CN107937424A - 双基因融合增强植物抗蚜性的方法 - Google Patents

双基因融合增强植物抗蚜性的方法 Download PDF

Info

Publication number
CN107937424A
CN107937424A CN201711082638.4A CN201711082638A CN107937424A CN 107937424 A CN107937424 A CN 107937424A CN 201711082638 A CN201711082638 A CN 201711082638A CN 107937424 A CN107937424 A CN 107937424A
Authority
CN
China
Prior art keywords
aphid
coo2
plant
gene
atpase subunit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711082638.4A
Other languages
English (en)
Inventor
唐克轩
马嘉伟
潘琪芳
付雪晴
张婷婷
钱虹妹
赵静雅
马亚男
王宇婷
孙小芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201711082638.4A priority Critical patent/CN107937424A/zh
Publication of CN107937424A publication Critical patent/CN107937424A/zh
Priority to PCT/CN2018/114295 priority patent/WO2019091390A1/zh
Priority to CN201811316873.8A priority patent/CN109988761B/zh
Priority to US16/760,447 priority patent/US11208668B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/01Hydrolases acting on acid anhydrides (3.6) in phosphorus-containing anhydrides (3.6.1)
    • C12Y306/01003Adenosine triphosphatase (3.6.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/51Physical structure in polymeric form, e.g. multimers, concatemers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

一种双基因融合增强植物抗蚜性的方法,通过从桃蚜(Myzus×persicae)的V‑ATPase subunit E基因和COO2基因片段中构建得到上述具有抗蚜虫功能的基因,通过构建表达载体并将该载体转入农杆菌,以该农杆菌侵染小麦幼胚,在小麦中表达产生V‑ATPase subunit E和COO2双基因的dsRNA,从而达到趋避蚜虫的目的。此外,实验证明通过转化双基因融合载体的转基因小麦抗虫效果高于分别转化单基因的转基因小麦。本发明利用基因工程手段获得的抗虫转基因植物具有只对目标害虫有效,而对非危害生物没有影响的优点,植物表达产生的抗虫物质存在于植物体内,不会对环境造成污染,且成本低,利于推广。

Description

双基因融合增强植物抗蚜性的方法
技术领域
本发明涉及的是一种生物工程领域的技术,具体是一种基于V-ATPase subunit E和COO2 双基因融合增强植物抗蚜性的方法。
背景技术
蚜虫是农业生产中的主要害虫之一,我国小麦主要种植地区小麦生育期间气温升高,出 现“暖冬”,致使蚜虫危害猖獗,每年在小麦生产上因蚜虫及其传播的病毒所造成的经济损失十 分严重。目前植物介导的RNAi技术作为农作物抗虫研究的热点之一,应用前景十分广阔。此 技术就是通过在寄主植物中表达相应昆虫特异基因的dsRNA,昆虫食用寄主植物后,其相应的 基因被沉默而表达量下降,造成昆虫的死亡,从而起到控制害虫危害的作用。因此利用植物介 导的RNAi技术培育抗蚜品种能够达到安全、持久、高效防治蚜虫的目的,具有重要的实际应 用价值。
发明内容
本发明提出一种双基因融合增强植物抗蚜性的方法,利用了V-ATPase通过水解ATP产 生能量从而为各种生命活动提供所需能量以及桃蚜唾液腺酶类基因COO2在蚜虫合成酶过程上 的重要特性,利用基因工程手段获得的抗虫转基因植物具有只对目标害虫有效,而对非危害生 物没有影响的优点,植物表达产生的抗虫物质存在于植物体内,不会对环境造成污染,且成本 低,利于推广。
本发明是通过以下技术方案实现的:
本发明涉及一种具有抗蚜虫功能的基因dsRNA,其具体融合自蚜虫的V-ATPasesubunit E和COO2基因片段,其核苷酸序列如Seq ID No.3所示。
所述的Seq ID No.3,通过将蚜虫的V-ATPase subunit E(Seq ID No.1所示)、COO2基因 (Seq ID No.2所示)以及V-ATPase subunit E和COO2基因部分片段融合片段基因合成。
本发明涉及一种双基因融合增强植物抗蚜性的方法,通过从桃蚜(Myzus×persicae)的 V-ATPase subunit E基因、COO2基因以及V-ATPase subunit E基因和COO2基因部分序列融合 片段分别构建得到具有抗蚜虫功能的基因,通过构建表达载体并将其分别转入农杆菌,以该农 杆菌侵染小麦幼胚,分别在小麦中表达产生V-ATPase subunit E、COO2基因以及V-ATPase subunit E和COO2双基因的dsRNA,从而达到趋避蚜虫的目的。
所述的表达载体,通过构建玉米ubiquitin-1启动子驱动V-ATPase subunit E,COO2基 因以及V-ATPase subunit E基因和COO2融合基因沉默载体,即RNAi载体。
所述的ubiquitin-1启动子具体为:组成型启动子。
本发明涉及一种重组表达载体,即RNAi载体,其基于dsRNA构建得到。
所述的dsRNA包括:
1)由Seq ID No.1所示的在植物中表达的核苷酸和其反向互补序列;
2)由Seq ID No.1所示的在植物中表达的核苷酸和其反向互补序列;
3)由Seq ID No.3所示的在植物中表达的核苷酸和其反向互补序列,由Seq IDNo.1所示 的核苷酸和Seq ID No.2所示的核苷酸组成。
所述的抗蚜性包括:
1)在防治蚜虫中的应用或在制备防治蚜虫产品中的应用;
2)在促进蚜虫死亡中的应用或在制备促进蚜虫死亡产品中的应用;
3)在抑制蚜虫生长中的应用或在制备抑制蚜虫生长产品中的应用。
技术效果
本发明的实验证明所得在小麦中表达桃蚜相关基因V-ATPase subunit E、COO2以及 V-ATPase subunit E和COO2融合片段表达cDNA的序列的dsRNA,导致麦蚜产生致死效应, 并且V-ATPase subunit E和COO2融合片段表达cDNA的序列的dsRNA抑制蚜虫效果最佳。
与现有技术相比,本发明对于适用于本发明的植物没有特别的限制,只要其适合进行基 因的转化操作,如各种农作物、花卉植物或林业植物等。
附图说明
图1为本发明pDE1005:proUBI:V-ATPase subunit E+COO2载体构建示意图;
图2为实施例中转ubiquitin-1启动子驱动V-ATPase subunit E+COO2基因T1代小麦PCR 鉴定示意图;
图中:M:Marker III;+:pDE1005:proUBI:V-ATPase subunit E+COO2质粒;CK:野生型Fileder春小麦;1-1,1-3,1-6,2-3,2-3,2-6,3-2,3-4,3-6,4-1,4-3,4-4,5-3, 5-5,5-8:转ubiquitin-1启动子驱动V-ATPase subunit E+COO2基因T1代小麦植株,简称VC。
图3为实施例中转ubiquitin-1启动子驱动V-ATPase subunit E+COO2基因T1代小麦 V-ATPase subunit E+COO2基因半定量结果示意图;
图中:M:Marker III;+:pDE1005:proUBI:V-ATPase subunit E+COO2质粒;CK:野生型Fileder春小麦;1-1,1-3,1-6,2-3,2-3,2-6,3-2,3-4,3-6,4-1,4-3,4-4,5-3, 5-5,5-8:转ubiquitin-1启动子驱动V-ATPase subunit E+COO2基因T1代小麦植株,简称VC。
具体实施方式
下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等分子 克隆:实验室手册(New York:Coldspringharbor Laboratory Press,1989)中所述的条件,或按照 制造厂商所建议的条件。所采用的试剂盒均为市售或公开渠道可以获得的试剂盒。
实施例1
含V-ATPase subunit E和COO2双基因的RNAi载体的合成:分别合成桃蚜(Myzus×persicae)的V-ATPase subunit E基因片段,COO2基因片段以及V-ATPase subunit E和COO2双 基因片段,分别构建发夹结构的正向基因,内含子序列和反向的基因,构建到pDE1005载体 的多克隆位点上,分别获得pDE1005:proUBI:V-ATPase subunit E,pDE1005:proUBI:COO2和 pDE1005:proUBI:V-ATPase subunit E+COO2基因沉默载体,基因由上海生工生物工程公司合 成。
实施例2
根癌农杆菌介导V-ATPase subunit E,COO2以及V-ATPase subunit E+COO2双基因
RNAi载体转化Fielder春小麦
1.1.幼胚的预培养
开花授粉后13~14d的未成熟种子(幼胚大小1.0~1.2mm),用70%酒精表面消毒1~ 2min,15%的次氯酸钠灭菌15min,无菌水冲洗4~5次。
1.2.农杆菌与幼胚愈伤组织的共培养
室温下,3500rpm离心10min收集农杆菌菌体,尽去上清,用1/10WCC重悬液(MS 基本培养基)以1:2比例重悬。将小麦幼胚转移至农杆菌菌液中侵染30min,将愈伤组织转移至灭菌培养皿中的无菌滤纸上,25℃黑暗条件下共培养2d(幼胚)。
共培养2d的幼胚愈伤组织转移到IESX1培养基(MS基本培养基(含MS维生素)+30gL-1蔗糖+2.0mg L-1dicamba+250mg L-1Cb+5mg L-1PPT,pH 5.8),25℃黑暗培养2周,然后 转移到IESX2培养基(MS基本培养基(含MS维生素)+30g L-1蔗糖+2.0mg L-1dicamba+250 mg L-1Cb+10mg L-1PPT,pH 5.8),25℃黑暗培养2-3周。
1.3.抗性再生植株的筛选
筛选后的幼胚愈伤组织转移到IEFH培养基(MS基本培养基(含MS维生素)+20g L-1蔗 糖+0.2mg L-1 2,4-D+250mg L-1Cb+5mg L-1PPT,pH=5.8),25℃、光照培养3~4周。
筛选后的成熟胚愈伤组织转移到XCFH分化培养基(MS基本培养基(不含MS维生素)+ 20g L-1蔗糖+10.0mg L-1B1维生素+1.0mg L-1B3维生素+1.0mg L-1B6维生素+2.0 mgL-1甘氨酸+5.0mg L-1谷氨酰胺+0.2mg L-1IAA+250mg L-1Cb+5mg L-1PPT,pH 5.8)上,25℃光照培养3~4周,分化植株。
将长至2~3cm的幼苗移至生根壮苗培养基(1/2MS培养基(含MS维生素)+20g L-1蔗 糖+250mg L-1Cb+5mg L-1PPT,pH 5.8)上,25℃、光照条件下培养3~4周。移栽生长健壮的抗性植株到花盆中。
转基因小麦的PCR检测
利用阳性鉴定的PCR引物对目的基因进行检测。结果表明,利用所设计的PCR特异引 物,能扩增出特异DNA片段。而以非转化小麦基因组DNA为模板时,没有扩增出任何片段。
本实施例将所述的植物表达载体转化根癌农杆菌,分别获得用于转化小麦的含V-ATPase subunit E,COO2以及V-ATPase subunit E+COO2基因植物过量表达载体的根癌农杆菌菌株, 利用所构建的根癌农杆菌菌株转化小麦幼胚,获得经PCR检测的转基因小麦植株。
实施例3
V-ATPase subunit E,COO2以及V-ATPase subunit E+COO2双基因RNAi载体T1代小 麦进行抗蚜虫性鉴定。
将同一虫龄的麦蚜分别接于待测转基因植株和3株野生型小麦展开的嫩叶上,每株接 10头,培养10天后,统计叶片上蚜虫数量。结果表1所示,与野生型对照相比,V-ATPasesubunit E,COO2以及V-ATPase subunit E+COO2双基因RNAi转基因小麦植株获得了显著提高的抗蚜性。
V-ATPase subunit E,COO2以及V-ATPase subunit E+COO2双基因RNAi转基因小麦植 株抗虫效果比较,V-ATPase subunit E+COO2双基因RNAi转基因小麦植株抗虫效果最佳。
表1 V-ATPase subunit E转基因小麦对蚜虫的抗性鉴定
表2 COO2转基因小麦对蚜虫的抗性鉴定
表3 V-ATPase subunit E+COO2双基因转基因小麦对蚜虫的抗性鉴定
结果显示,五个转V-ATPase subunit E和COO2双基因RNAi载体T1代小麦植株上蚜虫 数量显著低于野生型对照,并且与V-ATPase subunit E和COO2RNAi载体T1代小麦植株抗虫 效果相比,效果更佳。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式 对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围 内的各个实现方案均受本发明之约束。
序列表
<110> 上海交通大学
<120> 双基因融合增强植物抗蚜性的方法
<130> f-b000e
<141> 2017-11-07
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 622
<212> DNA
<213> 桃蚜 (Myzus × persicae V-ATPase subunit E)
<400> 1
gtattgagtt gttggcacat aagaataaaa taaaaatttg taacacactg gaatcgcgat 60
cataactcaa caaccgtgta ttcttatttt atttttaaac attgtgtgac cttagcgcta 120
tggaactgat tgctcagcag ttggtaccag ctgtacgaac tgcattgttc ggtcgtaatc 180
accttgacta acgagtcgtc aaccatggtc gacatgcttg acgtaacaag ccagcattag 240
caaacagaaa attcgctgaa taatcgcagt aaatccctac agcaataata tgcgtattaa 300
gtttgtcttt taagcgactt attagcgtca tttagggatg tcgttattat acgcataatt 360
aaacaaaaat aaaacattct atttaaaata ttttttctca ttccatttgg taactatgta 420
tttgttttta ttttgtaaga taaattttat aaaaaagagt aaggtaaacc attgatacat 480
attgcataaa ttataaccat cccatctata catagtttag gttcaataca caattattta 540
taacgtattt aatattggta gggtagatat gtatcaaatc caagttatgt gttaataaat 600
attttgagtc ttaaaactca ga 622
<210> 2
<211> 718
<212> DNA
<213> 桃蚜 (Myzus × persicae COO2)
<400> 2
atgggaagtt acaaattata cgtagccgtc atggcaatag ccatagctgt agtacaggaa 60
tacccttcaa tgtttaatat gcatcggcag taccgttatc ggtatcgaca tcatgtcctt 120
gttagatgcg attggtctgc cgctgaaccg tacgatgagc aggaagaagc gtctgtcgaa 180
caatctacgc taaccagacg gcgacttggc atgctactcg tccttcttcg cagacagctt 240
ttaccgatgg agcaccgtca gtgcgatgaa tacaaatcga agatctggga caaagcattt 300
aatggctacc tcgtggcagt cacgctactt atgtttagct tctagaccct gtttcgtaaa 360
agcaaccagg aggctatgca gctgatggaa ctaacgttta atacaggtaa ggaattaggc 420
tcgttggtcc tccgatacgt cgactacctt gattgcaaat tatgtccatt ccttaatccg 480
tccaacgaag tgtgctcgga cacgacgcgg gccattttta acttcatcga tgtgatggcc 540
aggttgcttc acacgagcct gtgctgcgcc cggtaaaaat tgaagtagct acactaccgg 600
accaaccaga acgcccatta ctcgctgggt atgatgaaca agatgttggc gttcatcatt 660
ggttggtctt gcgggtaatg agcgacccat actacttgtt ctacaaccgc aagtagta 718
<210> 3
<211> 1340
<212> DNA
<213> 桃蚜 (Myzus × persicae V-ATPase subunit E和COO2双基因)
<400> 3
gtattgagtt gttggcacat aagaataaaa taaaaatttg taacacactg gaatcgcgat 60
cataactcaa caaccgtgta ttcttatttt atttttaaac attgtgtgac cttagcgcta 120
tggaactgat tgctcagcag ttggtaccag ctgtacgaac tgcattgttc ggtcgtaatc 180
accttgacta acgagtcgtc aaccatggtc gacatgcttg acgtaacaag ccagcattag 240
caaacagaaa attcgctgaa taatcgcagt aaatccctac agcaataata tgcgtattaa 300
gtttgtcttt taagcgactt attagcgtca tttagggatg tcgttattat acgcataatt 360
aaacaaaaat aaaacattct atttaaaata ttttttctca ttccatttgg taactatgta 420
tttgttttta ttttgtaaga taaattttat aaaaaagagt aaggtaaacc attgatacat 480
attgcataaa ttataaccat cccatctata catagtttag gttcaataca caattattta 540
taacgtattt aatattggta gggtagatat gtatcaaatc caagttatgt gttaataaat 600
attttgagtc tatgggaagt tacaaattat acgtagccgt catggcaata gccatagctg 660
taaaactcag atacccttca atgtttaata tgcatcggca gtaccgttat cggtatcgac 720
tagtacagga agttagatgc gattggtctg ccgctgaacc gtacgatgag caggaagaag 780
atcatgtcct tcaatctacg ctaaccagac ggcgacttgg catgctactc gtccttcttc 840
cgtctgtcga attaccgatg gagcaccgtc agtgcgatga atacaaatcg aagatctggg 900
gcagacagct taatggctac ctcgtggcag tcacgctact tatgtttagc ttctagaccc 960
acaaagcatt tagcaaccag gaggctatgc agctgatgga actaacgttt aatacaggta 1020
tgtttcgtaa atcgttggtc ctccgatacg tcgactacct tgattgcaaa ttatgtccat 1080
aggaattagg ctccaacgaa gtgtgctcgg acacgacgcg ggccattttt aacttcatcg 1140
tccttaatcc gaggttgctt cacacgagcc tgtgctgcgc ccggtaaaaa ttgaagtagc 1200
atgtgatggc caccaaccag aacgcccatt actcgctggg tatgatgaac aagatgttgg 1260
tacactaccg gtggttggtc ttgcgggtaa tgagcgaccc atactacttg ttctacaacc 1320
cgttcatcat gcaagtagta 1340

Claims (7)

1.一种具有抗蚜虫功能的基因,其特征在于,融合自蚜虫的V-ATPase subunit E和COO2基因,其核苷酸序列如Seq ID No.3所示。
2.一种双基因融合增强植物抗蚜性的方法,其特征在于,通过从桃蚜(Myzus×persicae)的V-ATPase subunit E基因、COO2基因以及V-ATPase subunit E基因和COO2基因部分序列融合片段分别构建得到具有抗蚜虫功能的基因,通过构建表达载体并将其分别转入农杆菌,以该农杆菌侵染小麦幼胚,分别在小麦中表达产生V-ATPase subunit E、COO2基因以及V-ATPase subunit E和COO2双基因的dsRNA,从而达到趋避蚜虫的目的。
3.根据权利要求2所述的方法,其特征是,所述的表达载体,通过构建玉米ubiquitin-1启动子驱动V-ATPase subunit E,COO2基因以及V-ATPase subunit E基因和COO2融合基因沉默载体,即RNAi载体。
4.根据权利要求2所述的方法,其特征是,所述的ubiquitin-1启动子具体为:组成型启动子。
5.根据权利要求2所述的方法,其特征是,所述的侵染,即将小麦幼胚转移至农杆菌菌液中侵染后置于黑暗条件下的培养基上培养得到幼胚愈伤组织,进而经抗性再生植株筛选后得到小麦抗性苗。
6.根据权利要求2所述的方法,其特征是,所述的抗蚜性包括:
1)在防治蚜虫中的应用或在制备防治蚜虫产品中的应用;
2)在促进蚜虫死亡中的应用或在制备促进蚜虫死亡产品中的应用;
3)在抑制蚜虫生长中的应用或在制备抑制蚜虫生长产品中的应用。
7.一种重组表达载体,即RNAi载体,其特征在于,基于dsRNA构建得到;
所述的dsRNA包括:
1)由Seq ID No.1所示的在植物中表达的核苷酸和其反向互补序列;
2)由Seq ID No.1所示的在植物中表达的核苷酸和其反向互补序列;
3)由Seq ID No.3所示的在植物中表达的核苷酸和其反向互补序列,由Seq ID No.1所示的核苷酸和Seq ID No.2所示的核苷酸组成。
CN201711082638.4A 2017-11-07 2017-11-07 双基因融合增强植物抗蚜性的方法 Pending CN107937424A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201711082638.4A CN107937424A (zh) 2017-11-07 2017-11-07 双基因融合增强植物抗蚜性的方法
PCT/CN2018/114295 WO2019091390A1 (zh) 2017-11-07 2018-11-07 一种核苷酸序列及其在增强植物抗有害生物能力中的应用
CN201811316873.8A CN109988761B (zh) 2017-11-07 2018-11-07 一种核苷酸序列及其在增强植物抗有害生物能力中的应用
US16/760,447 US11208668B2 (en) 2017-11-07 2018-11-07 Nucleotide sequence and application thereof in enhancing plant pest resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711082638.4A CN107937424A (zh) 2017-11-07 2017-11-07 双基因融合增强植物抗蚜性的方法

Publications (1)

Publication Number Publication Date
CN107937424A true CN107937424A (zh) 2018-04-20

Family

ID=61934402

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201711082638.4A Pending CN107937424A (zh) 2017-11-07 2017-11-07 双基因融合增强植物抗蚜性的方法
CN201811316873.8A Active CN109988761B (zh) 2017-11-07 2018-11-07 一种核苷酸序列及其在增强植物抗有害生物能力中的应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201811316873.8A Active CN109988761B (zh) 2017-11-07 2018-11-07 一种核苷酸序列及其在增强植物抗有害生物能力中的应用

Country Status (3)

Country Link
US (1) US11208668B2 (zh)
CN (2) CN107937424A (zh)
WO (1) WO2019091390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091390A1 (zh) * 2017-11-07 2019-05-16 上海交通大学 一种核苷酸序列及其在增强植物抗有害生物能力中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394371B (zh) * 2020-03-31 2022-01-28 山西大学 飞蝗V-ATPase-V1结构域基因及其dsRNA在害虫防治中的应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018822A1 (en) * 2001-08-22 2003-03-06 Monsanto Technology Llc An improved efficiency (agrobacterium)-mediated wheat transformation method
CA2627795C (en) * 2006-01-12 2019-01-22 Devgen N.V. Dsrna as insect control agent
US8299318B2 (en) * 2007-07-05 2012-10-30 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
CN101851622B (zh) * 2010-01-15 2012-10-10 中国科学院微生物研究所 一种利用rna干扰技术培育抗虫性提高的转基因植物的方法及其专用dna片段
CN102206668B (zh) 2011-04-28 2014-04-30 上海交通大学 增强植物抗蚜性的方法
CN103571871B (zh) * 2011-04-28 2015-05-20 上海交通大学 增强植物抗蚜性的方法
CN103088024B (zh) 2013-01-09 2014-07-09 中国农业科学院作物科学研究所 两种dsRNA及其组合在控制蚜虫危害中的应用
CN105861513A (zh) * 2016-05-16 2016-08-17 中国农业科学院作物科学研究所 通过植物介导的RNAi培育抗蚜虫转基因小麦的方法及载体
CN107937424A (zh) 2017-11-07 2018-04-20 上海交通大学 双基因融合增强植物抗蚜性的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091390A1 (zh) * 2017-11-07 2019-05-16 上海交通大学 一种核苷酸序列及其在增强植物抗有害生物能力中的应用
CN109988761A (zh) * 2017-11-07 2019-07-09 上海交通大学 一种核苷酸序列及其在增强植物抗有害生物能力中的应用
US11208668B2 (en) 2017-11-07 2021-12-28 Shanghai Jiao Tong University Nucleotide sequence and application thereof in enhancing plant pest resistance
CN109988761B (zh) * 2017-11-07 2023-09-19 上海交通大学 一种核苷酸序列及其在增强植物抗有害生物能力中的应用

Also Published As

Publication number Publication date
CN109988761B (zh) 2023-09-19
CN109988761A (zh) 2019-07-09
US11208668B2 (en) 2021-12-28
WO2019091390A1 (zh) 2019-05-16
US20200283792A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
CN107312793A (zh) Cas9介导的番茄基因编辑载体及其应用
CN105543270A (zh) 双抗性CRISPR/Cas9载体及应用
CN110317828B (zh) 修饰水稻OsSWEET基因启动子培育广谱抗白叶枯病水稻的方法
CN104946649B (zh) 一种水稻花药特异表达启动子OsAnth1
CN104450711B (zh) OsmiR156f基因在增加水稻有效分蘖并提高水稻单株产量中的应用
CN112195186B (zh) SlBBX20基因在调控番茄灰霉病抗性方面的应用
CN107937424A (zh) 双基因融合增强植物抗蚜性的方法
Khan et al. Transgenic Petunia hybrida expressing a synthetic fungal chitinase gene confers disease tolerance to Botrytis cinerea
CN104762314A (zh) 可删除筛选标记基因的植物表达载体及其用途
CN102851305B (zh) 耐辐射异常球菌r1 hin蛋白基因培育耐盐植物的应用
CN104531656A (zh) 一种来自小球藻的磷酸甘露糖异构酶基因及其应用
CN116425843A (zh) 辣椒疫霉生长发育调控蛋白PcAGO1及其编码基因与应用
CN105779492A (zh) 水稻miR396c的应用
CN101914571A (zh) 一种不需选择标记基因的洁净dna转化植物的方法
CN105274135A (zh) 一种广泛用于多种植物基因沉默的RNAi载体及其应用
CN105063047A (zh) 植物种子特异表达启动子OsSee1
CN102942621B (zh) 植物抗白粉病相关蛋白TaCAF1及其编码基因和应用
CN105695479A (zh) 菊花对称性基因CmCYC2c及其应用
CN102533819A (zh) 提高球孢白僵菌几丁酶基因抗病性以及利用其培育抗病植物的方法
CN105950644A (zh) 芦笋查尔酮异构酶基因及其编码的蛋白与应用
CN104946652B (zh) 植物雌蕊特异表达启动子OsPis1及其衍生物
CN105985958B (zh) 豆科植物叶片组织特异性启动子及其应用
CN110257406A (zh) 密码子植物化改造的Plant Nme2Cas9基因及其应用
CN104673792B (zh) 豆科植物豆荚相关组织特异性启动子及其应用
CN102206261A (zh) 一种与植物育性相关的蛋白及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180420