向取样加工成拉伸、冲击试样,并进行力学性能检测,表3为实施例和对比例母材力学性能结果。
表3
Figure 233342DEST_PATH_IMAGE004
由表3可见,本发明实施例钢板母材强度、塑性指标与对比钢基本相同,实施例1在Ni含量比对比例还要低的情况下,其低温韧性仍与对比例基本相同。
回火处理后的钢板,横向取样加工成11mm×11mm×90mm的焊接热模拟试样,并在Gleeble-3500热-机械模拟试验机上进行不同线能量焊接热模拟试验,试验结束后,在焊接热模拟试样两铜线电偶焊接处中心线加工成V型夏比冲击试样进行-50℃低温冲击试验。表4给出了实施例和对比例不同线能量焊接热模拟试验工艺参数,表5给出了实施例和对比例热对应线能量条件下的拉伸强度和焊接热影响区在-50℃的低温冲击数据。
表4
Figure 533612DEST_PATH_IMAGE005
表5
Figure 20088DEST_PATH_IMAGE006
从大线能量焊接试验结果来看,实施例焊接热影响区冲击韧性均满足-50℃KV2≥47J的标准要求,且在Ti-RE含量基本相同条件下,Ni含量越高,热影响区低温韧性越好;而对比例1冲击韧性较差且不稳定,且Ni含量比实施例1要高,但热影响区低温韧性仍较差,说明对比例1不能在-50℃低温下抗大线能量焊接。
图1为实施例1钢板典型Ti-RE复合氧化物示意图,是本发明钢母材中含有的Ti-RE复合氧化物,这些细小的高温氧化物普遍存在,细化了母材和焊接热影响区的晶粒,使发明钢具有较好的抗大线能量焊接特性,并具有较好的-50℃低温韧性。

Claims (4)

1.一种700MPa级抗大线能量焊接用钢,其特征在于,该钢的化学成分按重量百分比含量包括:C:0.06%~0.12%、Si:0.10%~0.30%、Mn:1.20%~2.00%、Ni:0.20%~0.60%、Cu:0.08~0.30%、Nb:0.030%~0.070%、Mo :0.06~0.25%、Ti:0.007~0.035%、RE:0.003%~0.025%、Cr≤0.20%、P≤0.010%、S≤0.003%、As≤0.005%,余量为Fe及不可避免杂质元素,同时满足:碳当量CEV=C+Mn/6+Cr/5+Mo/4+Si/24+Ni/40+V/14≤0.44%,低焊接裂纹敏感系数Pcm=C+Si/30+(Mn+Cr+Cu)/20+Mo/15+Ni/60+V/10+5B≤0.23%。
2.根据权利要求1所述的一种700MPa级抗大线能量焊接用钢,其特征在于,所述钢的化学成分重量百分比含量包括:C:0.06%~0.10%、Si:0.10%~0.30%、Mn:1.45%~1.80%、Ni:0.20%~0.40%、Cu:0.08~0.25%、Nb:0.030%~0.060%、Mo :0.06~0.20%、Ti:0.008~0.025%、RE:0.005%~0.018%、Cr≤0.20%、P≤0.010%、S≤0.003%、As≤0.005%,余量为Fe及不可避免杂质元素,同时满足:碳当量CEV=C+Mn/6+Cr/5+Mo/4+Si/24+Ni/40+V/14≤0.44%,低焊接裂纹敏感系数Pcm=C+Si/30+(Mn+Cr+Cu)/20+Mo/15+Ni/60+V/10+5B≤0.23%。
3.一种700MPa级抗大线能量焊接用钢的制造方法,其特征在于,该方法包括以下步骤:
冶炼:高炉冶炼As≤0.005%的铁水并进行铁水预处理,转炉深脱磷、精炼炉深脱硫、并经真空精炼处理及喂Ca-RE线处理;
连铸:采用轻压下、电磁搅拌及氩气保护浇注技术及控制恒拉速,浇注成250mm厚铸坯;
加热:坯料热送,铸坯均热温度为1180~1250℃;
控制轧制:第一阶段终轧温度为1000~1050℃,纵轧前三道次道次压下量≥35mm;第二阶段开轧温度≤930℃,终轧温度780~820℃;
控制冷却:以15~35℃冷却速度控制钢板冷却,返红温度为500~600℃;轧后钢板堆冷24小时;
回火:钢板回火温度为450~600℃,在炉时间为60~150min。
4.出炉后空冷至室温。
CN202111362606.6A 2021-11-17 2021-11-17 一种700MPa级抗大线能量焊接用钢及其制造方法 Pending CN114107811A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111362606.6A CN114107811A (zh) 2021-11-17 2021-11-17 一种700MPa级抗大线能量焊接用钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111362606.6A CN114107811A (zh) 2021-11-17 2021-11-17 一种700MPa级抗大线能量焊接用钢及其制造方法

Publications (1)

Publication Number Publication Date
CN114107811A true CN114107811A (zh) 2022-03-01

Family

ID=80396068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111362606.6A Pending CN114107811A (zh) 2021-11-17 2021-11-17 一种700MPa级抗大线能量焊接用钢及其制造方法

Country Status (1)

Country Link
CN (1) CN114107811A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612939A (zh) * 2022-12-20 2023-01-17 江苏省沙钢钢铁研究院有限公司 一种1000MPa级高强热轧钢板及其制备方法
CN115927952A (zh) * 2022-10-21 2023-04-07 燕山大学 一种690MPa级抗氢致延迟断裂的低焊接裂纹敏感性调质钢及其制造方法
CN116334505A (zh) * 2023-05-23 2023-06-27 北京科技大学 冷裂纹敏感系数小于等于0.13的700MPa高强度结构钢及其制备方法和应用
CN116770198A (zh) * 2023-08-25 2023-09-19 张家港宏昌钢板有限公司 一种低压缩比水电用钢板及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080193A (zh) * 2011-01-10 2011-06-01 东北大学 一种超大热输入焊接用结构钢及其制造方法
CN102605248A (zh) * 2012-03-09 2012-07-25 宝山钢铁股份有限公司 一种大线能量焊接厚钢板及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080193A (zh) * 2011-01-10 2011-06-01 东北大学 一种超大热输入焊接用结构钢及其制造方法
CN102605248A (zh) * 2012-03-09 2012-07-25 宝山钢铁股份有限公司 一种大线能量焊接厚钢板及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927952A (zh) * 2022-10-21 2023-04-07 燕山大学 一种690MPa级抗氢致延迟断裂的低焊接裂纹敏感性调质钢及其制造方法
CN115927952B (zh) * 2022-10-21 2024-02-06 燕山大学 一种690MPa级抗氢致延迟断裂的低焊接裂纹敏感性调质钢及其制造方法
CN115612939A (zh) * 2022-12-20 2023-01-17 江苏省沙钢钢铁研究院有限公司 一种1000MPa级高强热轧钢板及其制备方法
CN116334505A (zh) * 2023-05-23 2023-06-27 北京科技大学 冷裂纹敏感系数小于等于0.13的700MPa高强度结构钢及其制备方法和应用
CN116334505B (zh) * 2023-05-23 2023-08-04 北京科技大学 冷裂纹敏感系数小于等于0.13的700MPa高强度结构钢及其制备方法和应用
CN116770198A (zh) * 2023-08-25 2023-09-19 张家港宏昌钢板有限公司 一种低压缩比水电用钢板及其制备方法
CN116770198B (zh) * 2023-08-25 2023-11-03 张家港宏昌钢板有限公司 一种低压缩比水电用钢板及其制备方法

Similar Documents

Publication Publication Date Title
US9797033B2 (en) High-strength, high-toughness, wear-resistant steel plate and manufacturing method thereof
CN114107811A (zh) 一种700MPa级抗大线能量焊接用钢及其制造方法
CN102277540B (zh) 抗高温pwht软化的正火型钢板及其制造方法
CN111441000A (zh) 一种屈服强度690MPa级低屈强比高强钢板及其制造方法
CN110184531A (zh) 一种40-60mm厚易焊接心部低温韧性优良的容器钢板及其制造方法
EP3789508A1 (en) Yield strength 460 mpa grade hot-rolled high-toughness low-temperature-resistant h-beam and preparation method therefor
CN107937807B (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN114107812B (zh) 一种高断裂韧性420MPa级海工平台用热处理态钢板及制备方法
CN111500928B (zh) 一种低温高韧高温高强及高淬透性热模钢及制备技术
CN110983187A (zh) 一种新型高强耐候管线钢x80钢板及其生产方法
CN114134407A (zh) 一种易焊接心部低温韧性优良的蜗壳用钢板及其制造方法
CN111304531A (zh) 一种屈服强度550MPa级热轧H型钢及其生产方法
CN113637911B (zh) 一种800MPa级抗大线能量焊接压力容器用钢及其制备方法
CN108342649A (zh) 一种耐酸腐蚀的调质高强度压力容器用钢及生产方法
CN114318140A (zh) 一种抗酸性能优良的管线钢及其制造方法
CN115572905B (zh) 一种690MPa级耐回火低温调质钢及其制造方法
JP2012052224A (ja) 溶接熱影響部靭性に優れた鋼材
CN115927952A (zh) 一种690MPa级抗氢致延迟断裂的低焊接裂纹敏感性调质钢及其制造方法
CN105112810A (zh) 一种抗大线能量焊接用钢及其制备方法
CN112746222B (zh) 一种355MPa级低温抗碰撞钢板及制造方法
CN112442629B (zh) 一种中碳机械结构用钢及其制造方法
CN110284056B (zh) 一种耐腐蚀海洋平台用钢板及其生产方法
CN109881123B (zh) 一种1000Mpa级高强度亚稳态奥氏体-马氏体不锈钢
CN114086083A (zh) 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法
CN111621714A (zh) 一种耐蚀耐延迟断裂性能优异的螺栓用圆钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220301