CN107942734A - 一种基于动态测试数据的进给系统闭环时域仿真方法 - Google Patents

一种基于动态测试数据的进给系统闭环时域仿真方法 Download PDF

Info

Publication number
CN107942734A
CN107942734A CN201711411742.3A CN201711411742A CN107942734A CN 107942734 A CN107942734 A CN 107942734A CN 201711411742 A CN201711411742 A CN 201711411742A CN 107942734 A CN107942734 A CN 107942734A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
closed loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711411742.3A
Other languages
English (en)
Other versions
CN107942734B (zh
Inventor
刘辉
赵万华
杨晓君
吕盾
张俊
张会杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201711411742.3A priority Critical patent/CN107942734B/zh
Publication of CN107942734A publication Critical patent/CN107942734A/zh
Application granted granted Critical
Publication of CN107942734B publication Critical patent/CN107942734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供一种基于动态测试数据的进给系统闭环时域仿真方法,包括如下步骤:1.基于伺服电机自激励进行动态测试与频响估计,对激励与响应信号进行频响估计得到1入3出频响阵;2.基于进给系统控制结构,得到指令位移输入到工作台面位移响应输出的闭环频率特性;3.利用傅里叶逆变换求取进给系统的单位脉冲响应;将单位脉冲响应与指定位移指令进行时域卷积,求得闭环时域响应输出作为进给系统闭环时域仿真输出。本发明克服了相关方法的建模复杂性与建模精度或辨识精度的问题,具有简单直接、精度高的特点。提供了一种进给系统高阶动态特性的实验建模与时域仿真方法,可用于单轴运动精度的预测与评价,也可用于控制器的设计与参数优化设置。

Description

一种基于动态测试数据的进给系统闭环时域仿真方法
技术领域
本发明属于进给系统动态特性建模与时域仿真技术,涉及动态测试技术、频响估计方法与时域仿真方法,具体为一种基于动态测试数据的进给系统闭环时域仿真方法。
背景技术
数控机床是重要的机械制造装备,进给轴的性能是机床实现高速高精加工的前提与基础。在机床设计与调试阶段,往往需要通过对进给轴的指令输入与实际响应进行时域考察,从而分析其稳态误差、动态误差,进行性能评价,用于进一步的优化设计与控制器参数优化设置。
进行时域分析最直接的方法是利用系统的内部信号采集功能,即利用伺服或数控系统提供的扭矩指令、位移指令和位移反馈等信号进行分析。这种方法的一个局限是无法采集闭环外的工作台处或主轴端部的运动信号,而这些点的误差响应正是直接影响加工质量的;另一个局限是该法无法应用于设计阶段,必须在机械、控制完全安装好后才能施行,此时进行的分析得到的结果很难再用于机械的结构优化与控制器的选取。
另一个最常用的方法是采用多刚体动力学或有限元方法对机械部分进行建模,再考虑控制作用构成机电集成模型,往往获得传递函数形式或状态空间方程形式的模型,再进行时域仿真分析。这种方法的局限是存在模型复杂性与准确性的矛盾,采用低阶模型计算效率高、便于分析,但误差大,特别是在动态误差的预测上误差更大;采用高阶或有限元模型则带来计算效率低、模型参数辨识困难等问题。
第三种方法是将动态特性测试得到的脉冲响应或频率响应辨识为传递函数或状态空间模型,再进行时域分析。这种方法同样面临待辨识模型阶次的选择、辨识效率与精度的权衡等问题。
发明内容
针对现有技术中存在的问题,本发明提供一种基于动态测试数据的进给系统闭环时域仿真方法,直接应用动态测试数据进行时域仿真,具有计算过程简洁和精度高的特点,同时避免了直接建模或模型辨识所带来的效率与精度问题。
本发明是通过以下技术方案来实现:
一种基于动态测试数据的进给系统闭环时域仿真方法,包括如下步骤,
步骤1,基于伺服电机自激励进行动态测试与频响估计,对激励与响应信号进行频响估计得到1入3出频响阵;
步骤2,根据被控对象模型和步骤1中得到的1入3出频响阵,基于进给系统的控制结构,得到指令位移输入到工作台面位移响应输出的闭环频率特性;
步骤3,根据步骤2中的闭环频率特性,利用傅里叶逆变换求取进给系统的单位脉冲响应;将单位脉冲响应与指定位移指令进行时域卷积,求得闭环时域响应输出作为进给系统闭环时域仿真输出。
优选的,步骤1中,使用进给系统的伺服电机产生一定幅值与频宽的扫频激励扭矩,分别利用编码器、长光栅与加速度传感器采集电机转子、滑台底部与工作台面处的动态响应,对激励与响应信号进行频响估计求取电机-编码器频响、电机-长光栅频响和电机-工作台频响,并构成1入3出频响阵。
进一步,采用的电机扫频激励扭矩如下,
T1(t)=Asin(ωt(t)t)
ωt(t)=a+bt,t∈[0,t0]
式中,A为激励幅值,ωt为时变频率,a,b为时变频率的线性变化参数,t0为激励时长。
进一步,测得编码器处速度响应ω1(t),长光栅处位移响应x2(t),工作台面处加速度响应a3(t);使用功率谱估计计算三个位移频响分别为,
式中,h11,h21,h31依次为电机扭矩输入下的编码器处、长光栅处和工作台面处的位移频响,j为虚数单位,ω为角频率,GT1T1,GT1ω1,GT1x2,GT1a3分别为输入扭矩的自能量谱与输入扭矩分别于三个输出的互能量谱;
上述三个位移频响构成进给系统机械部分的1入3出位移频响阵模型如下,
进一步,激励幅值的选择原则是能够克服静摩擦,激励起工作台的宏观移动;激励频率范围能够覆盖最大加速度参数下运动指令加减速过程的频宽,并包含最大主轴转速下的切削力干扰频率。
进一步,步骤2中,考虑伺服电机与控制时延下的被控对象模型为:
式中,kI为电流放大系数,kT为扭矩常数,e-jωτ为控制时延,isc为丝杠螺母副的传动比。
进一步,基于包括位置环控制器与速度环控制器的控制结构,得到指令位移输入到工作台面位移响应输出的闭环频率特性如下,
式中,r(jω),x3(jω)分别为指令位移与工作台处位移响应的傅里叶变换,Gcp,Gcv分别为位置环控制器与速度环控制器的传递函数。
进一步,步骤3中,根据步骤2中的闭环频率特性,利用傅里叶逆变换求取系统的单位脉冲响应如下,
进一步,将单位脉冲响应gx3_r(t)与指定位移指令r(t)进行时域卷积,求得闭环时域响应输出为,相应地,有误差响应为,e(t)=x3(t)-r(t)。
与现有技术相比,本发明具有以下有益的技术效果:
本发明直接应用动态测试数据进行闭环时域仿真,无需进行基于机理的动态特性建模,也不必进行模型形式转换或辨识,克服了相关方法的建模复杂性与建模精度或辨识精度的问题,具有简单直接、精度高的特点。提供了一种进给系统高阶动态特性的实验建模与时域仿真方法,可用于单轴运动精度的预测与评价,也可用于控制器的设计与参数优化设置。
附图说明
图1为基于动态测试数据的进给系统时域仿真方法流程图。
图2为动态测试与频响估计原理框图。
图3为实施例测试得到的扭矩-编码器频响h11
图4为实施例测试得到的扭矩-工作台频响h31
图5为一般的进给系统级联控制结构框图。
图6为计算得到不同控制器下的闭环频率特性Gx3-r
图7为计算得到不同控制器下的闭环时域仿真结果。
图中:1为电机与编码器,2为长光栅与读数头,3为置于工作台上的加速度计,4为考虑了电机与控制时延的被控对象H’,5为速度环控制器Gcv,6为位置环控制器Gcp
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明一种基于动态测试数据的进给系统闭环时域仿真方法,如图1所示,其包括三个步骤:基于伺服电机自激励的动态测试与频响估计;基于控制结构的闭环频率特性计算;基于傅里叶逆变换与时域卷积的闭环时域仿真计算输出。具体的如下所述。
步骤1,基于伺服电机自激励的动态测试与频响估计,如图2所示,使用进给系统的伺服电机产生一定幅值与频宽的扫频激励扭矩,分别利用编码器、长光栅与加速度传感器采集电机转子、滑台底部与工作台面处的动态响应,对激励与响应信号进行频响估计求取电机-编码器频响、电机-长光栅频响和电机-工作台频响,并构成1入3出频响阵。
采用的电机扫频激励扭矩:
T1(t)=Asin(ωt(t)t)
ωt(t)=a+bt,t∈[0,t0]
式中,A为激励幅值,ωt为时变频率,a,b为时变频率的线性变化参数,t0为激励时长。
激励幅值的选择原则是能够克服静摩擦,激励起工作台的宏观移动,本例中A取为30%的电机额定扭矩;激励频率范围应覆盖最大加速度参数下运动指令加减速过程的频宽,并包含最大主轴转速下的切削力干扰频率;最大主轴转速下的切削力干扰频率为主轴转速与刀齿数之乘积;本例中取为0~1KHz,此时相关参数为a=0rad/s,b=314000rad/s2,t0=0.2s。
在上述激励下,测得编码器处速度响应ω1(t),长光栅处位移响应x2(t),工作台面处加速度响应a3(t)。使用功率谱估计计算三个位移频响:
式中,h11,h21,h31依次为电机扭矩输入下的编码器处、长光栅处、工作台面处的位移频响,j为虚数单位,ω为角频率,GT1T1,GT1ω1,GT1x2,GT1a3分别为输入扭矩的自能量谱与输入扭矩分别于三个输出的互能量谱。图3与图4分别给出了本例中不同工作台位置下测得的h11与h31的幅频特性曲线族。
上述三个位移频响构成机械部分的1入3出位移频响阵模型:
步骤2,基于控制结构的闭环频率特性计算,首先给出考虑伺服电机与控制时延下的被控对象模型有:
式中,kI为电流放大系数,kT为扭矩常数,e-jωτ为控制时延,isc为丝杠螺母副的传动比;
进而,一般的控制结构包括依次连接位置环控制器6与速度环控制器5,用于控制考虑了电机与控制时延的被控对象H’4,考虑图5所示一般的控制结构下,求指令位移输入到工作台面位移响应输出的闭环频率特性:
式中,r(jω),x3(jω)分别为指令位移与工作台处位移响应的傅里叶变换,Gcp,Gcv分别为一般的位置环控制器与速度环控制器的传递函数。
图6给出了本例机械系统在三种不同的控制器作用下的闭环频率特性。
步骤3,基于傅里叶逆变换与时域卷积的闭环时域仿真计算输出,首先利用傅里叶逆变换求取系统的单位脉冲响应:
再将单位脉冲响应gx3_r(t)与指定位移指令r(t)进行时域卷积,求得闭环时域响应输出:
相应地,有误差响应:
e(t)=x3(t)-r(t)
图7给出了本例机械系统在三种不同的控制器作用下,对一高速高加速往复过程指令的误差响应曲线。
上述三步骤给出了对给定机械系统通过动态测试数据,直接进行时域仿真的方法。可用于单轴运动精度的预测与评价,也可用于控制器的设计与参数优化设置。
上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限值本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,包括如下步骤,
步骤1,基于伺服电机自激励进行动态测试与频响估计,对激励与响应信号进行频响估计得到1入3出频响阵;
步骤2,根据被控对象模型和步骤1中得到的1入3出频响阵,基于进给系统的控制结构,得到指令位移输入到工作台面位移响应输出的闭环频率特性;
步骤3,根据步骤2中的闭环频率特性,利用傅里叶逆变换求取进给系统的单位脉冲响应;将单位脉冲响应与指定位移指令进行时域卷积,求得闭环时域响应输出作为进给系统闭环时域仿真输出。
2.根据权利要求1所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,步骤1中,使用进给系统的伺服电机产生一定幅值与频宽的扫频激励扭矩,分别利用编码器、长光栅与加速度传感器采集电机转子、滑台底部与工作台面处的动态响应,对激励与响应信号进行频响估计求取电机-编码器频响、电机-长光栅频响和电机-工作台频响,并构成1入3出频响阵。
3.根据权利要求2所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,采用的电机扫频激励扭矩如下,
T1(t)=Asin(ωt(t)t)
ωt(t)=a+bt,t∈[0,t0]
式中,A为激励幅值,ωt为时变频率,a,b为时变频率的线性变化参数,t0为激励时长。
4.根据权利要求3所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,测得编码器处速度响应ω1(t),长光栅处位移响应x2(t),工作台面处加速度响应a3(t);使用功率谱估计计算三个位移频响分别为,
<mrow> <msub> <mi>h</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mn>1</mn> <mi>&amp;omega;</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mn>1</mn> <mi>T</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mfrac> <mn>1</mn> <mrow> <mi>j</mi> <mi>&amp;omega;</mi> </mrow> </mfrac> </mrow>
<mrow> <msub> <mi>h</mi> <mn>21</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mn>1</mn> <mi>x</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mn>1</mn> <mi>T</mi> <mn>1</mn> </mrow> </msub> </mfrac> </mrow>
<mrow> <msub> <mi>h</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mn>1</mn> <mi>a</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mn>1</mn> <mi>T</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mfrac> <mrow> <mo>-</mo> <mn>1</mn> </mrow> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> </mfrac> </mrow>
式中,h11,h21,h31依次为电机扭矩输入下的编码器处、长光栅处和工作台面处的位移频响,j为虚数单位,ω为角频率,GT1T1,GT1ω1,GT1x2,GT1a3分别为输入扭矩的自能量谱与输入扭矩分别于三个输出的互能量谱;
上述三个位移频响构成进给系统机械部分的1入3出位移频响阵模型如下,
<mrow> <mi>H</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>11</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>31</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
5.根据权利要求2或3所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,激励幅值的选择原则是能够克服静摩擦,激励起工作台的宏观移动;激励频率范围能够覆盖最大加速度参数下运动指令加减速过程的频宽,并包含最大主轴转速下的切削力干扰频率。
6.根据权利要求5所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,步骤2中,考虑伺服电机与控制时延下的被控对象模型为:
<mrow> <msup> <mi>H</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>h</mi> <mn>11</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>h</mi> <mn>21</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>h</mi> <mn>31</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>k</mi> <mi>I</mi> </msub> <msub> <mi>k</mi> <mi>T</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>h</mi> <mn>11</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>31</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
式中,kI为电流放大系数,kT为扭矩常数,e-jωτ为控制时延,isc为丝杠螺母副的传动比。
7.根据权利要求6所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,基于包括位置环控制器与速度环控制器的控制结构,得到指令位移输入到工作台面位移响应输出的闭环频率特性如下,
<mrow> <msub> <mi>G</mi> <mrow> <mi>x</mi> <mn>3</mn> <mo>_</mo> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>G</mi> <mrow> <mi>c</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>c</mi> <mi>v</mi> </mrow> </msub> <msubsup> <mi>h</mi> <mn>31</mn> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>j&amp;omega;G</mi> <mrow> <mi>c</mi> <mi>v</mi> </mrow> </msub> <msubsup> <mi>h</mi> <mn>11</mn> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>G</mi> <mrow> <mi>c</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>c</mi> <mi>v</mi> </mrow> </msub> <msubsup> <mi>h</mi> <mn>21</mn> <mo>&amp;prime;</mo> </msubsup> </mrow> </mfrac> </mrow>
式中,r(jω),x3(jω)分别为指令位移与工作台处位移响应的傅里叶变换,Gcp,Gcv分别为位置环控制器与速度环控制器的传递函数。
8.根据权利要求7所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,步骤3中,根据步骤2中的闭环频率特性,利用傅里叶逆变换求取系统的单位脉冲响应如下,
<mrow> <msub> <mi>g</mi> <mrow> <mi>x</mi> <mn>3</mn> <mo>_</mo> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <msub> <mi>G</mi> <mrow> <mi>x</mi> <mn>3</mn> <mo>_</mo> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>&amp;omega;</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>&amp;omega;</mi> <mo>.</mo> </mrow>
9.根据权利要求8所述的一种基于动态测试数据的进给系统闭环时域仿真方法,其特征在于,将单位脉冲响应gx3_r(t)与指定位移指令r(t)进行时域卷积,求得闭环时域响应输出为,相应地,有误差响应为,e(t)=x3(t)-r(t)。
CN201711411742.3A 2017-12-23 2017-12-23 一种基于动态测试数据的进给系统闭环时域仿真方法 Active CN107942734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711411742.3A CN107942734B (zh) 2017-12-23 2017-12-23 一种基于动态测试数据的进给系统闭环时域仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711411742.3A CN107942734B (zh) 2017-12-23 2017-12-23 一种基于动态测试数据的进给系统闭环时域仿真方法

Publications (2)

Publication Number Publication Date
CN107942734A true CN107942734A (zh) 2018-04-20
CN107942734B CN107942734B (zh) 2020-10-27

Family

ID=61938721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711411742.3A Active CN107942734B (zh) 2017-12-23 2017-12-23 一种基于动态测试数据的进给系统闭环时域仿真方法

Country Status (1)

Country Link
CN (1) CN107942734B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116151009A (zh) * 2023-02-27 2023-05-23 哈尔滨工业大学 一种面向超精密运动系统的频响辨识方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658503A (zh) * 2012-02-06 2012-09-12 西安交通大学 一种基于内置传感器的数控机床进给系统的模态测试方法
US20170262572A1 (en) * 2016-03-14 2017-09-14 Omron Corporation Simulation device, simulation method, control program and recording medium
CN107505914A (zh) * 2017-07-20 2017-12-22 西安交通大学 一种考虑滚珠丝杠进给系统高阶动态特性的高精运动控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658503A (zh) * 2012-02-06 2012-09-12 西安交通大学 一种基于内置传感器的数控机床进给系统的模态测试方法
US20170262572A1 (en) * 2016-03-14 2017-09-14 Omron Corporation Simulation device, simulation method, control program and recording medium
CN107505914A (zh) * 2017-07-20 2017-12-22 西安交通大学 一种考虑滚珠丝杠进给系统高阶动态特性的高精运动控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOJUN YANG 等: ""AN OVERALL ANALYSIS OF SERVO CONTROL SYSTEM INFLUENCE ON FREQUENCY SPECTRUM"", 《PROCEEDINGS OF THE ASME 2012 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS & EXPOSITION》 *
王勇 等: ""两自由度局部非线性系统的脉冲响应时域法"", 《华中科技大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116151009A (zh) * 2023-02-27 2023-05-23 哈尔滨工业大学 一种面向超精密运动系统的频响辨识方法
CN116151009B (zh) * 2023-02-27 2023-07-18 哈尔滨工业大学 一种面向超精密运动系统的频响辨识方法

Also Published As

Publication number Publication date
CN107942734B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
Huang et al. PC-based PID speed control in DC motor
CN103197596B (zh) 一种数控加工参数自适应模糊控制规则优化方法
CN104239681A (zh) 基于脉冲激励响应信号互功率谱函数的主轴系统运行模态分析方法
CN101005263A (zh) 交流电机伺服系统速度控制方法
CN104142219A (zh) 一种基于多点脉冲激励的主轴系统运行模态分析方法
DE102016004775B4 (de) Servosteuervorrichtung mit Funktion zum Erhalten von Frequenzcharakteristika einer Maschine online
CN101562422B (zh) 一种交流伺服驱动器速度环控制参数的自动整定方法
de Jesus Rangel-Magdaleno et al. FPGA-based vibration analyzer for continuous CNC machinery monitoring with fused FFT-DWT signal processing
CN103618492A (zh) 一种基于时频变换的同步发电机参数辨识方法
CN103076562A (zh) 电机温升测量方法和测量装置
CN109753689A (zh) 一种电力系统机电振荡模态特征参数在线辩识方法
Adewusi Modeling and parameter identification of a DC motor using constraint optimization technique
CN101639667A (zh) 一种伺服系统的设计方法
Ling et al. System identification and control of an Electro-Hydraulic Actuator system
CN107942734A (zh) 一种基于动态测试数据的进给系统闭环时域仿真方法
CN102721462A (zh) 旋转机械启停车过程波德图/奈奎斯特图的快速计算方法
CN113156200B (zh) 一种电网低频振荡实时监测装置
CN112327957B (zh) 转子低频振动多阶线谱的控制方法及装置
CN105275730A (zh) 一种水轮机调速器微分环节系数及时间常数辨识方法
CN104699905B (zh) 基于频域响应的调速系统齿轮传动机构辨识建模方法
CN107798205B (zh) 双馈感应风力发电机组轴系模型参数的单独辨识方法
CN105373094B (zh) 基于数据快采样的工业过程动态模型辨识装置
CN105634356B (zh) 基于plc的多电机调速系统神经网络广义逆内模实现方法
CN104656554B (zh) 一种用于数控机床的系统参数优化配置方法
CN105571797A (zh) 一种基于时频分析的转子系统非线性阻尼辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant