CN107968590A - 一种弱电网下三相 lcl 型并网逆变器的相角补偿控制方法 - Google Patents

一种弱电网下三相 lcl 型并网逆变器的相角补偿控制方法 Download PDF

Info

Publication number
CN107968590A
CN107968590A CN201711181747.1A CN201711181747A CN107968590A CN 107968590 A CN107968590 A CN 107968590A CN 201711181747 A CN201711181747 A CN 201711181747A CN 107968590 A CN107968590 A CN 107968590A
Authority
CN
China
Prior art keywords
axis
under
coordinate system
grid
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711181747.1A
Other languages
English (en)
Other versions
CN107968590B (zh
Inventor
罗安
杨苓
陈燕东
陈智勇
周乐明
周小平
伍文华
谢志为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201711181747.1A priority Critical patent/CN107968590B/zh
Publication of CN107968590A publication Critical patent/CN107968590A/zh
Application granted granted Critical
Publication of CN107968590B publication Critical patent/CN107968590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator

Abstract

本发明公开了一种弱电网下三相LCL型并网逆变器的相角补偿控制方法,引入公共耦合点电压前馈,减小了并网逆变器的输出导纳在系统截止频率处的相角,解决了因锁相环带宽较大引起的系统不稳定问题,并保证了系统的动态响应速度。

Description

一种弱电网下三相LCL型并网逆变器的相角补偿控制方法
技术领域
本发明涉及可再生能源发电系统领域,特别是一种弱电网下三相LCL型并网逆变器的相角补偿控制方法。
背景技术
面对日益紧迫的能源危机以及日益增长的电力需求,发展可再生能源发电系统成为一种可行和有效的途径和方案。可再生能源发电系统主要由光伏、风机、储能装置、柴油发电机、变换器和负荷组成。其中光伏发电、风力发电、储能装置和柴油发电机等输出为直流电或高频交流电,因此,为了满足供电需求,变换器作为可再生能源和电网的接口,起着将可再生能源发出的电能转变为交流形式馈送至电网的重要作用。
在弱电网下,锁相环和并网电流闭环通过公共耦合点电压耦合在一起,共同组成整个系统的控制环路,因此在分析系统稳定性时,需要考虑锁相环的影响。锁相环引入负阻尼的频率范围随锁相环带宽的增大而增大,导致系统稳定性降低,通过减小锁相环的带宽来提高系统的稳定性,但这会对系统的动态性产生不利的影响。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种弱电网下三相LCL型并网逆变器的相角补偿控制方法,解决因锁相环带宽较大引起的系统不稳定问题,并保证系统的动态响应速度。
为解决上述技术问题,本发明所采用的技术方案是:一种弱电网下三相LCL型并网逆变器的相角补偿控制方法,包括d轴控制部分和q轴控制部分:
所述d轴控制部分包括以下步骤:
1)将系统dq坐标系下q轴小信号公共耦合点电压相乘,得到的乘积与系统dq坐标系下d轴小信号并网电流相加,得到控制dq坐标系下d轴小信号并网电流其中,是系统dq坐标系下q轴稳定工作点处的并网电流,GPLL到两个dq坐标系之间的角度Δθ的传递函数,TPLL是锁相环PI控制器的传递函数,TPLL=kppll+kipll/s,kppll的取值范围为0.7≤kppll≤0.9,kipll的取值范围为499≤kipll≤501,s=jω,j是虚部单位符号,ω为角频率,是系统dq坐标系下d轴稳定工作点处的公共耦合点电压;
2)将控制dq坐标系下d轴小信号并网电流参考值相减,得到的差值与控制dq坐标系下d轴电流环PI控制器的传递函数Gid(s)相乘,得到乘积ed,其中,Gid(s)=kpid+kiid/s,kpid的取值范围为0.44≤kpid≤0.46,kiid的取值范围为999≤kiid≤1001;将相乘,得到的乘积与系统dq坐标系下d轴小信号滤波电容电流相加,得到控制dq坐标系下d轴小信号滤波电容电流其中,是系统dq坐标系下q轴稳定工作点处的滤波电容电流;
3)将滤波电容电流反馈有源阻尼系数KC相乘,再用乘积ed减去该乘积得到nd
4)将相乘,再与系统dq坐标系下d轴小信号公共耦合点电压相加,得到控制dq坐标系下d轴小信号公共耦合点电压其中,是系统dq坐标系下q轴稳定工作点处的公共耦合点电压;
5)将d轴相角补偿函数Gcomdd(s)与相乘,得到的乘积与nd相加,得到控制dq坐标系下d轴小信号占空比
6)将相乘,减去该乘积得到系统dq坐标系下d轴小信号占空比其中,是系统dq坐标系下q轴稳定工作点处的占空比;
7)将与系统dq坐标系下逆变器的等效增益GPWM相乘,得到系统dq坐标系下d轴小信号逆变器输出电压
所述q轴控制部分包括以下步骤:
1)将相乘,系统dq坐标系下q轴小信号并网电流相乘的乘积相减,得到控制dq坐标系下q轴小信号并网电流 其中,是系统dq坐标系下d轴稳定工作点处的并网电流;
2)将控制dq坐标系下q轴小信号并网电流参考值相减,得到的差值与控制dq坐标系下q轴电流环PI控制器的传递函数Giq(s)相乘,得到乘积eq,其中,Giq(s)=kpiq+kiiq/s,kpiq的取值范围为0.44≤kpiq≤0.46,kiiq的取值范围为999≤kiiq≤1001;将相乘,系统dq坐标系下q轴小信号滤波电容电流相乘的乘积相减,得到控制dq坐标系下q轴小信号滤波电容电流其中,是系统dq坐标系下d轴稳定工作点处的滤波电容电流;
3)将滤波电容电流反馈有源阻尼系数KC相乘,乘积eq减去该乘积得到nq
4)将相乘,与该乘积相减,得到控制dq坐标系下q轴小信号公共耦合点电压
5)将q轴相角补偿函数Gcomqq(s)与相乘,再与nq相加,得到控制dq坐标系下q轴小信号占空比
6)将相乘,再与相加得到系统dq坐标系下q轴小信号占空比其中,是系统dq坐标系下d轴稳定工作点处的占空比;
7)将与系统dq坐标系下逆变器的等效增益GPWM相乘,得到系统dq坐标系下q轴小信号逆变器输出电压
d轴控制部分步骤1)中,的取值范围为的取值范围为
d轴控制部分步骤2)中,的取值范围为
KC的取值范围为0.8≤KC≤1.5。
d轴控制部分步骤4)中,的取值范围为
d轴控制部分步骤5)中,Gcomdd(s)的表达式为:
式中kp为相角补偿的比例系数,kp的取值范围为2.03≤kp≤2.05,kω为相角补偿的相角系数,kω的取值范围为0.0015≤kω≤0.0017,km为相角补偿的增益系数,km的取值范围为1.42≤km≤1.44; L1为逆变器侧电感,C1为滤波电容,RL1和RC1分别为L1和C1的寄生电阻,ω1是电网基波角频率。
d轴控制部分步骤6)中,的取值范围为
GPWM的取值范围为350≤GPWM≤360。
q轴控制部分步骤1)中,的取值范围为q轴控制部分步骤2)中,的取值范围为q轴控制部分步骤6)中,的取值范围为
q轴控制部分步骤5)中,Gcomqq(s)的表达式为:
式中
与现有技术相比,本发明所具有的有益效果为:本发明提出了一种弱电网下三相LCL型并网逆变器的相角补偿控制方法,引入公共耦合点电压前馈,减小了并网逆变器的输出导纳在系统截止频率处的相角,解决了因锁相环带宽较大引起的系统不稳定问题,并保证了系统的动态响应速度。
附图说明
图1为本发明一实施例三相LCL型并网系统的等效结构图;
图2为本发明一实施例LCL型并网逆变器的小信号控制框图;
图3为本发明一实施例LCL型并网逆变器的小信号模型;
图4为本发明一实施例锁相环的控制框图;
图5为本发明一实施例回率矩阵L的特征函数的奈奎斯特曲线;
图6为本发明一实施例相角补偿前锁相环输出频率f1和并网电流igabc的仿真波形;
图7为本发明一实施例相角补偿后锁相环输出频率f1和并网电流igabc的仿真波形。
具体实施方式
图1为三相LCL型并网系统的等效结构图,左侧为逆变器子系统,右侧为电网子系统,其中:当光伏阵列和DC/DC变换器或者风机机组和AC/DC变换器通过LCL型并网逆变器接入配电网时,LCL型并网逆变器的输入可以等效为直流源。逆变器侧电感L1、滤波电容C1和网侧电感L2构成LCL滤波器,RL1、RC1和RL2分别为L1、C1和L2的寄生电阻,Zg为电网阻抗,Udc为直流侧电压,uinv为逆变器的输出电压,uC1为滤波电容电压,uPCC为PCC电压,ug为电网电压,iL1、iC1和ig分别为逆变器侧电感电流、滤波电容电流和并网电流。
图2为LCL型并网逆变器的小信号控制框图,考虑锁相环影响的系统有两个dq坐标系:一个为系统dq坐标系,即电网电压所在坐标系,另一个为控制dq坐标系,即锁相环所在坐标系。该方法包括d轴控制部分和q轴控制部分:
所述d轴控制部分包括以下步骤:将系统dq坐标系下q轴小信号公共耦合点电压相乘,再与系统dq坐标系下d轴小信号并网电流相加,得到控制dq坐标系下d轴小信号并网电流其中,是系统dq坐标系下q轴稳定工作点处的并网电流,GPLL到两个dq坐标系之间的角度Δθ的传递函数,TPLL是锁相环PI控制器的传递函数,TPLL=kppll+kipll/s,kppll的取值范围为0.7≤kppll≤0.9,kipll的取值范围为499≤kipll≤501,s=jω,j是虚部单位符号,ω为角频率,是系统dq坐标系下d轴稳定工作点处的公共耦合点电压;
将控制dq坐标系下d轴小信号并网电流参考值相减,得到的差值与控制dq坐标系下d轴电流环PI控制器的传递函数Gid(s)相乘,得到乘积ed,其中,Gid(s)=kpid+kiid/s,kpid的取值范围为0.44≤kpid≤0.46,kiid的取值范围为999≤kiid≤1001;将相乘,再与系统dq坐标系下d轴小信号滤波电容电流相加,得到控制dq坐标系下d轴小信号滤波电容电流其中,是系统dq坐标系下q轴稳定工作点处的滤波电容电流;
将滤波电容电流反馈有源阻尼系数KC相乘,再用乘积ed减去该乘积得到nd
相乘,再与系统dq坐标系下d轴小信号公共耦合点电压相加,得到控制dq坐标系下d轴小信号公共耦合点电压其中,是系统dq坐标系下q轴稳定工作点处的公共耦合点电压;
将d轴相角补偿函数Gcomdd(s)与相乘,再与nd相加,得到控制dq坐标系下d轴小信号占空比
相乘,减去该乘积得到系统dq坐标系下d轴小信号占空比其中,是系统dq坐标系下q轴稳定工作点处的占空比;
与系统dq坐标系下逆变器的等效增益GPWM相乘,得到系统dq坐标系下d轴小信号逆变器输出电压
所述q轴控制部分包括以下步骤:将相乘,系统dq坐标系下q轴小信号并网电流与该乘积相减,得到控制dq坐标系下q轴小信号并网电流 其中,是系统dq坐标系下d轴稳定工作点处的并网电流;
将控制dq坐标系下q轴小信号并网电流参考值相减,得到差值与控制dq坐标系下q轴电流环PI控制器的传递函数Giq(s)相乘,得到乘积eq,其中,Giq(s)=kpiq+kiiq/s,kpiq的取值范围为0.44≤kpiq≤0.46,kiiq的取值范围为999≤kiiq≤1001;将相乘,系统dq坐标系下q轴小信号滤波电容电流与该乘积相减,得到控制dq坐标系下q轴小信号滤波电容电流其中,是系统dq坐标系下d轴稳定工作点处的滤波电容电流;
将滤波电容电流反馈有源阻尼系数KC相乘,乘积eq减去该乘积得到nq;将相乘,与该乘积相减,得到控制dq坐标系下q轴小信号公共耦合点电压
将q轴相角补偿函数Gcomqq(s)与相乘,再与nq相加,得到控制dq坐标系下q轴小信号占空比
相乘,再与相加得到系统dq坐标系下q轴小信号占空比 其中,是系统dq坐标系下d轴稳定工作点处的占空比;
与系统dq坐标系下逆变器的等效增益GPWM相乘,得到系统dq坐标系下q轴小信号逆变器输出电压
图3为LCL型并网逆变器的小信号模型,其中:矩阵矩阵 矩阵矩阵矩阵矩阵A6为控制dq坐标系下电流环PI控制器的传递函数矩阵,矩阵A7为控制dq坐标系下有源阻尼环的传递函数矩阵,矩阵矩阵Acom为控制dq坐标系下相角补偿的传递函数矩阵。
将三相静止坐标系下的状态方程进行坐标变换,得到系统dq坐标系下的状态方程,再进行Laplace变换,得到表达式为
式中是系统dq坐标系下小信号逆变器侧电感电流,是系统dq坐标系下小信号滤波电容电压,
由图3和式(1)可得,系统dq坐标系下小信号滤波电容电流和系统dq坐标系下小信号PCC电压系统dq坐标系下小信号并网电流之间关系的表达式为
同时,当系统dq坐标系下小信号PCC电压和小信号直流侧电压ΔUdc为0时,推导出矩阵A1的表达式为
A1=X·(C+A+ABC)-1 (3)
式中X=[Udc/2,0;0,Udc/2]。
当系统dq坐标系下小信号占空比和小信号直流侧电压ΔUdc为0时,推导出矩阵A2的表达式为
A2=-(I+AB)·(C+A+ABC)-1 (4)
式中I为单位矩阵。
矩阵A6的表达式为
矩阵A7的表达式为
矩阵Acom的表达式为
图4为锁相环的控制框图,三相静止abc坐标系下公共耦合点电压uPCCabc通过Tabc/αβ变换到两相静止αβ坐标系,再将两相静止αβ坐标系通过Tαβ/dq变换到同步旋转dq坐标系,得到q轴公共耦合点电压uPCCq,其与0相减的差值经过锁相环PI控制器的传递函数TPLL,得到电网基波角频率ω1,其与1/s相乘,得到角度θ。其中,Tabc/αβ的表达式为
Tαβ/dq的表达式为
在稳定状态下,控制dq坐标系和系统dq坐标系重合。两个dq坐标系之间的角度Δθ为0,因此,两个dq坐标系下小信号电量关系的表达式为
当小信号扰动添加到电网电压时,系统dq坐标系被改变。由于锁相环的PI控制器,控制dq坐标系不再和系统dq坐标系重合。两个dq坐标系之间的角度Δθ不再为0,系统dq坐标系的电压和电流向量通过旋转矩阵TΔθ转换到控制dq坐标系。旋转矩阵TΔθ的表达式为
由式(10)和式(11)可得,当小信号扰动添加到电网电压时,两个dq坐标系下小信号电量关系的表达式为
由式(12)可得,两个dq坐标系下小信号PCC电压关系的表达式为
整理式(13),得到表达式为
由图4可得,两个dq坐标系之间的角度Δθ的表达式为
式中TPLL=kppll+kipll/s。
将式(15)代入式(14),得到表达式为
式中
将式(16)代入式(14)可得,式(14)改写为
因此,矩阵A8的表达式为
按照上述推导过程,两个dq坐标系下小信号占空比关系的表达式为
因此,矩阵A3的表达式为
同时,两个dq坐标系下小信号网侧电感电流关系的表达式为
因此,矩阵A4的表达式为
同理可得,两个dq坐标系下小信号滤波电容电流关系的表达式为
因此,矩阵A5的表达式为
由图2可得,考虑锁相环、电流环和有源阻尼环的影响,相角补偿前,LCL型并网逆变器的输出导纳Yinv表达式为
在可再生能源发电系统中,低功率变压器和长电缆等使得PCC阻抗较大,且呈阻感性,其对LCL型并网逆变器稳定性的影响是不可忽略的。因此,电网阻抗Zg的表达式为
假定在理想电网条件下,LCL型并网逆变器稳定工作。当电网阻抗不可忽略时,当且仅当回率矩阵满足广义奈奎斯特判据,系统稳定工作。回率矩阵L的定义为电网阻抗和LCL型并网逆变器的输出导纳的乘积,对于LCL型并网逆变器而言,|Ydd|、|Yqq|>>|Ydq|、|Yqd|,|Ydq|=|Yqd|=0,因此,回率矩阵L的表达式为
因此,忽略开方分量,回率矩阵L的特征函数为
由广义奈奎斯特判据可知,当且仅当回率矩阵L的每个特征函数的奈奎斯特曲线在s平面逆时针环绕(-1,j0)的圈数,与电网阻抗Zg和LCL型并网逆变器的输出导纳Yinv在右半平面极点总数相同时,系统是稳定的。电网阻抗Zg不存在右半平面极点,由于LCL型并网逆变器单独工作稳定,输出导纳Yinv也不存在右半平面极点,因此,回率矩阵L的每个特征函数的奈奎斯特曲线都不环绕(-1,j0)点,系统是稳定的。
然而,当并网逆变器接入弱电网时,会形成一个动态的互联系统,此时,系统的相角裕度可能出现不足的情况,从而使得某些频率的谐波将在弱电网下放大,导致并网电流谐波畸变率上升。因此,为了保证系统在弱电网下的足够稳定,系统的相角裕度一般要求大于30°。
奈奎斯特曲线与单位圆交点对应的频率fi为系统的截止频率,其与单位圆的位置决定系统的相角裕度,由式(28)可得,系统的相角裕度αPM的表达式为
由式(29)可得,通过减小arg(Zgdd(fi)/2)和arg(Ydd(fi)+Yqq(fi))来增大系统的相角裕度,arg(Zgdd(fi)/2)是难以控制的电网阻抗的相角,因此,需要通过减小arg(Ydd(fi)+Yqq(fi))来实现目标。
由图2可得,相角补偿后,LCL型并网逆变器的输出导纳Yinvc表达式为
同时,优化函数Gp(s)的表达式为
式中kp为相角补偿的比例系数,kω为相角补偿的相角系数,km为相角补偿的增益系数。kp和kω可以减小在期望频率处的相角,km可以补偿相角调节引起的幅值变化。
因此,相角补偿后,LCL型并网逆变器的输出导纳Yinvc的表达式为
Yinvc=ApYinv (32)
式中优化函数矩阵
结合式(30)和式(32),相角补偿矩阵中Gcomdd(s)的表达式为
式中
同时,相角补偿矩阵中Gcomqq(s)的表达式为
式中
图5为回率矩阵L的特征函数的奈奎斯特曲线,相角补偿前,系统的截止频率fi为69.3Hz,系统的相角裕度αPM为16.1°。相比于相角补偿前,相角补偿后系统的相角裕度增大了20°,系统处于稳定状态。
图6和图7为相角补偿前后锁相环输出频率f1和并网电流igabc的仿真波形,相角补偿前,当锁相环带宽大到一定程度时,系统处于不稳定状态。相角补偿后,稳态时,并网电流的畸变率为2.99%。当电网电压中添加小信号扰动后,经过Δt=0.1s,锁相环输出频率f1趋于稳定。相比于相角补偿前,相角补偿后,在锁相环带宽较大时,系统依然处于稳定状态。所提的控制方法解决了因锁相环带宽较大引起的系统不稳定问题,并保证了系统的动态响应速度。

Claims (10)

1.一种弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,包括d轴控制部分和q轴控制部分:
所述d轴控制部分包括以下步骤:
1)将系统dq坐标系下q轴小信号公共耦合点电压GPLL相乘,得到的乘积与系统dq坐标系下d轴小信号并网电流相加,得到控制dq坐标系下d轴小信号并网电流其中,是系统dq坐标系下q轴稳定工作点处的并网电流,GPLL到两个dq坐标系之间的角度Δθ的传递函数,TPLL是锁相环PI控制器的传递函数,TPLL=kppll+kipll/s,kppll的取值范围为0.7≤kppll≤0.9,kipll的取值范围为499≤kipll≤501,s=jω,j是虚部单位符号,ω为角频率,是系统dq坐标系下d轴稳定工作点处的公共耦合点电压;
2)将控制dq坐标系下d轴小信号并网电流参考值相减,得到的差值与控制dq坐标系下d轴电流环PI控制器的传递函数Gid(s)相乘,得到乘积ed,其中,Gid(s)=kpid+kiid/s,kpid的取值范围为0.44≤kpid≤0.46,kiid的取值范围为999≤kiid≤1001;将GPLL相乘,得到的乘积与系统dq坐标系下d轴小信号滤波电容电流相加,得到控制dq坐标系下d轴小信号滤波电容电流其中,是系统dq坐标系下q轴稳定工作点处的滤波电容电流;
3)将滤波电容电流反馈有源阻尼系数KC相乘,再用乘积ed减去该乘积得到nd
4)将GPLL相乘,再与系统dq坐标系下d轴小信号公共耦合点电压相加,得到控制dq坐标系下d轴小信号公共耦合点电压其中,是系统dq坐标系下q轴稳定工作点处的公共耦合点电压;
5)将d轴相角补偿函数Gcomdd(s)与相乘,得到的乘积与nd相加,得到控制dq坐标系下d轴小信号占空比
6)将GPLL相乘,得到乘积,减去该乘积得到系统dq坐标系下d轴小信号占空比其中,是系统dq坐标系下q轴稳定工作点处的占空比;
7)将与系统dq坐标系下逆变器的等效增益GPWM相乘,得到系统dq坐标系下d轴小信号逆变器输出电压
所述q轴控制部分包括以下步骤:
1)将系统dq坐标系下q轴小信号并网电流减去GPLL相乘的乘积,得到控制dq坐标系下q轴小信号并网电流其中,是系统dq坐标系下d轴稳定工作点处的并网电流;
2)将控制dq坐标系下q轴小信号并网电流参考值相减,得到的差值与控制dq坐标系下q轴电流环PI控制器的传递函数Giq(s)相乘,得到乘积eq,其中,Giq(s)=kpiq+kiiq/s,kpiq的取值范围为0.44≤kpiq≤0.46,kiiq的取值范围为999≤kiiq≤1001;将系统dq坐标系下q轴小信号滤波电容电流减去GPLL相乘的乘积,得到控制dq坐标系下q轴小信号滤波电容电流其中,是系统dq坐标系下d轴稳定工作点处的滤波电容电流;
3)将滤波电容电流反馈有源阻尼系数KC相乘,乘积eq减去该乘积得到nq
4)将GPLL相乘,与该乘积相减,得到控制dq坐标系下q轴小信号公共耦合点电压
5)将q轴相角补偿函数Gcomqq(s)与相乘,再与nq相加,得到控制dq坐标系下q轴小信号占空比
6)将GPLL相乘,再与相加得到系统dq坐标系下q轴小信号占空比其中,是系统dq坐标系下d轴稳定工作点处的占空比;
7)将与系统dq坐标系下逆变器的等效增益GPWM相乘,得到系统dq坐标系下q轴小信号逆变器输出电压
2.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,d轴控制部分步骤1)中,的取值范围为 的取值范围为
3.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,d轴控制部分步骤2)中,的取值范围为
4.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,KC的取值范围为0.8≤KC≤1.5。
5.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,d轴控制部分步骤4)中,的取值范围为
6.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,d轴控制部分步骤5)中,Gcomdd(s)的表达式为:
<mrow> <msub> <mi>G</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>m</mi> <mi>d</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mi>m</mi> </msub> <msub> <mi>k</mi> <mi>p</mi> </msub> <mo>)</mo> <msub> <mi>k</mi> <mi>&amp;omega;</mi> </msub> <mi>s</mi> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mrow> <msub> <mi>k</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>p</mi> </msub> <msub> <mi>k</mi> <mi>&amp;omega;</mi> </msub> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>W</mi> <mi>M</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <msubsup> <mi>u</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>C</mi> <mi>d</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mfrac> <mo>;</mo> </mrow>
式中kp为相角补偿的比例系数,kp的取值范围为2.03≤kp≤2.05,kω为相角补偿的相角系数,kω的取值范围为0.0015≤kω≤0.0017,km为相角补偿的增益系数,km的取值范围为1.42≤km≤1.44; L1为逆变器侧电感,C1为滤波电容,RL1和RC1分别为L1和C1的寄生电阻,ω1是电网基波角频率。
7.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,d轴控制部分步骤6)中,的取值范围为
8.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,GPWM的取值范围为350≤GPWM≤360。
9.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,q轴控制部分步骤1)中,的取值范围为q轴控制部分步骤2)中,的取值范围为q轴控制部分步骤6)中,的取值范围为
10.根据权利要求1所述的弱电网下三相LCL型并网逆变器的相角补偿控制方法,其特征在于,q轴控制部分步骤5)中,Gcomqq(s)的表达式为:
<mrow> <msub> <mi>G</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>m</mi> <mi>q</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mi>m</mi> </msub> <msub> <mi>k</mi> <mi>p</mi> </msub> <mo>)</mo> <msub> <mi>k</mi> <mi>&amp;omega;</mi> </msub> <mi>s</mi> <mo>+</mo> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mrow> <msub> <mi>k</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>p</mi> </msub> <msub> <mi>k</mi> <mi>&amp;omega;</mi> </msub> <mi>s</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>G</mi> <mn>3</mn> </msub> </mrow> <mrow> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>W</mi> <mi>M</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <msubsup> <mi>u</mi> <mrow> <mi>P</mi> <mi>C</mi> <mi>C</mi> <mi>d</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mfrac> <mo>;</mo> </mrow>
式中
CN201711181747.1A 2017-11-23 2017-11-23 一种弱电网下三相lcl型并网逆变器的相角补偿控制方法 Active CN107968590B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711181747.1A CN107968590B (zh) 2017-11-23 2017-11-23 一种弱电网下三相lcl型并网逆变器的相角补偿控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711181747.1A CN107968590B (zh) 2017-11-23 2017-11-23 一种弱电网下三相lcl型并网逆变器的相角补偿控制方法

Publications (2)

Publication Number Publication Date
CN107968590A true CN107968590A (zh) 2018-04-27
CN107968590B CN107968590B (zh) 2020-03-24

Family

ID=62000497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711181747.1A Active CN107968590B (zh) 2017-11-23 2017-11-23 一种弱电网下三相lcl型并网逆变器的相角补偿控制方法

Country Status (1)

Country Link
CN (1) CN107968590B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964055A (zh) * 2018-07-27 2018-12-07 湖南工业大学 一种电容电流反馈的电网电压前馈控制方法
CN112217378A (zh) * 2020-10-27 2021-01-12 华中科技大学 基于指令前馈的三相lcl型联网变换器复合控制系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026477A (zh) * 2017-05-26 2017-08-08 合肥工业大学 弱电网下具有电网电压前馈滞后补偿的并网逆变器控制方法
CN107317357A (zh) * 2017-07-17 2017-11-03 湖南大学 Lcl型并网逆变器小信号导纳建模与稳定性分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026477A (zh) * 2017-05-26 2017-08-08 合肥工业大学 弱电网下具有电网电压前馈滞后补偿的并网逆变器控制方法
CN107317357A (zh) * 2017-07-17 2017-11-03 湖南大学 Lcl型并网逆变器小信号导纳建模与稳定性分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANGFENG WANG 等: "Impedance-based stability analysis of single-phase inverter connected to weak grid with voltage feed-forward control", 《APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION》 *
JINMING XU 等: "Improved control strategy with grid-voltage feedforward for LCL-filter-based inverter connected to weak grid", 《IET POWER ELECTRONICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964055A (zh) * 2018-07-27 2018-12-07 湖南工业大学 一种电容电流反馈的电网电压前馈控制方法
CN112217378A (zh) * 2020-10-27 2021-01-12 华中科技大学 基于指令前馈的三相lcl型联网变换器复合控制系统及方法

Also Published As

Publication number Publication date
CN107968590B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
CN107395040B (zh) 并网变流器复矢量pi控制器解耦与延时补偿方法
CN102611138B (zh) 一种无延时的单相光伏并网功率调节方法
WO2014174667A1 (ja) 共振抑制装置
CN108923463B (zh) 考虑锁相环的单相lcl型并网逆变器的频率耦合建模方法
CN106684918A (zh) 一种lcl逆变器弱阻尼谐振抑制与功率快速调节方法
Zhang et al. Principle and robust impedance-based design of grid-tied inverter with LLCL-filter under wide variation of grid-reactance
CN108988343B (zh) 一种弱网下多逆变器并网系统的全局高频振荡抑制方法
CN102223100A (zh) 基于修正比例谐振调节器的三相并网逆变器控制方法
CN103560690A (zh) 一种单相lcl型并网逆变器谐波阻尼控制方法
CN110429600B (zh) 一种电容电压比例微分反馈的并网逆变器控制方法
Mehta et al. Power quality improvement through grid integration of renewable energy sources
CN108418226B (zh) 开绕组双逆变器光伏发电系统的无功补偿控制方法
CN107968590B (zh) 一种弱电网下三相lcl型并网逆变器的相角补偿控制方法
Kan et al. Compensation of second harmonic current based on bus voltage ripple limitation in single-phase photovoltaic grid-connected inverter
CN104753385B (zh) 用于提高lcl并网逆变器稳定性的控制方法
Gupta et al. Power quality assessment of a solar photovoltaic two-stage grid connected system: Using fuzzy and proportional integral controlled dynamic voltage restorer approach
Zhou et al. LCL type grid-connected converter no startup inrush current control method based on capacitor branch voltage feedforward
CN111262460B (zh) 一种基于耦合电感的五电平整流器滑模pir控制方法
CN106816889B (zh) 并网逆变器功率解耦方法及装置
CN109950926B (zh) 弱网下基于q轴电压积分前馈的并网逆变器稳定控制方法
CN109617473B (zh) 一种双馈风机直接功率控制方法及系统
Wang et al. Analysis and design of voltage feedforward for stability and power quality of grid-tied inverter
CN112467787B (zh) 一种抑制光伏并网故障切除电压骤升的方法
Li et al. Grid voltage modulated control of grid-connected voltage source inverters under unbalanced grid conditions
Abedi et al. Specialized predictive SVPWM current control of back-to-back converters for wind power generation systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant