CN107946624A - 一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用 - Google Patents

一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用 Download PDF

Info

Publication number
CN107946624A
CN107946624A CN201711087864.1A CN201711087864A CN107946624A CN 107946624 A CN107946624 A CN 107946624A CN 201711087864 A CN201711087864 A CN 201711087864A CN 107946624 A CN107946624 A CN 107946624A
Authority
CN
China
Prior art keywords
indigo
derivative
flow battery
water system
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711087864.1A
Other languages
English (en)
Inventor
曹剑瑜
赵亚欣
许娟
张盼盼
冯媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201711087864.1A priority Critical patent/CN107946624A/zh
Publication of CN107946624A publication Critical patent/CN107946624A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明属于可再生能源领域,尤其涉及一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用。该电池以水溶性靛蓝的还原态衍生物为负极电活性物种,以水溶性靛蓝的氧化态衍生物为正极电活性物种,以硫酸为支持电解质,将全氟磺酸‑聚四氟乙烯共聚物膜作为离子交换膜。本发明制备的电池是一种具有良好电化学性能的水系液流电池,具有活性电解质的结构可调、制造简单、循环寿命长和比功率高等优点,所用水系电解质成本低且安全环保,在风能、光伏发电的规模储电以及电网调峰领域有广阔的应用前景。

Description

一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和 应用
技术领域
本发明属于可再生能源领域,尤其涉及一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用。
背景技术
太阳能、风能和地热能等可再生能源蕴量巨大、清洁环保,利用前景广阔。但是这类能源的能量密度低,且存在明显的地域性和间歇性等缺点,因此急需发展与之配套的高效储能系统。目前使用的比如超级电容器、电化学二次电池和氧化还原液流电池等各类电化学储能系统中,只有液流电池的功率与容量设计是解耦的,也就是说,液流电池的储能容量决定于电解质储层的大小(电解液的浓度和体量),而输出功率则由单元电池的大小和数目决定,两者互相独立,因此可以满足大规模蓄电储能的需求。而且,由于正负极的电活性物质物理性分离地存储在不同储罐中,液流电池不易自放电,具有良好的安全性能和高循环寿命,因此在大规模储能方面具有显著的优势。
目前用于液流电池的电极反应多为无机体系。但是,无机电活性物种种类较少,且许多无机元素材料比如钒和溴,要么溶解度偏低、价格昂贵,要么具有较大的环境危害性。相比于无机物,有机化合物不仅种类繁多,选择余地很大。而且有机物在化学结构上具有可设计性,即可以通过“母体”选择和官能团裁减调控电活性有机物的电位、动力学参数和溶解度等重要性质。此外,有机材料易于回收处理,符合当前绿色环保的要求。
发明内容
本发明提供了一种基于有机染料靛蓝衍生物的水系全有机液流电池。
本发明解决其技术问题所采用的技术方案是:一种基于靛蓝衍生物的水系全有机液流电池,所述电池以水溶性靛蓝的还原态衍生物为负极电活性物种,以水溶性靛蓝的氧化态衍生物为正极电活性物种,以硫酸为支持电解质,以全氟磺酸-聚四氟乙烯共聚物膜作为离子交换膜,以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸或碳毡分别作为阴极和阳极。
作为优选,所述的电活性靛蓝衍生物含有磺酸基或者膦酸基。
作为优选,所述的电活性靛蓝衍生物含有的磺酸基或膦酸基的数目为1-4个。
作为优选,所述的电活性靛蓝衍生物可以是含有靛蓝结构的钠盐、钾盐或氢盐。
基于靛蓝衍生物的水系全有机液流电池的工作原理为:靛蓝衍生物在酸性条件下发生可逆的电化学歧化反应。其中,充电时,阴极反应为靛蓝衍生物得到电子和质子,生成还原态产物,阳极反应为靛蓝衍生物失去电子和质子,生成氧化态产物。放电时,阳极反应为还原态产物失去电子和质子,生成靛蓝衍生物,阴极反应为氧化态产物得到电子和质子,生成靛蓝衍生物。
本发明还提供了一种基于有机染料靛蓝衍生物的水系全有机液流电池的组建方法,其具体操作方法包括:
(1)称取靛蓝衍生物固体,溶解于超纯水中,配制成浓度为0.01~0.1mol/L的靛蓝衍生物溶液,通过氢离子交换树脂柱交换为对应浓度的靛蓝衍生物的酸溶液;接着添加浓度为2mol/L的硫酸溶液,配制成100mL 0.01~0.1mol/L的靛蓝衍生物酸+1.0mol/L硫酸的混合溶液;
(2)以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸或碳毡分别作为阴极和阳极,与1片全氟磺酸-聚四氟乙烯共聚物离子交换膜构建7层夹心状的液流电池结构;
其中,碳纸在使用前,使用硫酸与硝酸的混合溶液作亲水性处理。全氟磺酸-聚四氟乙烯共聚物离子交换膜在使用前经过双氧水和稀硫酸处理。
(3)将步骤(1)制备的靛蓝衍生物的酸溶液分为等量的2份,分别注入两个封闭的储罐内。然后,将储罐的进出口与液流泵以及电池阴极或阳极流场进出口相连接,使2个储罐中的靛蓝衍生物的酸溶液各自在阴极和阳极独立循环流动,从而制得基于有机染料靛蓝衍生物的水系全有机液流电池。
其中,为了防止在充放电时靛蓝的还原态衍生物可能被空气中的氧气氧化,连接阳极的靛蓝衍生物的酸溶液储罐须充入氮气,以隔绝空气。
本发明提供的基于有机染料靛蓝衍生物的水系全有机液流电池用于风能、光伏发电的规模储电以及电网调峰领域。
本发明的有益效果是:由于电活性的靛蓝衍生物具有较高的比容量和良好的电化学可逆性,基于靛蓝衍生物构建的水系液流电池具有较高的理论比能量和比功率以及长的循环寿命。本发明使用同时具有还原性和氧化性的靛蓝衍生物作为水系液流电池的阳极和阴极的电活性物种,可以避免电活性物种的相互污染,电池结构简单。而且靛蓝衍生物的生物兼容性好,易于降解。所用水系电解质成本低且安全环保,在风能、光伏发电的规模储电以及电网调峰领域有广阔的应用前景。
下面结合附图和实施例对本发明作进一步地说明。
附图说明
图1为实施例1靛蓝二磺酸电化学歧化反应示意图。
图2为实施例1靛蓝二磺酸的循环伏安图。
图3为实施例1靛蓝二磺酸的标准电位~pH关系图。
图4为实施例1靛蓝二磺酸在不同电极转速下的线性扫描伏安图。
图5为实施例1靛蓝二磺酸在不同电极转速下的Tafel关系图。
图6为实施例1基于靛蓝二磺酸的水系液流电池的极化曲线和功率密度图。
图7为实施例1基于靛蓝二磺酸的水系液流电池的放电容量保持率与电流之间的关系图。
图8为本发明水系全有机液流电池用于可再生能源储能的水系全有机液流电池工作简图。
具体实施方式
本发明将通过实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
实施例1
(1)称取0.47g靛蓝二磺酸钠,溶解于50mL超纯水中,配制成0.02mol/L靛蓝二磺酸钠水溶液,通过氢离子交换树脂柱交换为对应浓度的靛蓝二磺酸溶液,接着添加2mol/L硫酸溶液,配制成100mL 0.01mol/L靛蓝二磺酸+1.0mol/L硫酸的混合溶液;
(2)以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸分别作为阴极和阳极,与1片全氟磺酸-聚四氟乙烯共聚物离子交换膜构建7层夹心状的液流电池结构。碳纸在使用前,使用硫酸与硝酸的混合溶液作亲水性处理。全氟磺酸-聚四氟乙烯共聚物离子交换膜在使用前经过双氧水和稀硫酸处理;
(3)将步骤(1)制备的100mL 0.01mol/L靛蓝二磺酸+1.0mol/L硫酸的混合溶液分为等量的2份(各50mL),分别注入两个封闭的储罐内。然后,将储罐的进出口与液流泵以及电池阴极或阳极流场进出口相连接,使2个储罐中的靛蓝二磺酸溶液各自在阴极和阳极独立循环流动,流量控制在60mLmin-1(使用蠕动泵驱动溶液进入电池体系)。其中,为了防止在充放电时靛蓝的还原态衍生物可能被空气中的氧气氧化,连接阳极的靛蓝二磺酸溶液储罐充入氮气,以隔绝空气。
实施例2
(1)称取0.47g靛蓝二膦酸钠,溶解于50mL超纯水中,配制成0.02mol/L靛蓝二膦酸钠水溶液,通过氢离子交换树脂柱交换为对应浓度的靛蓝二膦酸钠溶液,接着添加2mol/L硫酸溶液,配制成100mL 0.01mol/L靛蓝二膦酸钠+1.0mol/L硫酸的混合溶液;
(2)以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸分别作为阴极和阳极,与1片全氟磺酸-聚四氟乙烯共聚物离子交换膜构建7层夹心状的液流电池结构。碳纸在使用前,使用硫酸与硝酸的混合溶液作亲水性处理。全氟磺酸-聚四氟乙烯共聚物离子交换膜在使用前经过双氧水和稀硫酸处理;
(3)将步骤(1)制备的100mL 0.01mol/L靛蓝二膦酸钠+1.0mol/L硫酸的混合溶液分为等量的2份(各50mL),分别注入两个封闭的储罐内。然后,将储罐的进出口与液流泵以及电池阴极或阳极流场进出口相连接,使2个储罐中的靛蓝二膦酸钠溶液各自在阴极和阳极独立循环流动,流量控制在60mLmin-1。其中,为了防止在充放电时靛蓝的还原态衍生物可能被空气中的氧气氧化,连接阳极的靛蓝二膦酸钠溶液储罐充入氮气,以隔绝空气。
实施例3
(1)称取约0.63g靛蓝四磺酸钠,溶解于50mL超纯水中,配制成0.02mol/L靛蓝四磺酸钠水溶液,通过氢离子交换树脂柱交换为对应浓度的靛蓝四磺酸溶液,接着添加2mol/L硫酸溶液,配制成100mL 0.01mol/L靛蓝四磺酸+1.0mol/L硫酸的混合溶液;
(2)以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸分别作为阴极和阳极,与1片全氟磺酸-聚四氟乙烯共聚物离子交换膜构建7层夹心状的液流电池结构。碳纸在使用前,使用硫酸与硝酸的混合溶液作亲水性处理。全氟磺酸-聚四氟乙烯共聚物离子交换膜在使用前经过双氧水和稀硫酸处理;
(3)将步骤(1)制备的100mL 0.01mol/L靛蓝四磺酸+1.0mol/L硫酸的混合溶液分为等量的2份(各50mL),分别注入两个封闭的储罐内。然后,将储罐的进出口与液流泵以及电池阴极或阳极流场进出口相连接,使2个储罐中的靛蓝四磺酸溶液各自在阴极和阳极独立循环流动,流量控制在60mLmin-1。其中,为了防止在充放电时靛蓝的还原态衍生物可能被空气中的氧气氧化,连接阳极的靛蓝四磺酸溶液储罐充入氮气,以隔绝空气。
实施例4
(1)称取0.63g靛蓝四膦酸钠,溶解于50mL超纯水中,配制成0.02mol/L靛蓝四膦酸钠水溶液,通过氢离子交换树脂柱交换为对应浓度的靛蓝四膦酸溶液,接着添加2mol/L硫酸溶液,配制成100mL 0.01mol/L靛蓝四膦酸+1.0mol/L硫酸的混合溶液;
(2)以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸分别作为阴极和阳极,与1片全氟磺酸-聚四氟乙烯共聚物离子交换膜构建7层夹心状的液流电池结构。碳纸在使用前,使用硫酸与硝酸的混合溶液作亲水性处理。全氟磺酸-聚四氟乙烯共聚物离子交换膜在使用前经过双氧水和稀硫酸处理;
(3)将步骤(1)制备的100mL 0.01mol/L靛蓝四膦酸+1.0mol/L硫酸的混合溶液分为等量的2份(各50mL),分别注入两个封闭的储罐内。然后,将储罐的进出口与液流泵以及电池阴极或阳极流场进出口相连接,使2个储罐中的靛蓝四膦酸溶液各自在阴极和阳极独立循环流动,流量控制在60mLmin-1。其中,为了防止在充放电时靛蓝的还原态衍生物可能被空气中的氧气氧化,连接阳极的靛蓝四膦酸溶液储罐充入氮气,以隔绝空气。
性能测试
一、测试实施例1中靛蓝二磺酸的电化学性能
图1为靛蓝二磺酸发生电化学歧化反应的电子转移反应式。以玻碳电极作为工作电极,饱和甘汞电极作为参比电极,铂丝电极作为对电极,在三电极系统里测试靛蓝二磺酸溶液的电化学性能。测试结果如图2所示。在1molL-1H2SO4溶液中,靛蓝二磺酸在0.15~0.45V范围内存在一对峰形良好的氧化还原峰,对应于图1中的电化学氧化还原反应(1),其标准电位约为0.30V,氧化峰电位与还原峰电位的分离值(ΔE)约为50mV,显示了可逆的两电子氧化还原电化学。此外,靛蓝二磺酸在0.55~1.05V范围内存在一对氧化还原峰,对应于图1中的电化学氧化还原反应(2),其标准电位约为0.88V,氧化峰电位与还原峰电位的分离值(ΔE)约为200mV,显示了准可逆的氧化还原电化学。从图3中可以看出,在pH值为0.5~4的范围,靛蓝二磺酸的标准电位与溶液pH之间呈线性相关。在不同转速下,使用玻碳电极测试靛蓝二磺酸在1molL-1H2SO4溶液中的线性伏安曲线,测试结果如图4所示。从图4中可以看出,随着转速增加,极限电流密度增加。对图4的数据进一步处理得到靛蓝二磺酸在玻碳电极上的Tafel关系曲线(见图5)。可以看到,过电位与对数动力学电流(ik)之间呈现良好的线性相关,相关系数R2为0.995。外推到过电位为0时,得到相应电子传递系数β和的标准速率常数k0分别为0.496和9.42×10-3cms-1,表明靛蓝二磺酸的电化学反应是高度可逆的。
二、测试实施例1制备的基于靛蓝二磺酸的水系全有机液流电池的性能
使用Gamry的Interface 5000电化学测试系统对实施例1制备的靛蓝二磺酸水系液流电池进行极化曲线和充放电循环测试。为了研究所组装的靛蓝二磺酸水系液流电池的电化学性能,测试了电池的极化曲线,测试条件为:电解液中靛蓝二磺酸浓度为0.01molL-1,支持电解质为1molL-1H2SO4,电解液流量为60mLmin-1、测试温度为40℃。由图6可见,靛蓝二磺酸水系液流电池的开路电压为约0.6V,最大功率密度约为1.6mWcm-2。电池的充放电曲线测试的条件为:电解液中靛蓝二磺酸浓度为0.01molL-1,支持电解质为1molL-1H2SO4,电解液流量为60mLmin-1、测试温度为40℃。充电截止电压1.2V,放电截止电压0V,恒电流充放电电流依次从10mA增加到90mA。测试结果如图7所示。可以看到,随着充放电电流增加,放电容量保持率基本保持在99.4%以上,显示了良好的倍率性能和循环稳定性。
图8为本发明水系全有机液流电池用于可再生能源储能的水系全有机液流电池工作简图。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

1.一种基于靛蓝衍生物的水系全有机液流电池,其特征在于:所述液流电池以水溶性靛蓝的还原态衍生物为负极电活性物种,以水溶性靛蓝的氧化态衍生物为正极电活性物种,以硫酸为支持电解质,以全氟磺酸-聚四氟乙烯共聚物膜作为离子交换膜,以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸或碳毡分别作为阴极和阳极。
2.如权利要求1所述的基于靛蓝衍生物的水系全有机液流电池,其特征在于:所述的靛蓝衍生物含有磺酸基或者膦酸基。
3.如权利要求1所述的基于靛蓝衍生物的水系全有机液流电池,其特征在于:所述的靛蓝衍生物含有的磺酸基或膦酸基的数目为1-4个。
4.如权利要求1所述的基于靛蓝衍生物的水系全有机液流电池,其特征在于:所述的靛蓝衍生物为含有靛蓝结构的钠盐、钾盐或氢盐。
5.一种如权利要求1所述的基于靛蓝衍生物的水系全有机液流电池的组建方法,其特征在于:所述液流电池组建方法的具体操作步骤包括:
(1)称取靛蓝衍生物固体,溶解于超纯水中,配制成浓度为0.01~0.1mol/L的靛蓝衍生物溶液,通过氢离子交换树脂柱交换为对应浓度的靛蓝衍生物的酸溶液;接着添加浓度为2mol/L的硫酸溶液,配制成100mL 0.01~0.1mol/L的靛蓝衍生物酸+1.0mol/L硫酸的混合溶液;
(2)以2片镀金铜板分别为阴极和阳极电流收集板,2片蛇形石墨流场板分别为阴极和阳极流场板,2片碳纸或碳毡分别作为阴极和阳极,与1片全氟磺酸-聚四氟乙烯共聚物离子交换膜构建7层夹心状的电池结构;
(3)将步骤(1)制备的靛蓝衍生物的酸溶液分为等量的2份,分别注入两个封闭的储罐内,然后,将储罐的进出口与液流泵以及电池阴极或阳极流场进出口相连接,使2个储罐中的靛蓝衍生物的酸溶液各自在阴极和阳极独立循环流动,从而制得基于靛蓝衍生物的水系全有机液流电池。
6.如权利要求5所述的基于靛蓝衍生物的水系全有机液流电池的组建方法,其特征在于:所述碳纸在使用前使用硫酸与硝酸的混合溶液作亲水性处理;全氟磺酸-聚四氟乙烯共聚物离子交换膜在使用前经过双氧水和稀硫酸处理。
7.如权利要求5所述的基于靛蓝衍生物的水系全有机液流电池的组建方法,其特征在于:所述连接阳极的靛蓝衍生物的酸溶液储罐须充入氮气。
8.一种如权利要求1所述的基于靛蓝衍生物的水系全有机液流电池的应用,其特征在于:所述液流电池用于风能、光伏发电的规模储电以及电网调峰领域。
CN201711087864.1A 2017-11-08 2017-11-08 一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用 Pending CN107946624A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711087864.1A CN107946624A (zh) 2017-11-08 2017-11-08 一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711087864.1A CN107946624A (zh) 2017-11-08 2017-11-08 一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用

Publications (1)

Publication Number Publication Date
CN107946624A true CN107946624A (zh) 2018-04-20

Family

ID=61933533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711087864.1A Pending CN107946624A (zh) 2017-11-08 2017-11-08 一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用

Country Status (1)

Country Link
CN (1) CN107946624A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265694A (zh) * 2019-05-29 2019-09-20 西安交通大学 一种喋啶类水系有机氧化还原液流电池
CN110568051A (zh) * 2019-09-03 2019-12-13 中国科学院金属研究所 一种液流电池多孔电极反应动力学参数测试方法
WO2020251989A1 (en) * 2019-06-11 2020-12-17 Northeastern University All natural redox flow battery utilizing indigo carmine and derivatives thereof
CN117393870A (zh) * 2023-12-11 2024-01-12 大连理工大学 一种锌离子电池储能器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213700A (zh) * 2005-06-20 2008-07-02 韦福普泰有限公司 用于氧化还原电池和电池组的改进的全氟化膜和改进的电解液
CN201204228Y (zh) * 2008-05-30 2009-03-04 北京科技大学 一种液流电池用电极槽和集流体一体化装置
CN202712347U (zh) * 2012-07-20 2013-01-30 天津大学 一种直接液流燃料电池
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
WO2016102069A2 (en) * 2014-12-23 2016-06-30 Cambridge Display Technology, Ltd. Organic flow cell batteries and materials for use in same
CN105742678A (zh) * 2016-04-07 2016-07-06 香港科技大学 应用于液流电池的聚合物膜及其制备方法和应用
WO2016156451A1 (en) * 2015-04-01 2016-10-06 Fundación Centro De Investigación Cooperativa De Energías Alternativas Cic Energigune Fundazioa Organic electrolyte compounds for redox-flow batteries
CN106063017A (zh) * 2013-09-26 2016-10-26 哈佛大学校长及研究员协会 基于醌和氢醌的液流电池
CN106549178A (zh) * 2015-09-21 2017-03-29 中国科学院大连化学物理研究所 一种有机液流电池
CN107254058A (zh) * 2011-12-28 2017-10-17 旭化成株式会社 氧化还原液流二次电池和氧化还原液流二次电池用电解质膜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213700A (zh) * 2005-06-20 2008-07-02 韦福普泰有限公司 用于氧化还原电池和电池组的改进的全氟化膜和改进的电解液
CN201204228Y (zh) * 2008-05-30 2009-03-04 北京科技大学 一种液流电池用电极槽和集流体一体化装置
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
CN107254058A (zh) * 2011-12-28 2017-10-17 旭化成株式会社 氧化还原液流二次电池和氧化还原液流二次电池用电解质膜
CN202712347U (zh) * 2012-07-20 2013-01-30 天津大学 一种直接液流燃料电池
CN106063017A (zh) * 2013-09-26 2016-10-26 哈佛大学校长及研究员协会 基于醌和氢醌的液流电池
WO2016102069A2 (en) * 2014-12-23 2016-06-30 Cambridge Display Technology, Ltd. Organic flow cell batteries and materials for use in same
WO2016156451A1 (en) * 2015-04-01 2016-10-06 Fundación Centro De Investigación Cooperativa De Energías Alternativas Cic Energigune Fundazioa Organic electrolyte compounds for redox-flow batteries
CN106549178A (zh) * 2015-09-21 2017-03-29 中国科学院大连化学物理研究所 一种有机液流电池
CN105742678A (zh) * 2016-04-07 2016-07-06 香港科技大学 应用于液流电池的聚合物膜及其制备方法和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265694A (zh) * 2019-05-29 2019-09-20 西安交通大学 一种喋啶类水系有机氧化还原液流电池
CN110265694B (zh) * 2019-05-29 2021-01-19 西安交通大学 一种喋啶类水系有机氧化还原液流电池
WO2020251989A1 (en) * 2019-06-11 2020-12-17 Northeastern University All natural redox flow battery utilizing indigo carmine and derivatives thereof
CN110568051A (zh) * 2019-09-03 2019-12-13 中国科学院金属研究所 一种液流电池多孔电极反应动力学参数测试方法
CN110568051B (zh) * 2019-09-03 2021-07-23 中国科学院金属研究所 一种液流电池多孔电极反应动力学参数测试方法
CN117393870A (zh) * 2023-12-11 2024-01-12 大连理工大学 一种锌离子电池储能器件
CN117393870B (zh) * 2023-12-11 2024-02-13 大连理工大学 一种锌离子电池储能器件

Similar Documents

Publication Publication Date Title
CN103000924B (zh) 一种有机相双液流电池
CN109599577B (zh) 基于盐穴的水相体系有机液流电池系统
CN101614794B (zh) 一种基于电位差参数的液流电池荷电状态在线检测方法
CN107946624A (zh) 一种基于靛蓝衍生物的水系全有机液流电池及其组建方法和应用
KR102157362B1 (ko) 하이브리드 레독스 흐름 전지 및 이의 용도
CN201549546U (zh) 一种柱状液流电池装置
CN109378510B (zh) 基于盐穴的水相体系有机液流电池系统
CN104143646A (zh) 一种液流储能电池或电堆的运行方法
CN101593841A (zh) 一种氧化还原液流电池和氧化还原液流电池组
CN106549179B (zh) 一种有机体系锂醌液流电池
CN104882624A (zh) 蒽醌液流电池
CN109301178A (zh) 一种掺杂磷新型碳负极材料制备的钠双离子电池
CN107359372A (zh) 一种水系电解液及水系金属离子电池
CN106549178B (zh) 一种有机液流电池
CN102227029B (zh) 高浓度钒电解液及其制备方法
CN104133975A (zh) 电力系统中全矾液流电池电磁暂态仿真建模方法
CN104143651A (zh) 一种氧化还原液流电池系统
CN105322186B (zh) 一种减小全钒液流电池电化学极化的方法
US10522863B2 (en) Electrolyte solution for redox flow battery containing organic active material and redox flow battery using the same
CN102495269B (zh) 流电池电解液测量传感器及电解液电荷状态测量方法
CN104300169A (zh) 一种碱性锌钒液流电池
WO2015068979A1 (ko) 화학흐름전지의 운전 방법
Islam et al. Effects of sulfuric acid concentration on volume transfer across ion-exchange membrane in a single-cell vanadium redox flow battery
CN1893162B (zh) 一种兼有蓄电与电化学合成的双功能液流蓄电池
CN104300167A (zh) 一种有机相液流电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420