CN107952431B - 多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用 - Google Patents

多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用 Download PDF

Info

Publication number
CN107952431B
CN107952431B CN201711357721.8A CN201711357721A CN107952431B CN 107952431 B CN107952431 B CN 107952431B CN 201711357721 A CN201711357721 A CN 201711357721A CN 107952431 B CN107952431 B CN 107952431B
Authority
CN
China
Prior art keywords
porous carbon
catalyst
microspheres
microsphere
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711357721.8A
Other languages
English (en)
Other versions
CN107952431A (zh
Inventor
陈丽娟
向育君
廖博
晏精青
佟占鑫
石亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN201711357721.8A priority Critical patent/CN107952431B/zh
Publication of CN107952431A publication Critical patent/CN107952431A/zh
Application granted granted Critical
Publication of CN107952431B publication Critical patent/CN107952431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种多孔碳@Pd‑Al2O3@介孔TiO2复合微球催化剂制备及其应用。本发明催化剂结构是以多孔碳微球为核心,中间为含纳米钯的Al2O3层,外层为介孔TiO2。本发明主要先制备多孔碳微球,然后制备含纳米钯的铝溶胶;中空碳微球、含纳米钯铝溶胶、水混合后水热处理得到多孔碳@Pd‑Al2O3微球,再将多孔碳@Pd‑Al2O3微球和钛酸四丁酯,乙醇和水混合经水解缩聚得到多孔碳@Pd‑Al2O3@ TiO2,最后经NaOH溶液蚀刻得到多孔碳@Pd‑Al2O3@介孔TiO2复合微球催化剂。本发明催化剂为夹心微球结构,纳米钯分布均匀,用于水溶液苯甲醇催化氧化反应,在无需任何碱性助剂,以常压氧气为氧化剂条件下,反应物和产物扩散性好,活性高,易于和产物分离,循环使用性好。

Description

多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用
技术领域
本发明属于化学领域,具体涉及一种用水为溶剂,大气压力下氧气为氧化剂的苯甲醇氧化清洁生产苯甲醛的多孔碳@Pd-Al2O3@介孔TiO2微球催化剂的制备和应用。
背景技术
苯甲醛是一种重要的中间体和工业原料,广泛用于医药中间体,香料、调料、染料等精细化学品的生产。工业生产苯甲醛是通过甲苯侧链氯化然后水解的氯化水解法和甲苯氧化法。氯化水解法会使苯甲醛产品中含有氯使其在医药、食品等行业的应用受到限制,同时生产过程会产生大量有害气体造成环境污染。而甲苯直接氧化法存在反应压力高,苯甲醛收率低,需要大量有机溶剂的问题,发展无氯苯甲醛的清洁生产工艺具有重要的工业意义,其中,以水为溶剂的苯甲醇气相氧化就是一种重要的苯甲醛清洁生产工艺。负载纳米钯催化剂是这一反应的活性催化剂。
影响纳米钯催化剂的活性和可回收性的主要因素是钯纳米粒子在使用过程中会逐渐长大,从而逐渐失活,同时钯纳米粒子也会在长时间的液相反应环境中逐渐从载体流失进入到反应液中而逐渐失活。解决这一问题的途径是进一步改进催化剂制备工艺。当纳米钯负载于粉状介孔载体材料时,部分纳米钯活性中心会被载体包埋,载体的传质阻力大,反应物难以扩散到活性中心表面和其接触,负载的纳米钯活性中心没有充分发挥催化作用。而以钯纳米粒子为活性核,封装在多孔载体材料的壳层中的核-壳微球结构,在保护钯纳米粒子不会相互结合团聚成活性低的大颗粒上更具有优势。微球催化剂具有均匀组成,多孔载体形成介孔薄层壳对纳米钯有隔离作用,且分散在反应溶液中扩散阻力较小,反应物容易通过载体壳层扩散与活性中心接触。文献1报道了封装纳米钯的氧化铈核-壳微球的制备方法,是以水热制成的碳微球为模板,将水溶液中制备的聚乙烯吡咯烷酮(PVP)保护的纳米钯胶体吸附在碳微球表面,然后再通过水热方法在其表面附着一层氧化铈层,最后通过高温煅烧的方法除去碳微球模板形成中空微球催化剂。这一方法的主要问题在于高温除去模板处理过程中难以避免纳米钯的部分烧结,钯纳米粒子形状和尺寸会发生改变,这种改变会显著影响纳米钯催化剂的活性。(N. Zhang, Y.J. Xu. Aggregation- andleaching- resistant, reusable, and multifunctional Pd@CeO2 as a robustnanocatalyst by a hollow core-shell strategy. Chem. Mater. 2013, 25, 1979-1988)文献2报道了一种中空聚合物微球负载纳米钯催化剂的制备方法,采用模板聚合的方法,首先用单体苯乙烯,甲基丙烯酸甲酯共聚制成牺牲模板微球PS-co-PMMA,然后使单体丙烯酰胺(AM),2-乙酰丙酮基-甲基丙烯酸乙酯(AEMA)在交联剂二乙烯苯(DVB)作用下在模板上聚合形成核-壳微球PS-co-PMMA-PAEMA-co-PAM,再用N,N’-二甲基甲酰胺(DMF)除去模板,形成中空核-壳聚合物微球PS-co -PAEMA-co-PAM,再利用这种中空微球表面基团的螯合作用在溶液中吸附纳米钯形成催化剂。这一方法需要长时间的聚合反应,模板去除的方法是有机溶剂萃取方法,耗时长,消耗的溶剂量大。聚合物中空微球的化学稳定性和热稳定性不高,结构易破坏。(Y. Nan, L. Yang, M. Zhang,等。Microreactor of Pdnanoparticles immobilized hollow microspheres for catalytichydrodechlorination of chlorophenols in water. Appl. Mater. Interfaces. 2010,2, 127-155)。在本专利中,我们制备出一种的多孔碳@Pd-Al2O3@介孔TiO2复合催化剂,微球由多孔碳(核)、含纳米钯氧化铝(中间层)和介孔TiO2(壳)组成,微球大小为200~500nm,微球壳层为介孔TiO2,有利于反应物分子和产物分子的扩散。这种结构的纳米钯催化剂,使发生于催化剂和反应液相界面的多相反应分散于微球内进行,类似于准均相反应,具有文献2所述的纳米钯微反应器的优点,同时由于氧化铝层对分散其中的纳米粒子有很好的稳定作用(参见文献:J. Wang, A. Lu, M. Li,等。Thin porous alumina sheets as supportsfor stabilizing gold nanoparticles. ACS. Nano. 2013, 7, 4902-4910),能很好地避免纳米钯的形状和尺寸改变,纳米钯催化剂的效率得到明显提高。这一催化剂以氧化物微球负载纳米钯,具有比聚合物微球更高的热稳定性和化学稳定性,可长期重复使用。
发明内容
本发明的目的是提供一种的多孔碳@Pd-Al2O3@介孔TiO2复合催化剂。
本发明采用的技术方案:一种用于水溶液苯甲醇氧化的复合多孔碳@Pd-Al2O3@介孔TiO2微球催化剂,其特征在于:以多孔碳微球为核,封装纳米钯的Al2O3层为中间层,介孔TiO2为壳层的复合微球结构,结构式为C@Pd-Al2O3@m-TiO2
所述的纳米钯为活性成分,其他成分为载体;纳米钯的含量为载体质量的0. 8~1.5%,纳米钯粒径为3-6nm。
所述的载体中,多孔碳的质量分数为30~40%,Al2O3的质量分数为20~30%,介孔TiO2的质量分数为30~40%。
所述的微球催化剂结构式中,介孔TiO2层的介孔为3-7nm。
一种用于水溶液苯甲醇氧化的多孔碳@Pd-Al2O3@介孔TiO2复合微球催化剂的制备方法,包括以下步骤:
1)葡萄糖溶于水形成10%质量比的溶液,加入聚四氟乙烯内衬的水热釜中,180℃水热8-20h,经离心并用乙醇反复洗涤至离心上清液为无色,分离溶液后干燥得到碳微球;碳微球在15-30mL/min氮气流量下于管式炉中加热至750-800℃处理2h,得多孔碳微球;
2)将多孔碳微球、异丙醇铝和乙醇按0.014~0.019:0.037~0.063:1质量比混合形成碳微球乙醇分散液,按分散液体积比13.75~30%加入20mmol/L浓度的氯化钯乙醇溶液,室温下搅拌0.5h,加热至120℃回流搅拌10h,再浓缩此溶液至至原体积的二分之一,加浓缩液50%体积的去离子水搅拌均匀后转移至聚四氟乙烯内衬的水热釜中, 180℃水热12h;水热后冷却至室温后,离心分离出固体并干燥,得多孔碳@Pd-Al2O3核壳结构微球,多孔碳微球为核,纳米钯分散于氧化铝层为壳;
3)将多孔碳@Pd-Al2O3核壳结构微球、乙醇、钛酸四丁酯和水按0.76~1.25 :1.0~3.1:10:24质量比充分搅拌混合,搅拌30min后转移至水热釜中,140℃下水热12h;冷却后收集固体,80℃下干燥10h;将干燥后的固体用15mol/L的NaOH水溶液浸泡刻蚀15min,得复合的微球催化剂多孔碳@Pd-Al2O3@介孔TiO2
所述的复合多孔碳@Pd-Al2O3@介孔TiO2微球催化剂在水溶液苯甲醇氧化方面的应用。复合本发明和现有技术相比的有益效果:
(1)催化剂为复合微球结构,纳米钯均匀分散于中间的Al2O3层中,在Al2O3稳定下具有均匀的尺寸分布,纳米钯平均粒径为3-6nm。
(2)介孔TiO2壳层有均匀介孔分布,介孔平均孔径为3-7nm,有利于反应物扩散和纳米钯活性成分接触。有利于提高反应物和纳米钯活性中心作用效率。
(3)本发明催化剂用于催化苯甲醇氧化反应时,以水为溶剂且无需添加任何碱性助剂,为完全绿色工艺,催化剂具有很好的热稳定性和循环使用性能,催化剂用量小,对苯甲醛产物的选择性高。
附图说明
图1为微球形貌图;
图2为纳米钯粒子形貌。
具体实施方式
具体实施方式:
实施例1. 30%C@0.8%Pd-29.2%Al2O3@40%m-TiO2的制备(Pd负载量为0.8%,多孔碳含量30%,Al2O3含量为29.2%,介孔TiO2含量为40%)
(1)葡萄糖4g溶于25mL去离子水,加入30mL聚四氟乙烯内衬的水热釜中,180℃水热8h,经离心并用乙醇反复洗涤至离心上清液为无色,分离溶液后干燥得到碳微球。碳微球在15mL/min氮气流量下于管式炉中加热至750℃处理2h,得多孔碳微球。
(2)将0.45g 多孔碳微球分散于40mL乙醇中,加入20mmol/L浓度的氯化钯乙醇溶液5.7mL和1.8g异丙醇铝,室温下搅拌0.5h,加热至120℃回流搅拌10h,再浓缩此溶液至25mL,加10mL去离子水搅拌均匀后转移至50mL聚四氟乙烯内衬的水热釜中, 180℃水热12h。水热后冷却至室温后,离心分离出固体并干燥,得多孔碳@Pd-Al2O3核壳结构微球。
3)将0.76g多孔碳@Pd-Al2O3核壳结构微球分散于30mL乙醇中,加入2.16mL钛酸四丁酯,10mL去离子水,搅拌30min后转移至50mL水热釜中,140℃下水热12h。冷却后收集固体,80℃下干燥10h。将干燥后的固体用15mol/L的NaOH水溶液浸泡刻蚀15min,得复合的微球催化剂30%C@0.8%Pd-29.2%Al2O3@40%m-TiO2
实施例2. 35%C@1.0%Pd-28%Al2O3@36%m-TiO2的制备(Pd负载量为1.0%,多孔碳含量35%,Al2O3含量为28%,介孔TiO2含量为36%)
(1)葡萄糖4g溶于25mL去离子水,加入30mL聚四氟乙烯内衬的水热釜中,180℃水热12h,经离心并用乙醇反复洗涤至离心上清液为无色,分离溶液后干燥得到碳微球。碳微球在20mL/min氮气流量下于管式炉中加热至780℃处理2h,得多孔碳微球。
(2)将0.50g 多孔碳微球分散于40mL乙醇中,加入20mmol/L浓度的氯化钯乙醇溶液6.7mL和1.6g异丙醇铝,室温下搅拌0.5h,加热至120℃回流搅拌10h,再浓缩此溶液至25mL,加10mL去离子水搅拌均匀后转移至50mL聚四氟乙烯内衬的水热釜中, 180℃水热12h。水热后冷却至室温后,离心分离出固体并干燥,得多孔碳@Pd-Al2O3核壳结构微球。
3)将0.81g多孔碳@Pd-Al2O3核壳结构微球分散于30mL乙醇中,加入1.94mL钛酸四丁酯,10mL去离子水,搅拌30min后转移至50mL水热釜中,140℃下水热12h。冷却后收集固体,80℃下干燥10h。将干燥后的固体用15mol/L的NaOH水溶液浸泡刻蚀15min,得复合微球催化剂35%C@1.0%Pd-28%Al2O3@36%m-TiO2
实施例3. 40%C@1.2%Pd-20%Al2O3@38.8%m-TiO2的制备(Pd负载量为1.2%,多孔碳含量40%,Al2O3含量为20%,介孔TiO2含量为38.8%)
(1)葡萄糖4g溶于25mL去离子水,加入30mL聚四氟乙烯内衬的水热釜中,180℃水热16h,经离心并用乙醇反复洗涤至离心上清液为无色,分离溶液后干燥得到碳微球。碳微球在25mL/min氮气流量下于管式炉中加热至800℃处理2h,得多孔碳微球。
(2)将0.55g 多孔碳微球分散于40mL乙醇中,加入20mmol/L浓度的氯化钯乙醇溶液7.8mL和1.1g异丙醇铝,室温下搅拌0.5h,加热至120℃回流搅拌10h,再浓缩此溶液至25mL,加10mL去离子水搅拌均匀后转移至50mL聚四氟乙烯内衬的水热釜中, 180℃水热12h。水热后冷却至室温后,离心分离出固体并干燥,得多孔碳@Pd-Al2O3核壳结构微球。
3)将1.02g多孔碳@Pd-Al2O3核壳结构微球分散于30mL乙醇中,加入2.75mL钛酸四丁酯,10mL去离子水,搅拌30min后转移至50mL水热釜中,140℃下水热12h。冷却后收集固体,80℃下干燥10h。将干燥后的固体用15mol/L的NaOH水溶液浸泡刻蚀15min,得复合微球催化剂40%C@1.2%Pd-20%Al2O3@38.8%m-TiO2
实施例4. 36%C@1.4%Pd-30%Al2O3@32.4%m-TiO2的制备(Pd负载量为1.4%,多孔碳含量36%,Al2O3含量为30%,介孔TiO2含量为32.4%)
(1)葡萄糖4g溶于25mL去离子水,加入30mL聚四氟乙烯内衬的水热釜中,180℃水热18h,经离心并用乙醇反复洗涤至离心上清液为无色,分离溶液后干燥得到碳微球。碳微球在20mL/min氮气流量下于管式炉中加热至800℃处理2h,得多孔碳微球。
(2)将0.60g 多孔碳微球分散于40mL乙醇中,加入20mmol/L浓度的氯化钯乙醇溶液11mL和2.0g异丙醇铝,室温下搅拌0.5h,加热至120℃回流搅拌10h,再浓缩此溶液至25mL,加10mL去离子水搅拌均匀后转移至50mL聚四氟乙烯内衬的水热釜中, 180℃水热12h。水热后冷却至室温后,离心分离出固体并干燥,得多孔碳@Pd-Al2O3核壳结构微球。
3)将1.10g多孔碳@Pd-Al2O3核壳结构微球分散于30mL乙醇中,加入2.24mL钛酸四丁酯,10mL去离子水,搅拌30min后转移至50mL水热釜中,140℃下水热12h。冷却后收集固体,80℃下干燥10h。将干燥后的固体用15mol/L的NaOH水溶液浸泡刻蚀15min,得复合微球催化剂36%C@1.4%Pd-30%Al2O3@32.4%m-TiO2
实施例5. 35%C@1.5%Pd-23.8%Al2O3@40%m-TiO2的制备(Pd负载量为1.2%,多孔碳含量35%,Al2O3含量为23.8%,介孔TiO2含量为40%)
(1)葡萄糖4g溶于25mL去离子水,加入30mL聚四氟乙烯内衬的水热釜中,180℃水热20h,经离心并用乙醇反复洗涤至离心上清液为无色,分离溶液后干燥得到碳微球。碳微球在20mL/min氮气流量下于管式炉中加热至770℃处理2h,得多孔碳微球。
(2)将0.60g 多孔碳微球分散于40mL乙醇中,加入20mmol/L浓度的氯化钯乙醇溶液12mL和1.6g异丙醇铝,室温下搅拌0.5h,加热至120℃回流搅拌10h,再浓缩此溶液至25mL,加10mL去离子水搅拌均匀后转移至50mL聚四氟乙烯内衬的水热釜中, 180℃水热12h。水热后冷却至室温后,离心分离出固体并干燥,得多孔碳@Pd-Al2O3核壳结构微球。
3)将1.25g多孔碳@Pd-Al2O3核壳结构微球分散于30mL乙醇中,加入3.5mL钛酸四丁酯,10mL去离子水,搅拌30min后转移至50mL水热釜中,140℃下水热12h。冷却后收集固体,80℃下干燥10h。将干燥后的固体用15mol/L的NaOH水溶液浸泡刻蚀15min,得复合微球催化剂35%C@1.5%Pd-23.8%Al2O3@40%m-TiO2
实施例6、催化剂活性评价
水溶液中苯甲醛气相氧化在100mL磁力搅拌玻璃反应釜内进行,将0.03g催化剂,10mL水和1mL苯甲醇加入反应釜中,室温下由导气管通入氧气,进气流量控制在15mL/min,整个装置和大气相通。然后接上冷凝管,开启磁力搅拌并升温至65℃。3小时后,反应结束,停止搅拌,继续通氧气至冷却至室温。釜内反应液倒出,离心分离出催化剂,剩余反应液用乙醚萃取3次,每次5mL,合并有机层,待乙醚挥发后用气相色谱分析。用甲苯溶解产物并加过量三苯基膦使环己基过氧化氢分解成环己醇和环己酮,岛津2014C气相色谱仪,SE-30毛细管柱,氢火焰检测器,以正丁醇为内标,计算苯甲醛产率。
实施例7、35%C@1.5%Pd-23.8%Al2O3@40%m-TiO2为例,将反应后的催化剂,经离心分离后,用乙酸乙酯洗涤并干燥,将回收的催化剂按实施例6反应条件进行环己烷催化氧化反应,催化剂共计循环5次,反应结果用气相色谱分析。
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE004

Claims (3)

1.一种用于水溶液中苯甲醇气相氧化的多孔碳@Pd-Al2O3@介孔TiO2复合微球催化剂,其特征在于:以多孔碳微球为核,封装纳米钯的Al2O3层为中间层,介孔TiO2为壳层的复合微球结构,结构式为C@Pd-Al2O3@m-TiO2
所述的纳米钯为活性成分,其他成分为载体;纳米钯的含量为载体质量的1.5%,纳米钯粒径为5-6nm;
所述的载体中,多孔碳的质量分数为30~40%,Al2O3的质量分数为20~30%,介孔TiO2的质量分数为30~40%;
所述的微球催化剂结构中,介孔TiO2层的介孔为3-7nm。
2.一种用于水溶液中苯甲醇气相氧化的多孔碳@Pd-Al2O3@介孔TiO2复合微球催化剂的制备方法,包括以下步骤:
1)葡萄糖溶于水形成10%质量比的溶液,加入聚四氟乙烯内衬的水热釜中,180℃水热8-20h,经离心并用乙醇反复洗涤至离心上清液为无色,分离溶液后干燥得到碳微球;碳微球在15-30mL/min氮气流量下于管式炉中加热至750-800℃处理2h,得多孔碳微球;
2)将多孔碳微球、异丙醇铝和乙醇按0.014~0.019:0.037~0.063:1质量比混合形成碳微球乙醇分散液,按分散液体积比13.75~30%加入20mmol/L浓度的氯化钯乙醇溶液,室温下搅拌0.5h,加热至120℃回流搅拌10h,再浓缩此溶液至原体积的二分之一,加浓缩液50%体积的去离子水搅拌均匀后转移至聚四氟乙烯内衬的水热釜中,180℃水热12h;水热后冷却至室温后,离心分离出固体并干燥,得多孔碳@Pd-Al2O3核壳结构微球,多孔碳微球为核,纳米钯分散于氧化铝层为壳;
3)将多孔碳@Pd-Al2O3核壳结构微球、乙醇、钛酸四丁酯和水按0.76~1.25:1.0~3.1:10:24质量比充分搅拌混合,搅拌30min后转移至水热釜中,140℃下水热12h;冷却后收集固体,80℃下干燥10h;将干燥后的固体用15mol/L的NaOH水溶液浸泡刻蚀15min,得复合微球催化剂多孔碳@Pd-Al2O3@介孔TiO2
3.权利要求1所述的一种用于水溶液中苯甲醇气相氧化的多孔碳@Pd-Al2O3@介孔TiO2复合微球催化剂在水溶液苯甲醇氧化方面的应用。
CN201711357721.8A 2017-12-16 2017-12-16 多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用 Active CN107952431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711357721.8A CN107952431B (zh) 2017-12-16 2017-12-16 多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711357721.8A CN107952431B (zh) 2017-12-16 2017-12-16 多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN107952431A CN107952431A (zh) 2018-04-24
CN107952431B true CN107952431B (zh) 2020-08-11

Family

ID=61957868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711357721.8A Active CN107952431B (zh) 2017-12-16 2017-12-16 多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN107952431B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111085277A (zh) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 一种氧化硅和碳复合材料及其合成方法
CN110935443B (zh) * 2019-12-18 2023-04-28 福建师范大学泉港石化研究院 一种具有BrΦnsted酸性位及强锚定钯作用的钯基氧化铝催化剂及其制备方法
CN114260009A (zh) * 2021-12-24 2022-04-01 复旦大学 一种贵金属负载的双壳层非对称半导体材料及其超组装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069955A2 (en) * 2004-01-21 2005-08-04 Idaho Research Foundation, Inc. Supercritical fluids in the formation and modification of nanostructures and nanocomposites
CN102513104A (zh) * 2011-11-24 2012-06-27 浙江大学 一种苯甲醛类化合物的制备方法及其用新型介孔碳担载的双金属催化剂
CN102672169A (zh) * 2012-06-07 2012-09-19 北京科技大学 一种金/二氧化钛核壳结构纳米粒子的制备方法
CN104001505A (zh) * 2014-05-29 2014-08-27 国家纳米科学中心 类三明治空心结构金属氧化物@贵金属纳米粒子@金属氧化物催化剂、制备方法及其用途
CN104368337A (zh) * 2014-10-29 2015-02-25 温州大学 贵金属/介孔碳催化剂的制备方法、由此获得的催化剂及其用途
CN105712461A (zh) * 2014-12-01 2016-06-29 中国石油化工股份有限公司 一种丙烯酸及其酯废水的催化湿式氧化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216961B2 (en) * 2008-08-27 2012-07-10 Korea University Research And Business Foundation Nanoparticles including metal oxide having catalytic activity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069955A2 (en) * 2004-01-21 2005-08-04 Idaho Research Foundation, Inc. Supercritical fluids in the formation and modification of nanostructures and nanocomposites
CN102513104A (zh) * 2011-11-24 2012-06-27 浙江大学 一种苯甲醛类化合物的制备方法及其用新型介孔碳担载的双金属催化剂
CN102672169A (zh) * 2012-06-07 2012-09-19 北京科技大学 一种金/二氧化钛核壳结构纳米粒子的制备方法
CN104001505A (zh) * 2014-05-29 2014-08-27 国家纳米科学中心 类三明治空心结构金属氧化物@贵金属纳米粒子@金属氧化物催化剂、制备方法及其用途
CN104368337A (zh) * 2014-10-29 2015-02-25 温州大学 贵金属/介孔碳催化剂的制备方法、由此获得的催化剂及其用途
CN105712461A (zh) * 2014-12-01 2016-06-29 中国石油化工股份有限公司 一种丙烯酸及其酯废水的催化湿式氧化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Encapsulation of Supported Pt Nanoparticles with Mesoporous Silica for Increased Catalyst Stability";Ilkeun Lee等;《Nano Res.》;20110131;第4卷(第1期);115–123 *
"Pd/MC催化剂的制备及其对苯甲醇氧化制备苯甲醛的催化性能";吴海杰等;《南京工业大学学报(自然科学版)》;20140731;第36卷(第4期);7-12 *

Also Published As

Publication number Publication date
CN107952431A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
Chen et al. The function of metal–organic frameworks in the application of MOF-based composites
CN107952431B (zh) 多孔碳@Pd-Al2O3@介孔TiO2微球催化剂及其制备和应用
CN105618038B (zh) 负载型金催化剂及其制备方法和制备对氨基苯酚的方法
CN103433058B (zh) Au-Cu/TiO2-NBs双金属纳米结构整体式催化剂、制备方法及其应用
CN109046462B (zh) 一种Pd还原诱导微孔-介孔功能型复合MOF催化剂及其制备方法和应用
CN104307514B (zh) 一种二氧化钛/二氧化硅复合球壳包裹纳米金催化剂及其制备方法
CN105964247B (zh) 一种三维还原氧化石墨烯负载纳米Pd加氢催化剂的制备方法
CN104193862A (zh) 一种聚苯乙烯/银/二氧化钛复合材料的制备方法
CN104492409A (zh) 一种TiO2晶体/石墨烯纳米复合物的制备方法
CN108636433B (zh) 一种氮掺杂多孔碳固载的贵金属催化剂及其制备方法和应用
CN103586048A (zh) 一种纳米Pd磁性催化剂、制备及用于液相催化反应
CN112138696A (zh) 一种过渡金属负载氮修饰有序介孔纳米碳球的制备方法
CN108014789A (zh) 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法
CN107570194B (zh) 一种Fe/Co-Nx/TiO2光催化剂及其制备方法和应用
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN102909045A (zh) 微米级负载型TiO2催化剂的制备方法
CN103769212A (zh) 一种核壳结构的C@P4VP@Au催化剂的制备及应用
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
CN108393080B (zh) 一种纳米碳/氧化钛多孔微球的制备方法
CN102266764A (zh) 一种膨胀石墨/氧化锌复合光催化剂及其制备方法
CN106423123A (zh) 一种二氧化钛与氧化硅纳米纤维复合光催化材料及其制备方法
CN109317178A (zh) 一种用于非均相溶液加氢制备氢化丁苯橡胶的负载型催化剂及其制备方法
CN106268967B (zh) 一种水溶性纳米二氧化钛的制备方法
CN113908832B (zh) 一种氧空位调控的负载型钯基催化剂的制备及其在聚苯乙烯加氢中的应用
CN102580725A (zh) 一种纳米单晶Pd核壳型催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant