CN107907811A - A kind of open-circuit structure test method for being used to extract double grid GaAs pHEMT device parasitic capacitances - Google Patents
A kind of open-circuit structure test method for being used to extract double grid GaAs pHEMT device parasitic capacitances Download PDFInfo
- Publication number
- CN107907811A CN107907811A CN201710887326.4A CN201710887326A CN107907811A CN 107907811 A CN107907811 A CN 107907811A CN 201710887326 A CN201710887326 A CN 201710887326A CN 107907811 A CN107907811 A CN 107907811A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- grid
- parasitic capacitance
- mfrac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2637—Circuits therefor for testing other individual devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2605—Measuring capacitance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
一种用于提取双栅砷化镓pHEMT器件寄生电容的开路结构测试方法,包括步骤一:设计开路测试结构,并建立开路测试结构等效电路;开路测试结构包括将双栅砷化镓pHEMT器件端口引出的互联线(Interconnect)和与探针接触来施加偏压的焊盘(PAD);步骤二:测量开路测试结构的三端口S参数;其中开路测试结构的S参数(散射参数)利用矢量网络分析仪测量。测量时,采用矢量网络分析仪在器件的工作频段范围内测量开路结构的三端口S参数。步骤三:将步骤一中测量得到的S参数转换为Y参数,通过Y参数计算得到寄生电容的值。其中,三端口S参数转换为Y参数通过Matlab中s2y函数进行,Y参数表示方法利用开路测试结构的等效电路得到。
An open structure test method for extracting the parasitic capacitance of a double-gate gallium arsenide pHEMT device, comprising step 1: designing an open test structure, and establishing an equivalent circuit of the open test structure; the open test structure includes a double gate gallium arsenide pHEMT device The interconnection line (Interconnect) drawn from the port and the pad (PAD) that is in contact with the probe to apply a bias voltage; Step 2: Measure the three-port S-parameter of the open-circuit test structure; where the S-parameter (scattering parameter) of the open-circuit test structure uses the vector Network analyzer measurements. During the measurement, a vector network analyzer is used to measure the three-port S-parameters of the open circuit structure within the operating frequency range of the device. Step 3: Convert the S parameter measured in Step 1 into a Y parameter, and calculate the value of the parasitic capacitance through the Y parameter. Among them, the conversion of three-port S parameters into Y parameters is carried out through the s2y function in Matlab, and the representation method of Y parameters is obtained by using the equivalent circuit of the open circuit test structure.
Description
技术领域technical field
本发明涉及微波器件测试领域,涉及一种双栅砷化镓pHEMT器件寄生电容的一种开路测试结构提取方法。The invention relates to the field of microwave device testing, and relates to a method for extracting an open-circuit test structure of the parasitic capacitance of a double-gate gallium arsenide pHEMT device.
技术背景technical background
双栅器件广泛用于功率放大器、移相器、混频器和单片微波集成电路中。在传统的建模方法中,小信号模型被优先建立以方便随后的大信号模型的建立。所以,精确地建立小信号模型十分关键。Dual-gate devices are widely used in power amplifiers, phase shifters, mixers and monolithic microwave integrated circuits. In the traditional modeling method, the small-signal model is first established to facilitate the subsequent establishment of the large-signal model. Therefore, it is critical to accurately establish a small signal model.
对于单栅器件的小信号模型,最常使用的方法是通过数值优化使模型的S参数与测得的S参数拟合。然而对于双栅砷化镓pHEMT器件,其小信号包含了外部寄生参数和两个pHEMT的内部本征参数,加起来总共29个未知参数,因此,想要通过三端口S参数的测量数据进行拟合是非常困难的。实际上,由于双栅结构与单栅不同,很难直接将单栅器件的分析方法直接应用于双栅器件中。For the small-signal model of a single-gate device, the most commonly used method is to fit the model's S-parameters to the measured S-parameters through numerical optimization. However, for the dual-gate GaAs pHEMT device, its small signal includes external parasitic parameters and two internal intrinsic parameters of the pHEMT, adding up to a total of 29 unknown parameters. Combining is very difficult. In fact, because the double-gate structure is different from the single-gate, it is difficult to directly apply the analysis method of the single-gate device to the double-gate device.
Deng等人[Deng W K,Chu T H.Elements extraction of GaAs dual-gateMESFET small-signal equivalent circuit[J].IEEE Transactions on MicrowaveTheory&Techniques,1998:2383-2390.]提出了一套提取双栅外部寄生参数和内部本征参数的流程。利用分析的方法,通过在器件偏置在截止条件下,测试频率为低频情况下测量的Y参数进行计算,从而直接获得寄生电容的值。而实际上,通过这种在器件截止、低频测量的方法得到的电容值与实际值相比通常有一定变化,而内部的一些本征参数对于外部寄生参数的变化很敏感,可能会使得提取的内部本征参数为负值。Deng et al [Deng W K, Chu T H.Elements extraction of GaAs dual-gateMESFET small-signal equivalent circuit[J].IEEE Transactions on Microwave Theory&Techniques,1998:2383-2390.] proposed a set of extraction of dual-gate external parasitic parameters and Flow of internal eigenparameters. Using the method of analysis, the value of the parasitic capacitance can be directly obtained by calculating the Y parameter measured under the condition that the device bias is at the cutoff and the test frequency is low frequency. In fact, the capacitance value obtained by this method of measuring at the device cut-off and low frequency usually has a certain change compared with the actual value, and some internal intrinsic parameters are very sensitive to changes in external parasitic parameters, which may make the extracted Internal eigenparameters are negative.
单栅的开路测试结构自从1987年Wijinen博士首次发明后便广泛应用,应用单栅测试结构可以准确的提取寄生电容参数,L Shen等人[Sun L,Gao J,Shen L.DirectExtraction of Equivalent Circuit Parameters for GaAs pHEMT[J].Journal ofComputational&Theoretical Nanoscience,2015,12(6):996-1001(6).]利用分析方法和开路测试结构方法使小信号建模的有效频率高达110GHz。可见单栅砷化镓pHEMT器件的开路测试结构可以达到很好的精度,然而,对于双栅砷化镓pHEMT器件的开路测试结构及方法仍没有人提出。The single-gate open-circuit test structure has been widely used since it was first invented by Dr. Wijinen in 1987. The application of the single-gate test structure can accurately extract parasitic capacitance parameters. L Shen et al [Sun L, Gao J, Shen L. Direct Extraction of Equivalent Circuit Parameters for GaAs pHEMT[J].Journal ofComputational&Theoretical Nanoscience,2015,12(6):996-1001(6).]The effective frequency of small signal modeling is up to 110GHz by using analytical method and open circuit test structure method. It can be seen that the open-circuit test structure of the single-gate GaAs pHEMT device can achieve very good accuracy, however, no one has proposed the open-circuit test structure and method for the double-gate GaAs pHEMT device.
为了克服现有技术的上述缺点,本发明提出了一种应用于双栅砷化镓pHEMT器件的开路测试结构,用来提取双栅砷化镓pHEMT器件的外部寄生电容。In order to overcome the above-mentioned shortcomings of the prior art, the present invention proposes an open-circuit test structure applied to a double-gate GaAs pHEMT device, which is used to extract the external parasitic capacitance of the double-gate GaAs pHEMT device.
发明内容Contents of the invention
本发明要克服现有技术的上述缺点,提供一种应用于双栅砷化镓pHEMT器件的可以直接、精确的提取外部寄生电容的方法。The present invention overcomes the above-mentioned shortcomings of the prior art, and provides a method for directly and accurately extracting external parasitic capacitance applied to a double-gate gallium arsenide pHEMT device.
为实现上述目的,本发明所提供的一种用于提取双栅砷化镓pHEMT器件寄生电容的开路结构测试方法,包括如下步骤:In order to achieve the above object, a kind of open-circuit structure testing method for extracting the parasitic capacitance of double-gate gallium arsenide pHEMT device provided by the present invention comprises the following steps:
步骤一:设计开路测试结构,并建立开路测试结构等效电路;Step 1: Design the open-circuit test structure and establish the equivalent circuit of the open-circuit test structure;
步骤二:测量开路测试结构的三端口S参数;Step 2: measuring the three-port S-parameters of the open circuit test structure;
步骤三:将步骤二中测量得到的S参数转换为Y参数,通过Y参数计算得到寄生电容的值。Step 3: Convert the S parameters measured in Step 2 into Y parameters, and calculate the value of the parasitic capacitance through the Y parameters.
所述步骤一中,所设计的开路结构如图2所示,该结构与待测器件测试结构相似,但不包含被测器件双栅砷化镓pHEMT器件。开路测试结构包括将双栅砷化镓pHEMT器件端口引出的互联线(Interconnect)和与探针接触来施加偏压的焊盘(PAD)。开路测试结构等效电路如图3所示,包括焊盘寄生电容部分100和焊盘间耦合电容部分200;In the first step, the designed open-circuit structure is shown in FIG. 2 , which is similar to the test structure of the device under test, but does not include the double-gate GaAs pHEMT device of the device under test. The open-circuit test structure includes an interconnection line (Interconnect) leading out the port of the double-gate GaAs pHEMT device and a pad (PAD) that is in contact with the probe to apply a bias voltage. The equivalent circuit of the open circuit test structure is shown in FIG. 3 , including a pad parasitic capacitance part 100 and an inter-pad coupling capacitance part 200;
所述焊盘寄生电容部分100由第一栅极寄生电容Cpg1、第二栅极寄生电容Cpg2和漏极寄生电容Cpd构成,其中:第一栅极寄生电容Cpg1的一端与第一栅极节点G1相连接,另一端与第一源极节点S相连接;第二栅极寄生电容Cpg2的一端与第二栅极节点G2相连接,另一端与第一源极节点S相连接;漏极寄生电容Cpd的一端与第二漏极节点D相连接,另一端与第一源极节点S相连接;The pad parasitic capacitance part 100 is composed of a first gate parasitic capacitance Cpg1, a second gate parasitic capacitance Cpg2 and a drain parasitic capacitance Cpd, wherein: one end of the first gate parasitic capacitance Cpg1 is connected to the first gate node G1 connected, the other end is connected to the first source node S; one end of the second gate parasitic capacitance Cpg2 is connected to the second gate node G2, and the other end is connected to the first source node S; the drain parasitic capacitance One end of Cpd is connected to the second drain node D, and the other end is connected to the first source node S;
所述的焊盘间耦合电容部分200由第一栅极与第二栅极间耦合电容Cg1g2、第一栅极与漏极间耦合电容Cg1d和第二栅极与漏极间耦合电容Cg2d构成,其中:第一栅极与第二栅极间耦合电容Cg1g2的一端与第一栅极节点G1相连接,另一端与第二栅极节点G2相连接;第一栅极与漏极间耦合电容Cg1d的一端与第一栅极节点G1相连接,另一端与第二漏极节点D相连接;第二栅极与漏极间耦合电容Cg2d的一端与第二栅极节点G2相连接,另一端与第二漏极节点D相连接。The inter-pad coupling capacitance part 200 is composed of the coupling capacitance Cg1g2 between the first gate and the second gate, the coupling capacitance Cg1d between the first gate and the drain, and the coupling capacitance Cg2d between the second gate and the drain, Among them: one end of the coupling capacitance Cg1g2 between the first gate and the second gate is connected to the first gate node G1, and the other end is connected to the second gate node G2; the coupling capacitance Cg1d between the first gate and the drain One end of Cg2d is connected to the first gate node G1, and the other end is connected to the second drain node D; one end of the second gate-drain coupling capacitor Cg2d is connected to the second gate node G2, and the other end is connected to the second gate node G2. The second drain node D is connected.
所述步骤二中,利用矢量网络分析仪测量开路测试结构的S参数(散射参数)。测量时,采用矢量网络分析仪在器件的工作频段范围内测量开路结构的三端口S参数,例如10MHz到40GHz。In the second step, the S-parameter (scattering parameter) of the open circuit test structure is measured by using a vector network analyzer. During the measurement, a vector network analyzer is used to measure the three-port S-parameters of the open circuit structure within the working frequency range of the device, for example, 10MHz to 40GHz.
所述步骤三中,将步骤二中测得的三端口S参数通过Matlab中s2y函数转换为Y参数。从步骤一中建立的等效电路得到Y参数矩阵,通过Y参数的虚部求得各寄生电容的值,公式如下所示:In the step 3, the three-port S parameter measured in the step 2 is converted into a Y parameter through the s2y function in Matlab. Obtain the Y parameter matrix from the equivalent circuit established in step 1, and obtain the value of each parasitic capacitance through the imaginary part of the Y parameter, the formula is as follows:
Y11=jω(Cpg1+Cpg1d+Cpg1g2)Y 11 =jω(C pg1 +C pg1d +C pg1g2 )
Y22=jω(Cpg2+Cpg2d)Y 22 =jω(C pg2 +C pg2d )
Y33=jω(Cpd+Cpg1d+Cpg2d)Y 33 =jω(C pd +C pg1d +C pg2d )
Y12=Y21=-jωCpg1g2 Y 12 =Y 21 =-jωC pg1g2
Y13=Y31=-jωCpg1d Y 13 =Y 31 =-jωC pg1d
Y23=Y32=-jωCpg2d Y 23 =Y 32 =-jωC pg2d
通过Y参数计算可以得到寄生电容的准确值:The accurate value of the parasitic capacitance can be obtained by calculating the Y parameter:
其中,YPAD表示开路测试结构等效电路的导纳参数,假设第一栅极节点G1端口号为1,第二栅极节点G2端口号为2,第二漏极节点D端口号为3,则Y11、Y22、Y33分别表示1、2、3端口的输入导纳,Y12表示端口2到端口1的转移导纳,Y13表示端口3到端口1的转移导纳,Y23表示端口3到端口2的转移导纳。Among them, YPAD represents the admittance parameter of the equivalent circuit of the open circuit test structure, assuming that the port number of the first gate node G1 is 1, the port number of the second gate node G2 is 2, and the port number of the second drain node D is 3, then Y11, Y22, and Y33 represent the input admittance of ports 1, 2, and 3, respectively, Y12 represents the transfer admittance from port 2 to port 1, Y13 represents the transfer admittance from port 3 to port 1, and Y23 represents the transfer admittance from port 3 to port 2. transfer admittance.
其中,Cpg1表示第一栅极寄生电容、Cpg2表示第二栅极寄生电容、Cpd表示漏极寄生电容、Cg1g2表示第一栅极与第二栅极间耦合电容、Cg1d表示第一栅极与漏极间耦合电容、Cg2d表示第二栅极与漏极间耦合电容。通过以上计算便可以得到各个寄生电容的值。Among them, Cpg1 represents the parasitic capacitance of the first gate, Cpg2 represents the parasitic capacitance of the second gate, Cpd represents the parasitic capacitance of the drain, Cg1g2 represents the coupling capacitance between the first gate and the second gate, and Cg1d represents the capacitance between the first gate and the drain. The inter-electrode coupling capacitance, Cg2d, represents the coupling capacitance between the second gate and the drain. The value of each parasitic capacitance can be obtained through the above calculation.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明针对目前对于双栅砷化镓pHEMT器件寄生电容直接提取的方法中通过器件截止、低频测量的方法得到的电容值和内部本征参数不准确这一缺陷,提出了一种用于双栅砷化镓pHEMT器件的开路测试结构寄生电容提取法,通过该方法提取寄生电容,物理意义明确,提取方法简单,精确度高,可以有效提高双栅砷化镓pHEMT器件小信号模型的精度。The present invention aims at the inaccurate capacitance value and internal intrinsic parameters obtained by means of device cut-off and low-frequency measurement in the current method for directly extracting the parasitic capacitance of a double-gate gallium arsenide pHEMT device, and proposes a method for double-gate The parasitic capacitance extraction method of the open-circuit test structure of the GaAs pHEMT device. The parasitic capacitance extracted by this method has clear physical meaning, simple extraction method and high accuracy, and can effectively improve the accuracy of the small-signal model of the double-gate GaAs pHEMT device.
附图说明Description of drawings
图1是双栅砷化镓pHEMT小信号等效电路;Figure 1 is the small-signal equivalent circuit of a double-gate gallium arsenide pHEMT;
图2是本发明所用的开路测试结构;Fig. 2 is the used open circuit test structure of the present invention;
图3是开路测试结构的等效电路;Fig. 3 is the equivalent circuit of the open circuit test structure;
图4是开路测试结构提取寄生电容的流程图;Fig. 4 is the flow chart of extracting parasitic capacitance of open circuit test structure;
具体实施方式Detailed ways
下面将结合本发明实例中的附图,对本发明实例中的技术方案进行清楚、完整的描述。在不背离发明构思精神和范围内,本领域技术人员能够想到的变化和优点都包括在本发明中,并且以所附的权利要求书伟保护范围。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。The technical solutions in the examples of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the examples of the present invention. Without departing from the spirit and scope of the inventive concept, changes and advantages conceivable by those skilled in the art are all included in the present invention, and the scope of protection is defined by the appended claims. The process, conditions, experimental methods, etc. for implementing the present invention, except for the content specifically mentioned below, are common knowledge and common knowledge in this field, and the present invention has no special limitation content.
本发明提供的一种用于提取双栅砷化镓pHEMT器件寄生电容的开路结构测试方法,包括如下步骤:A kind of open-circuit structure testing method for extracting the parasitic capacitance of double-gate gallium arsenide pHEMT device provided by the present invention comprises the following steps:
步骤一:设计开路测试结构,并建立开路测试结构等效电路;Step 1: Design the open-circuit test structure and establish the equivalent circuit of the open-circuit test structure;
步骤二:测量开路测试结构的三端口S参数;Step 2: measuring the three-port S-parameters of the open circuit test structure;
步骤三:将步骤二中测量得到的S参数转换为Y参数,通过Y参数计算得到寄生电容的值。Step 3: Convert the S parameters measured in Step 2 into Y parameters, and calculate the value of the parasitic capacitance through the Y parameters.
所述步骤一中,所设计的开路结构如图2所示,该结构与待测器件测试结构相似,但不包含被测器件双栅砷化镓pHEMT器件。开路测试结构包括将双栅砷化镓pHEMT器件端口引出的互联线(Interconnect)和与探针接触来施加偏压的焊盘(PAD)。开路测试结构等效电路如图3所示,包括焊盘寄生电容部分100和焊盘间耦合电容部分200;In the first step, the designed open-circuit structure is shown in FIG. 2 , which is similar to the test structure of the device under test, but does not include the double-gate GaAs pHEMT device of the device under test. The open-circuit test structure includes an interconnection line (Interconnect) leading out the port of the double-gate GaAs pHEMT device and a pad (PAD) that is in contact with the probe to apply a bias voltage. The equivalent circuit of the open circuit test structure is shown in FIG. 3 , including a pad parasitic capacitance part 100 and an inter-pad coupling capacitance part 200;
所述焊盘寄生电容部分100由第一栅极寄生电容Cpg1、第二栅极寄生电容Cpg2和漏极寄生电容Cpd构成,其中:第一栅极寄生电容Cpg1的一端与第一栅极节点G1相连接,另一端与第一源极节点S相连接;第二栅极寄生电容Cpg2的一端与第二栅极节点G2相连接,另一端与第一源极节点S相连接;漏极寄生电容Cpd的一端与第二漏极节点D相连接,另一端与第一源极节点S相连接;The pad parasitic capacitance part 100 is composed of a first gate parasitic capacitance Cpg1, a second gate parasitic capacitance Cpg2 and a drain parasitic capacitance Cpd, wherein: one end of the first gate parasitic capacitance Cpg1 is connected to the first gate node G1 connected, the other end is connected to the first source node S; one end of the second gate parasitic capacitance Cpg2 is connected to the second gate node G2, and the other end is connected to the first source node S; the drain parasitic capacitance One end of Cpd is connected to the second drain node D, and the other end is connected to the first source node S;
所述的焊盘间耦合电容部分200由第一栅极与第二栅极间耦合电容Cg1g2、第一栅极与漏极间耦合电容Cg1d和第二栅极与漏极间耦合电容Cg2d构成,其中:第一栅极与第二栅极间耦合电容Cg1g2的一端与第一栅极节点G1相连接,另一端与第二栅极节点G2相连接;第一栅极与漏极间耦合电容Cg1d的一端与第一栅极节点G1相连接,另一端与第二漏极节点D相连接;第二栅极与漏极间耦合电容Cg2d的一端与第二栅极节点G2相连接,另一端与第二漏极节点D相连接。The inter-pad coupling capacitance part 200 is composed of the coupling capacitance Cg1g2 between the first gate and the second gate, the coupling capacitance Cg1d between the first gate and the drain, and the coupling capacitance Cg2d between the second gate and the drain, Among them: one end of the coupling capacitance Cg1g2 between the first gate and the second gate is connected to the first gate node G1, and the other end is connected to the second gate node G2; the coupling capacitance Cg1d between the first gate and the drain One end of Cg2d is connected to the first gate node G1, and the other end is connected to the second drain node D; one end of the second gate-drain coupling capacitor Cg2d is connected to the second gate node G2, and the other end is connected to the second gate node G2. The second drain node D is connected.
所述步骤二中,利用矢量网络分析仪测量开路测试结构的S参数(散射参数)。测量时,采用矢量网络分析仪在器件的工作频段范围内测量开路结构的三端口S参数,例如10MHz到40GHz。In the second step, the S-parameter (scattering parameter) of the open circuit test structure is measured by using a vector network analyzer. During the measurement, a vector network analyzer is used to measure the three-port S-parameters of the open circuit structure within the working frequency range of the device, for example, 10MHz to 40GHz.
所述步骤三中,将步骤二中测得的三端口S参数通过Matlab中s2y函数转换为Y参数。从步骤一中建立的等效电路得到Y参数矩阵,通过Y参数的虚部求得各寄生电容的值,公式如下所示:In the step 3, the three-port S parameter measured in the step 2 is converted into a Y parameter through the s2y function in Matlab. Obtain the Y parameter matrix from the equivalent circuit established in step 1, and obtain the value of each parasitic capacitance through the imaginary part of the Y parameter, the formula is as follows:
Y11=jω(Cpg1+Cpg1d+Cpg1g2)Y 11 =jω(C pg1 +C pg1d +C pg1g2 )
Y22=jω(Cpg2+Cpg2d)Y 22 =jω(C pg2 +C pg2d )
Y33=jω(Cpd+Cpg1d+Cpg2d)Y 33 =jω(C pd +C pg1d +C pg2d )
Y12=Y21=-jωCpg1g2 Y 12 =Y 21 =-jωC pg1g2
Y13=Y31=-jωCpg1d Y 13 =Y 31 =-jωC pg1d
Y23=Y32=-jωCpg2d Y 23 =Y 32 =-jωC pg2d
通过Y参数计算可以得到寄生电容的准确值:The accurate value of the parasitic capacitance can be obtained by calculating the Y parameter:
其中,YPAD表示开路测试结构等效电路的导纳参数,假设第一栅极节点G1端口号为1,第二栅极节点G2端口号为2,第二漏极节点D端口号为3,则Y11、Y22、Y33分别表示1、2、3端口的输入导纳,Y12表示端口2到端口1的转移导纳,Y13表示端口3到端口1的转移导纳,Y23表示端口3到端口2的转移导纳。Among them, YPAD represents the admittance parameter of the equivalent circuit of the open circuit test structure, assuming that the port number of the first gate node G1 is 1, the port number of the second gate node G2 is 2, and the port number of the second drain node D is 3, then Y11, Y22, and Y33 represent the input admittance of ports 1, 2, and 3, respectively, Y12 represents the transfer admittance from port 2 to port 1, Y13 represents the transfer admittance from port 3 to port 1, and Y23 represents the transfer admittance from port 3 to port 2. transfer admittance.
其中,Cpg1表示第一栅极寄生电容、Cpg2表示第二栅极寄生电容、Cpd表示漏极寄生电容、Cg1g2表示第一栅极与第二栅极间耦合电容、Cg1d表示第一栅极与漏极间耦合电容、Cg2d表示第二栅极与漏极间耦合电容。通过以上计算便可以得到各个寄生电容的值。Among them, Cpg1 represents the parasitic capacitance of the first gate, Cpg2 represents the parasitic capacitance of the second gate, Cpd represents the parasitic capacitance of the drain, Cg1g2 represents the coupling capacitance between the first gate and the second gate, and Cg1d represents the capacitance between the first gate and the drain. The inter-electrode coupling capacitance, Cg2d, represents the coupling capacitance between the second gate and the drain. The value of each parasitic capacitance can be obtained through the above calculation.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710887326.4A CN107907811B (en) | 2017-09-27 | 2017-09-27 | An open-circuit structure testing method for extracting parasitic capacitance of a dual-gate GaAs pHEMT device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710887326.4A CN107907811B (en) | 2017-09-27 | 2017-09-27 | An open-circuit structure testing method for extracting parasitic capacitance of a dual-gate GaAs pHEMT device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107907811A true CN107907811A (en) | 2018-04-13 |
CN107907811B CN107907811B (en) | 2019-06-11 |
Family
ID=61841051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710887326.4A Active CN107907811B (en) | 2017-09-27 | 2017-09-27 | An open-circuit structure testing method for extracting parasitic capacitance of a dual-gate GaAs pHEMT device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107907811B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023240742A1 (en) * | 2022-06-14 | 2023-12-21 | 长鑫存储技术有限公司 | Circuit noise parameter acquisition method and electronic device |
US12087385B2 (en) | 2022-06-14 | 2024-09-10 | Changxin Memory Technologies, Inc. | Method for obtaining circuit noise parameters and electronic device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102521447A (en) * | 2011-12-08 | 2012-06-27 | 清华大学 | Parametric modeling method of millimeter wave field effect transistor based on binary combination |
CN102542077A (en) * | 2010-12-15 | 2012-07-04 | 中国科学院微电子研究所 | Parameter extraction method of AlGaN/GaN HEMT small-signal model |
CN103995933A (en) * | 2014-06-18 | 2014-08-20 | 上海傲亚微电子有限公司 | Novel transistor small-signal equivalent circuit model |
CN104142436A (en) * | 2013-05-07 | 2014-11-12 | 上海华虹宏力半导体制造有限公司 | Testing structures and testing method for three-port RF devices |
CN104298837A (en) * | 2014-11-12 | 2015-01-21 | 东南大学 | Device equivalent circuit model parameter extracting method and bonding pad parasitic parameter extracting method |
CN105046066A (en) * | 2015-07-02 | 2015-11-11 | 中航(重庆)微电子有限公司 | AlGaN/GaN HETM small-signal model and parameter extraction method thereof |
CN105138730A (en) * | 2015-07-27 | 2015-12-09 | 电子科技大学 | Method for extracting small-signal model parameters of gallium nitride high-electron-mobility transistor |
CN107167724A (en) * | 2017-06-02 | 2017-09-15 | 厦门市三安集成电路有限公司 | What a kind of small-signal was measured goes embedding method |
-
2017
- 2017-09-27 CN CN201710887326.4A patent/CN107907811B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102542077A (en) * | 2010-12-15 | 2012-07-04 | 中国科学院微电子研究所 | Parameter extraction method of AlGaN/GaN HEMT small-signal model |
CN102521447A (en) * | 2011-12-08 | 2012-06-27 | 清华大学 | Parametric modeling method of millimeter wave field effect transistor based on binary combination |
CN104142436A (en) * | 2013-05-07 | 2014-11-12 | 上海华虹宏力半导体制造有限公司 | Testing structures and testing method for three-port RF devices |
CN103995933A (en) * | 2014-06-18 | 2014-08-20 | 上海傲亚微电子有限公司 | Novel transistor small-signal equivalent circuit model |
CN104298837A (en) * | 2014-11-12 | 2015-01-21 | 东南大学 | Device equivalent circuit model parameter extracting method and bonding pad parasitic parameter extracting method |
CN105046066A (en) * | 2015-07-02 | 2015-11-11 | 中航(重庆)微电子有限公司 | AlGaN/GaN HETM small-signal model and parameter extraction method thereof |
CN105138730A (en) * | 2015-07-27 | 2015-12-09 | 电子科技大学 | Method for extracting small-signal model parameters of gallium nitride high-electron-mobility transistor |
CN107167724A (en) * | 2017-06-02 | 2017-09-15 | 厦门市三安集成电路有限公司 | What a kind of small-signal was measured goes embedding method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023240742A1 (en) * | 2022-06-14 | 2023-12-21 | 长鑫存储技术有限公司 | Circuit noise parameter acquisition method and electronic device |
US12087385B2 (en) | 2022-06-14 | 2024-09-10 | Changxin Memory Technologies, Inc. | Method for obtaining circuit noise parameters and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN107907811B (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105426570B (en) | GaN HEMT large-signal model improved method based on active compensation sub-circuit | |
CN105138730B (en) | GaN high electron mobility transistor small-signal model parameter extracting method | |
WO2018121479A1 (en) | Method of extracting small-signal model of algan/gan hemt and parameter thereof | |
CN105787210A (en) | GaN HEMT (high electron mobility transistor) small signal circuit model parameter extraction method | |
CN106372357B (en) | A kind of GaN HEMT nonlinear noise method for establishing model | |
CN105825005B (en) | The construction method of the non-linear scalable model of GaN high electron mobility transistor | |
CN103617319B (en) | Method for directly extracting small-signal model parameters of III-V group MOSFET (metal-oxide-semiconductor field effect transistor) | |
CN110717240B (en) | InP HEMT device noise equivalent circuit model establishment method | |
CN106202835A (en) | Comprise the field-effect transistor small signal equivalent circuit model of the senior parasitic antenna of raceway groove | |
CN111679171B (en) | Circuit topology structure based on interconnecting line unit and de-embedding method of interconnecting line unit cascading | |
CN107907811A (en) | A kind of open-circuit structure test method for being used to extract double grid GaAs pHEMT device parasitic capacitances | |
Liu et al. | A new characterization technique for extracting parasitic inductances of fast switching power MOSFETs using two-port vector network analyzer | |
CN101976293A (en) | MOS (Metal Oxide Semiconductor) transistor radio frequency macro model establishing method | |
CN110824321A (en) | Stray capacitance obtaining method for IGBT dynamic parameter test platform | |
CN112630544B (en) | High-voltage SiC MOSFET drain-source interelectrode nonlinear capacitance measurement and modeling method | |
CN102109570B (en) | Method for measuring gate-source capacitance of field effect transistor under multiple biases | |
CN206421387U (en) | AlGaN/GaN HEMT small-signal models | |
CN102074489B (en) | Method for testing gate-drain capacitance of field effect transistor under multi-bias | |
CN109683078B (en) | Schottky diode testing method and device | |
WO2023029326A1 (en) | Test system and modeling method for radio frequency mos device modeling | |
CN102147828A (en) | Equivalent electrical model of SOI field effect transistor of body leading-out structure and modeling method | |
CN118036531A (en) | Nonlinear switch model modeling method based on common-gate microwave transistor | |
CN112434482A (en) | Circuit structure for constructing CNTFET small signal model and parameter extraction method | |
CN107144775B (en) | A device and method for measuring the transconductance coefficient of a CMOS inverter | |
CN104635135A (en) | De-embedding method of compound semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230323 Address after: 316000 Room 202, 11 Baichuan Road, Lincheng street, Dinghai District, Zhoushan City, Zhejiang Province (centralized office) Patentee after: ZHEJIANG JISU HEXIN TECHNOLOGY CO.,LTD. Address before: 310027 No. 38, Zhejiang Road, Hangzhou, Zhejiang, Xihu District Patentee before: ZHEJIANG University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230627 Address after: Plant 1, No. 13, Guiyang Avenue, Yantai Economic and Technological Development Zone, Shandong Province, 264000 Patentee after: Yantai Xin Yang Ju Array Microelectronics Co.,Ltd. Address before: 316000 Room 202, 11 Baichuan Road, Lincheng street, Dinghai District, Zhoushan City, Zhejiang Province (centralized office) Patentee before: ZHEJIANG JISU HEXIN TECHNOLOGY CO.,LTD. |
|
TR01 | Transfer of patent right |