CN107930600B - 一种纳米复合净水材料的制备方法 - Google Patents

一种纳米复合净水材料的制备方法 Download PDF

Info

Publication number
CN107930600B
CN107930600B CN201710809322.4A CN201710809322A CN107930600B CN 107930600 B CN107930600 B CN 107930600B CN 201710809322 A CN201710809322 A CN 201710809322A CN 107930600 B CN107930600 B CN 107930600B
Authority
CN
China
Prior art keywords
parts
molecular sieve
sapo
mcm
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710809322.4A
Other languages
English (en)
Other versions
CN107930600A (zh
Inventor
梅玉杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Muhe water treatment equipment Co.,Ltd.
Original Assignee
Xuzhou Zhuoyuan Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Zhuoyuan Environmental Protection Technology Co Ltd filed Critical Xuzhou Zhuoyuan Environmental Protection Technology Co Ltd
Priority to CN201710809322.4A priority Critical patent/CN107930600B/zh
Publication of CN107930600A publication Critical patent/CN107930600A/zh
Application granted granted Critical
Publication of CN107930600B publication Critical patent/CN107930600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28038Membranes or mats made from fibers or filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种纳米复合净水材料的制备方法,二氧化硅、SAPO‑5分子筛、MCM‑36分子筛、γ‑氨丙基三乙氧基硅烷、酚醛环氧丙烯酸树脂、异佛尔酮二胺、对甲氧基苯酚、氯化钙为主要原料,通过SAPO‑5/MCM‑36沸石分子筛偶联化处理再进行酚醛树脂有机改性,再加氯化钙进行交联制备出绿色环保的钙镁金属离子净化材料,本发明通过用通过SAPO‑5/MCM‑36沸石分子筛偶联化处理再进行酚醛树脂有机改性,再加氯化钙进行交联制备出绿色环保的钙镁金属离子净化材料,提供了均匀分散镶嵌分子筛颗粒的位点与相互连通的物质传输受限空间通道,使分子筛颗粒周围有极其狭窄的多重纳微尺寸通道,强化了分子筛吸附传质过程,起到快速吸附与精密过滤净化钙镁金属离子的双重功能。

Description

一种纳米复合净水材料的制备方法
技术领域
本发明涉及一种去除水中钙镁离子的纳米复合材料制备方法,属于水处理领域。
背景技术
近年来,各种工业废水和生活废水处理问题已成为人们非常关注的焦点,而去除废水中的金属离子如钙离子、镁离子又是其中的一个研究热点。目前,脱除工业废水中的钙离子和镁离子一般采用传统的三联箱工艺中和、絮凝和沉降。中和为先将PH值调至11左右,再加入有机硫、絮凝剂等,就可以将钙离子和镁离子沉淀下来,这种方法存在的主要问题是可以絮凝,但是很难沉降,无法像一样变成固体,而且成本比较高,大概为50-60元/吨污水。此外,还可以在工业废水中加入可溶性磷酸盐引入磷酸根,产生磷酸钙、磷酸铵镁的晶型沉淀,这个方法对PH值的要求较为严格,且试剂价格昂贵。因此开发一种动态过滤去除污染物处理效率高、经济适用的吸附功能材料,为居民饮水安全提供保证方法是十分必要的。
发明内容
本发明的目的在于提供一种纳米复合净水材料的制备方法,通过该方法制备的材料具有优异的净化效果。
一种纳米复合净水材料的制备方法,其特征在于该方法包括以下步骤:
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将30份偶联化SAPO-5/MCM-36沸石分子筛、18份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
所述的偶联化SAPO-5/MCM-36沸石分子筛制备方法如下:
步骤1、 将50份SAPO-5沸石研磨过筛至100目,再将过筛后的SAPO-5沸石粉置于电炉加热装置中以10℃/min的升温速率加热至1000℃保温3h后,制得SAPO-5粉末;
步骤2、 将30份MCM-36沸石分子筛粉末与得到的SAPO-5粉末混合,然后加入45份丙三醇融合剂搅拌均匀,于300℃下油浴2h,室温下静置1h以上,弃掉上清液,用超纯水洗净下层物质,得到混合分子筛;
步骤3、 将上述混合分子筛置于分析纯甲苯中,质量比为 1:15,超声分散1h,在装有水冷凝管的四口反应瓶中,升温至120℃,在磁力搅拌下,逐滴滴加硅烷偶联剂,硅烷偶联剂占介孔分子筛重量的10%,搅拌并恒定温度保持2小时,抽滤,用分析纯甲苯洗涤3次,烘干,得到偶联处理的SAPO-5/MCM-36沸石介孔分子筛。
所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷(KH-550)。
所述的改性酚醛环氧丙烯酸树脂制备方法如下:
步骤1、在四口烧瓶中加入100份酚醛环氧树脂,同时加入20份改性剂异佛尔酮二胺、5份对甲氧基苯酚和5份催化剂三乙醇胺,搅拌均匀使树脂全部溶解;
步骤2、升温至80℃,用分液漏斗缓慢滴加55份丙烯酸,控制在3h内滴加完毕升温至90℃并保温,严格控制反应温度维持反应,直至反应酸值小于15mg KOH/g,停止反应;
步骤3、加入适量90℃热水,搅拌20min,静置分层后倾去上层溶液,以除去未反应的丙烯酸、改性剂、对甲氧基苯酚和催化剂,重复三次,最后除去体系中的水分即得到改性酚醛环氧丙烯酸树脂。
有益效果:本发明制备的钙镁离子净化材料,将SAPO-5/MCM-36沸石分子筛偶联化处理再进行酚醛树脂有机改性,削弱了混和分子筛之间的结合力,使层间晶格裂开,改变了表面的高极性,使层间由亲水性转变为亲油性,降低其表面能,同时使层间距扩大,比表面积大、孔隙率高、纳米纤维有大孔和微孔等优点,可以增大与金属离子的接触面积,提高吸附量,有效吸附水中的钙镁金属离子,偶联分子筛在酚醛树脂改性阶段被充分插层及剥离,将沸石分子筛对钙镁离子的吸附过程和阳离子交换树脂及氯化钙对水的脱盐过程结合在一起,可以提高过滤介质的交换容量和对钙镁离子的交换效率,也延长了阳离子交换树脂的使用寿命。
具体实施方式
实施例1
一种纳米复合净水材料的制备方法,其特征在于该方法包括以下步骤:
实施例1
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将30份偶联化SAPO-5/MCM-36沸石分子筛、18份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
所述的偶联化SAPO-5/MCM-36沸石分子筛制备方法如下:
步骤1、 将50份SAPO-5沸石研磨过筛至100目,再将过筛后的SAPO-5沸石粉置于电炉加热装置中以10℃/min的升温速率加热至1000℃保温3h后,制得SAPO-5粉末;
步骤2、 将30份MCM-36沸石分子筛粉末与得到的SAPO-5粉末混合,然后加入45份丙三醇融合剂搅拌均匀,于300℃下油浴2h,室温下静置1h以上,弃掉上清液,用超纯水洗净下层物质,得到混合分子筛;
步骤3、 将上述混合分子筛置于分析纯甲苯中,质量比为 1:15,超声分散1h,在装有水冷凝管的四口反应瓶中,升温至120℃,在磁力搅拌下,逐滴滴加硅烷偶联剂,硅烷偶联剂占介孔分子筛重量的10%,搅拌并恒定温度保持2小时,抽滤,用分析纯甲苯洗涤3次,烘干,得到偶联处理的SAPO-5/MCM-36沸石介孔分子筛。
所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷(KH-550)。
所述的改性酚醛环氧丙烯酸树脂制备方法如下:
步骤1、在四口烧瓶中加入100份酚醛环氧树脂,同时加入20份改性剂异佛尔酮二胺、5份对甲氧基苯酚和5份催化剂三乙醇胺,搅拌均匀使树脂全部溶解;
步骤2、升温至80℃,用分液漏斗缓慢滴加55份丙烯酸,控制在3h内滴加完毕升温至90℃并保温,严格控制反应温度维持反应,直至反应酸值小于15mg KOH/g,停止反应;
步骤3、加入适量90℃热水,搅拌20min,静置分层后倾去上层溶液,以除去未反应的丙烯酸、改性剂、对甲氧基苯酚和催化剂,重复三次,最后除去体系中的水分即得到改性酚醛环氧丙烯酸树脂。
实施例2
步骤1、将20份纳米二氧化硅超声分散于50份去离子水中,然后将10份偶联化SAPO-5/MCM-36沸石分子筛、8份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例3
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将5份偶联化SAPO-5/MCM-36沸石分子筛、10份改性酚醛环氧丙烯酸树脂、6份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例4
步骤1、将40份纳米二氧化硅超声分散于50份去离子水中,然后将30份偶联化SAPO-5/MCM-36沸石分子筛、28份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例5
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将50份偶联化SAPO-5/MCM-36沸石分子筛、38份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例6
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将15份偶联化SAPO-5/MCM-36沸石分子筛、15份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例7
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将7份偶联化SAPO-5/MCM-36沸石分子筛、11份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例8
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将18份偶联化SAPO-5/MCM-36沸石分子筛、5份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例9
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将3份偶联化SAPO-5/MCM-36沸石分子筛、8份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例10
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将23份偶联化SAPO-5/MCM-36沸石分子筛、14份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
其余制备和实施例1相同。
实施例11
步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将30份偶联化SAPO-5/MCM-36沸石分子筛、15份改性纳米蒙脱土、18份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;
步骤2、 将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;
步骤3、 将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
所述的改性纳米蒙脱土制备方法如下:
将15份蒙脱土放入质量分数8%的氯化铝溶液中90℃下搅拌5小时,过滤,洗涤至中性,烘干,分散在乙醇一去离子水溶液中,加入18份十八烷基胺在60℃水浴中搅拌4小时,超声分散30分钟,抽滤,洗涤,真空干燥至恒重,研磨,过筛即得改性纳米蒙脱土。
对照例1
与实施例1不同点在于:偶联化SAPO-5/MCM-36沸石分子筛制备的中,将SAPO-5与MCM-36质量比改成1:3,其余步骤与实施例1完全相同。
对照例2
与实施例1不同点在于:偶联化SAPO-5/MCM-36沸石分子筛制备的中,将SAPO-5与MCM-36质量比改成10:3,其余步骤与实施例1完全相同。
对照例3
与实施例1不同点在于:偶联化SAPO-5/MCM-36沸石分子筛制备的步骤:3中,混和分子筛和分析纯甲苯质量比为4:7,其余步骤与实施例1完全相同。
对照例4
与实施例1不同点在于:偶联化SAPO-5/MCM-36沸石分子筛制备的步骤3中,混和分子筛和分析纯甲苯质量比为10:1,其余步骤与实施例1完全相同。
对照例5
与实施例1不同点在于:偶联化SAPO-5/MCM-36沸石分子筛制备的步骤3中,不在加入γ-氨丙基三乙氧基硅烷,改为十八烷基胺,用量保持不变,其余步骤与实施例1完全相同。
对照例6
与实施例1不同点在于:偶联化SAPO-5/MCM-36沸石分子筛制备的步骤3中,硅烷偶联剂γ-氨丙基三乙氧基硅烷占介孔分子筛重量的30%,其余步骤与实施例1完全相同。
对照例7
与实施例1不同点在于:改性酚醛环氧丙烯酸树脂制备的步骤1中,50份酚醛环氧树脂,同时加入10份改性剂异佛尔酮二胺、5份对甲氧基苯酚和5份催化剂三乙醇胺,其余步骤与实施例1完全相同。
对照例8
与实施例1不同点在于:改性酚醛环氧丙烯酸树脂制备的步骤1中,100份酚醛环氧树脂,同时加入30份改性剂异佛尔酮二胺、10份对甲氧基苯酚和6份催化剂三乙醇胺,其余步骤与实施例1完全相同。
对照例9
与实施例1不同点在于:改性酚醛环氧丙烯酸树脂制备的步骤1中,不再加入改性剂异佛尔酮二胺,其余步骤与实施例1完全相同。
对照例10
与实施例1不同点在于:改性酚醛环氧丙烯酸树脂制备的步骤2中,用分液漏斗缓慢滴加15份丙烯酸,其余步骤与实施例1完全相同。
选取制备得到的纳米复合材料分别进行金属离子吸附性能检测,依据《生活饮用水标准检验法》GB5750-85,检测结果通过水的硬度反映,水的硬度是指水中钙离子、镁离子的浓度,硬度单位是ppm,1ppm代表水中碳酸钙含量1mg/L。
钙镁离子吸附测试的检验结果
Figure DEST_PATH_IMAGE001
实验结果表明本发明提供的纳米吸附材料具有良好的钙镁离子净化效果,材料在标准测试条件下,水处理后的硬度越低,说明净化效果越好,反之,效果越差; 实施例1到实施例10,钙镁离子去除率均超过了90%,分别改变净化材料中各个原料组成的配比,对材料的吸附性能均有不同程度的影响,在偶联化SAPO-5/MCM-36沸石分子筛和改性酚醛环氧丙烯酸树脂配比为15:14,其他配料用量固定时,吸附性能和钙镁离子去除效果最好;值得注意的是实施例11加入改性纳米蒙脱土,净化效果明显提高,说明纳米蒙脱土对填料结构的吸附性能有更好的优化作用;对照例1至对照例4改变了两种沸石分子筛的配比和分析甲醇的用量,净化效果明显下降,说明混合分子筛的结构性质收到二者配比的较大影响;对照例5到对照例6改变SAPO-5/MCM-36沸石分子筛偶联剂和用量,效果也不好,说明偶联剂的用量对混和分子筛的吸附改性有重要作用;对照例7和例9改变了酚醛环氧丙烯酸树脂改性原料的配比,净化效果明显降低,说明改性剂异佛尔酮二胺对酚醛树脂的吸附性能影响很大;对照例10,降低了丙烯酸的用量,效果依然不好,说明酸的强度对酚醛树脂的改性产生重要影响;因此使用本发明制备的纳米复合材料有良好的钙镁离子净化效果。

Claims (4)

1.一种纳米复合净水材料的制备方法,其特征在于该方法包括以下步骤:步骤1、将10份纳米二氧化硅超声分散于50份去离子水中,然后将30份偶联化SAPO-5/MCM-36沸石分子筛、18份改性酚醛环氧丙烯酸树脂、3份羧甲基壳聚糖和7份聚氧乙烯醚先后溶解于含纳米二氧化硅的去离子水中,超声分散1h,脱泡后得到纺丝液;步骤2、将上述得到的纺丝液注入到针管中,通过高压静电纺丝技术得到直径为500纳米的纳米纤维,控制纺丝时间调控纳米纤维膜的厚度为50微米;步骤3、将上述得到的纳米纤维膜浸泡到30%的氯化钙水溶液中交联30min,用去离子水简单冲洗2次洗去表面多余的钙离子,经过冷冻干燥得到大孔结构,然后将冷冻干燥后的纳米纤维膜再次浸泡到去离子水中24h,洗脱掉杂质得到微孔结构,从而得到一种吸附钙镁离子的多孔纳米材料。
2.根据权利要求1所述一种纳米复合净水材料的制备方法,其特征在于所述的偶联化SAPO-5/MCM-36沸石分子筛制备方法如下:
步骤1、将50份SAPO-5沸石研磨过筛至100目,再将过筛后的SAPO-5沸石粉置于电炉加热装置中以10℃/min的升温速率加热至1000℃保温3h后,制得SAPO-5粉末;
步骤2、将30份MCM-36沸石分子筛粉末与得到的SAPO-5粉末混合,然后加入45份丙三醇融合剂搅拌均匀,于300℃下油浴2h,室温下静置1h以上,弃掉上清液,用超纯水洗净下层物质,得到混合分子筛;
步骤3、将上述混合分子筛置于分析纯甲苯中,质量比为 1:15,超声分散1h,在装有水冷凝管的四口反应瓶中,升温至120℃,在磁力搅拌下,逐滴滴加硅烷偶联剂,硅烷偶联剂占介孔分子筛重量的10%,搅拌并恒定温度保持2小时,抽滤,用分析纯甲苯洗涤3次,烘干,得到偶联处理的SAPO-5/MCM-36沸石介孔分子筛。
3.根据权利要求2所述一种纳米复合净水材料的制备方法,其特征在于所述,所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷(KH-550)。
4.根据权利要求2所述一种纳米复合净水材料的制备方法,其特征在于所述,所述的改性酚醛环氧丙烯酸树脂制备方法如下:步骤1、在四口烧瓶中加入100份酚醛环氧树脂,同时加入20份改性剂异佛尔酮二胺、5份对甲氧基苯酚和5份催化剂三乙醇胺,搅拌均匀使树脂全部溶解;步骤2、升温至80℃,用分液漏斗缓慢滴加55份丙烯酸,控制在3h内滴加完毕升温至90℃并保温,严格控制反应温度维持反应,直至反应酸值小于15mg KOH/g,停止反应;步骤3、加入适量90℃热水,搅拌20min,静置分层后倾去上层溶液,以除去未反应的丙烯酸、改性剂、对甲氧基苯酚和催化剂,重复三次,最后除去体系中的水分即得到改性酚醛环氧丙烯酸树脂。
CN201710809322.4A 2017-09-10 2017-09-10 一种纳米复合净水材料的制备方法 Active CN107930600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710809322.4A CN107930600B (zh) 2017-09-10 2017-09-10 一种纳米复合净水材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710809322.4A CN107930600B (zh) 2017-09-10 2017-09-10 一种纳米复合净水材料的制备方法

Publications (2)

Publication Number Publication Date
CN107930600A CN107930600A (zh) 2018-04-20
CN107930600B true CN107930600B (zh) 2020-06-12

Family

ID=61928659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710809322.4A Active CN107930600B (zh) 2017-09-10 2017-09-10 一种纳米复合净水材料的制备方法

Country Status (1)

Country Link
CN (1) CN107930600B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110485061B (zh) * 2018-05-15 2021-07-27 北京服装学院 一种溶液调湿空调用静电纺纳米纤维填料
CN108797108A (zh) * 2018-05-23 2018-11-13 宁波必博母婴科技有限公司 一种婴儿用绿色抗菌纺织面料的制备方法
CN109576906A (zh) * 2018-12-25 2019-04-05 江苏国源环境科技有限公司 空气除湿及过滤两用的静电纺纳米纤维膜及其制备方法
CN114425269B (zh) * 2022-01-26 2023-12-22 武汉纺织大学 基于表面工程的高效油水分离复合泡沫及其制备方法
CN115138346A (zh) * 2022-07-22 2022-10-04 扬州工业职业技术学院 磁性沸石复合材料、其制备方法及处理印染废水的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865460A (zh) * 2014-03-13 2014-06-18 漳州市奈特新型建材有限责任公司 树脂组合物及其制备方法和应用
CN106178690A (zh) * 2016-08-05 2016-12-07 安徽嘉乐斯乐净化工程有限公司 一种增韧增强的高吸水加湿器滤材
CN106473432A (zh) * 2016-10-30 2017-03-08 宁波科邦华诚技术转移服务有限公司 野外照明过滤水杯
CN107031968A (zh) * 2016-09-02 2017-08-11 深圳纳感科技有限公司 一种带有过滤器和监测功能的污染物检测水瓶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865460A (zh) * 2014-03-13 2014-06-18 漳州市奈特新型建材有限责任公司 树脂组合物及其制备方法和应用
CN106178690A (zh) * 2016-08-05 2016-12-07 安徽嘉乐斯乐净化工程有限公司 一种增韧增强的高吸水加湿器滤材
CN107031968A (zh) * 2016-09-02 2017-08-11 深圳纳感科技有限公司 一种带有过滤器和监测功能的污染物检测水瓶
CN106473432A (zh) * 2016-10-30 2017-03-08 宁波科邦华诚技术转移服务有限公司 野外照明过滤水杯

Also Published As

Publication number Publication date
CN107930600A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN107930600B (zh) 一种纳米复合净水材料的制备方法
CN102824898B (zh) 一种三维多孔抗压限胀型膨润土吸附材料及其制备方法
CN109692580B (zh) 一种中空纤维膜色谱超滤膜的制备方法
CN105032203B (zh) 一种去除废水中氨氮的膜吸附剂的制备方法
CN109205748A (zh) 一种用于重金属污水处理的絮凝剂及制备方法
CN104001479B (zh) 一种无机矿物水处理剂及其制备方法
CN111620473A (zh) 水处理方法
CN112473630A (zh) 复合石墨烯壳聚糖气凝胶及其制备方法和应用
CN109847718B (zh) 一种水合氧化锆/海藻酸锶复合凝胶珠及其制法和应用
Ma et al. Improvement of sludge dewaterability with modified cinder via affecting EPS
KR101739286B1 (ko) 인 흡착용 흡착제의 제조방법
CN106984260B (zh) 一种硅镁基纳米水处理剂及其制备方法
CN106396447B (zh) 淡化海砂制备高性能建筑用砂的方法
CN112661968B (zh) 一种制备mof吸附材料的方法
CN112808247B (zh) 一种复合除汞材料及其制备方法与应用
CN110898793B (zh) 利用硼掺杂介孔碳去除水体中重金属的方法
CN107433139B (zh) 一种防堵塞抑菌型荷电纳滤膜的制备方法
CN104874353A (zh) 一种烧结碳棒
CN109908868B (zh) 一种铁基多孔吸附材料及其制备方法以及在废水处理中的应用
CN113941312A (zh) 一种铝基除磷材料及其制备方法
CN115212851B (zh) 一种重金属废水处理材料、制备方法和应用及后处理方法
CN107233762B (zh) 一种铁、镉、砷离子过滤柱及其制备方法
CN113788559A (zh) 一种固废复合物处理低浓度难降解有机污染物的方法
CN115490313B (zh) 污水处理用絮凝剂及其制备方法
CN109316975B (zh) 一种高脱硼率家用反渗透膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200515

Address after: 221300 No. 10, Wujiang Road, Yitang Industrial Park, Pizhou City, Xuzhou City, Jiangsu Province

Applicant after: Xuzhou Zhuoyuan Environmental Protection Technology Co., Ltd

Address before: 234000 Research Institute of Government Cooperation of Zhulan Town, Longqiao District, Suzhou City, Anhui Province

Applicant before: Mei Yujie

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210714

Address after: 221316 No.10 Wujiang Road, industrial park, Yitang Town, Pizhou City, Xuzhou City, Jiangsu Province

Patentee after: Xuzhou Muhe water treatment equipment Co.,Ltd.

Address before: 221300 No.10 Wujiang Road, Yitang Industrial Park, Pizhou City, Xuzhou City, Jiangsu Province

Patentee before: Xuzhou Zhuoyuan Environmental Protection Technology Co.,Ltd.