CN107894710B - 一种裂解反应炉温度的主成分分析建模方法 - Google Patents
一种裂解反应炉温度的主成分分析建模方法 Download PDFInfo
- Publication number
- CN107894710B CN107894710B CN201710953852.6A CN201710953852A CN107894710B CN 107894710 B CN107894710 B CN 107894710B CN 201710953852 A CN201710953852 A CN 201710953852A CN 107894710 B CN107894710 B CN 107894710B
- Authority
- CN
- China
- Prior art keywords
- output
- neural network
- matrix
- model
- hidden
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000005336 cracking Methods 0.000 title claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 20
- 238000000513 principal component analysis Methods 0.000 title claims abstract description 6
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 30
- 230000002068 genetic effect Effects 0.000 claims abstract description 25
- 238000003062 neural network model Methods 0.000 claims abstract description 19
- 238000012847 principal component analysis method Methods 0.000 claims abstract description 10
- 210000002569 neuron Anatomy 0.000 claims description 33
- 239000011159 matrix material Substances 0.000 claims description 28
- 238000012549 training Methods 0.000 claims description 21
- 238000013528 artificial neural network Methods 0.000 claims description 14
- 210000000349 chromosome Anatomy 0.000 claims description 9
- 238000005457 optimization Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 230000035772 mutation Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/30—Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
- G05D23/32—Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature with provision for adjustment of the effect of the auxiliary heating device, e.g. a function of time
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种裂解反应炉温度的主成分分析建模方法。本发明通过采集过程对象的输入输出数据,结合神经网络模型,使用改进的主成分分析方法建模,结合改进的遗传算法算子优化神经网络模型的网络层和参数,而得到裂解反应炉温度预测方法。通过本发明建立的模型具有较高的精确性,能很好地描述过程对象的动态特性。
Description
技术领域
本发明属于自动化工业过程控制领域,涉及到一种裂解反应炉温度的主成分分析建模方法。
背景技术
在实际工业过程中,由于许多复杂的实际过程对象的物理或化学特性并不为人所知,使得系统建模是先进控制技术中非常重要的一个环节。如裂解反应炉是生产乙烯等重要化工原料的一种生产设备,乙烯等重要化工原料的生产技术更是一个国家化工能力的体现。裂解反应炉在生产时温度的控制十分重要,裂解反应的温度直接控制着裂解反应物生产,影响着裂解生成物的质量与数量。一个好的裂解反应炉温度的建模对工业生产至关重要。
发明内容
本发明的目的是针对裂解炉温度对象的建模过程比较困难这一问题,通过数据采集、模型建立、优化等手段,提供了一种裂解炉温度的主成分分析算法与神经网络结构参数优化建模方法。
本发明通过采集过程对象的输入输出数据,结合改进的神经网络模型,使用改进的遗传算法优化神经网络的网络层和参数。
本发明方法的步骤包括:
步骤1、采集过程的实时运行数据,建立过程对象神经网络模型,具体步骤如下:
1-1.根据建立模型,综合主成分分析方法,得到给定子集p的最优解如下形式:
将其转换为最小化问题表示为J1,形式如下:
J1=1/f1
其中,x(k)=[y(k-1),…,y(k-n),u(k-1),…,u(k-m)]是被控对象观测输入,y(k-1),…,y(k-n)分别是k-1,…,k-n时刻被控对象输出。u(k-1),…,u(k-m)分别是k-1,…,k-m时刻选取的干扰。n和m分别是输出和输入的最大阶次,f表示模型的映射关系。
1-4.给出N1个训练数据样本,Y1=[y1(1),…,y1(N1)],U=[u(1),…,u(N1)],可以通过递归方法计算权重系数:
其中,Y1是训练数据,U是主成分分析方法所选取的干扰,0<μ<1是遗忘因子,P(k)、P(k-1)是k,k-1时刻的正定的协方差矩阵,P(0)=α2I,I是一个(n+m)×(n+m)单位矩阵,α是一个足够大的实数。设置为105,ω(0)=ε,ε是一个充分小的n+m的实矩阵,设置为10-3,K(k)是一个权重矩阵,fi(k)是第i个神经元k时刻训练输出,ωi(k-1)是第i个神经元k-1时刻训练权重,T是转置符号。
1-5.建立的模型被训练,其建模精度通过使用训练和测试数据根据数学误差处理进行评估:
步骤2、基于改进的遗传算法的变量选择和神经网络建模,改进的遗传算法同时优化了两个目标J1、J2,然后设计了编码方法和变量选择,选择模型的结构和参数优化的各种算法以解决问题,其步骤是:
2-1.初始化种群大小Np、最大世代G、算子概率Pc、Pm,首先对神经网络模型参数进行编码,为了简单起见,输入层中的n被设置为2,而根据现有知识将一个输入变量的m设置为1。隐藏层中的神经元数nh及其高斯函数参数ci,σi,i=1,…,nh被优化,1≤nh≤H,H是隐层的最大隐藏层数。设计了不同变量选择的编码和改进的神经网络,并导出第i条染色体Ci,形式如下所示:
其中1≤i≤Np,Np是群体大小。
2-2.根据矩阵知识导出[1,nh]行中的元素,如下所示:
σj=rwmax 1≤j≤nh
其中r在[0.01,1]中随机产生的系数,umax和umin是最大和最小输入,ymax和ymin是最大和最小输出,wmax是高斯基函数的最大宽度,设置为umax、ymax的较大值。
最后一行Ci代表3-8列被选择,他们是由特定的编码模式表示,其有效位为[3-8]。例如编码cH+1:
cH+1=[0 0 0 0 11 0 11 0]
这意味着u3,u4,u6被选择,列c5,c6,c8是高斯函数的有效中心。一旦Ci获得,确定了改进的神经网络的结构和参数,然后由步骤1-4中方法使用训练数据获得权值ω。
2-3.改进的遗传算法并选择算子
在改进的遗传算法中使用排序算法,得到排序和拥挤距离。排第一的个体被视为精英,被选为父母。为了保持群体的多样性,具有相同值的J1和J2的个体被认为是一个个体。排第1的个体选择到父母群体中,直到超过群体规模。通过下降排序比较当前前面的拥挤距离,并且将具有较大拥挤距离的个体选择到父母群体中。如果大小仍然小于设定的群体规模,在改进算法的基础上,来选择J1和J2剩余群体数的一半。在选定的群体中通过优化的遗传方法,产生后代。
2-4类染色体联会过程,产生遗传算法的算子,在Ci行和C′i行之间执行概率为pc的算子,其中,在Ci和C′i之间在1,9之间随机生成交叉位置。基函数的参数发生变化,后代中所选择的变量也发生了变化。但是隐藏节点的数量不能改变。
2-5.步骤2-1中的元素以概率Pm突变。当实现变异算子时,根据步骤2-2生成元素,其中的元素执行逻辑非运算,即1到0和0到1得到新的结构,然后可以获得改进的神经网络模型和不同的变量。
2-6.延长剪切算子
如果隐藏神经元的数目小于2,则随机添加神经元新元素[1,H-2]之间的随机数,并根据步骤2-2计算新神经元的元素。在Ci中只有一个不为零的神经元将被剪切,并且隐藏的神经元的数量减少。
2-7.循环重复优化搜素,依照步骤1-1到2-6,直到达到允许的最大进化代数结束优化搜索计算,得到优化后的遗传算法优化后的染色体,经解码后得到优化后的神经网络模型的参数。
本发明的有益效果:本发明通过采集过程对象的输入输出数据,结合神经网络模型,使用改进的主成分分析方法建模,结合改进的遗传算法算子优化神经网络模型的网络层和参数,而得到裂解反应炉温度预测方法。该方法建立的模型具有较高的精确性,能很好地描述过程对象的动态特性。
附图说明
图1为类染色体联会过程示意图。
具体实施方式
以裂解反应炉温度为实际对象,以燃料阀门的开度为输入,以裂解反应炉的温度为输出,来建立裂解反应炉温度的模型。
本发明方法的步骤包括:
步骤1、采集过程的实时运行数据,建立过程对象改进的神经网络模型,具体步骤如下:
1-1.根据建立模型,综合主成分分析方法,得到给定子集p的最优解如下形式:
将其转换为最小化问题表示为J1,形式如下:
J1=1/f1
其中,x(k)=[y(k-1),…,y(k-n),u(k-1),…,u(k-m)]是阀门开度的观测输入,y(k-1),…,y(k-n)分别是k-1,…,k-n时刻裂解炉温度输出,u(k-1),…,u(k-m)分别是k-1,…,k-m时刻选取的干扰。n和m分别是输出和输入的最大阶次,f表示模型的映射关系。
1-4.给出N1个训练数据样本,Y1=[y1(1),…,y1(N1)],U=[u(1),…,u(N1)],可以通过递归方法计算权重系数:
其中,Y1是训练数据,U是主成分分析方法所选取的干扰,0<μ<1是遗忘因子,P(k)、P(k-1)是k,k-1时刻的正定的协方差矩阵,P(0)=α2I,I是一个(n+m)×(n+m)单位矩阵,α是一个足够大的实数。设置为105,ω(0)=ε,ε是一个充分小的n+m的实矩阵,设置为10-3,K(k)是一个权重矩阵,fi(k)是第i个神经元k时刻训练输出,ωi(k-1)是第i个神经元k-1时刻训练权重,T是转置符号。
1-5.建立的改进模型被训练,其建模精度通过使用训练和测试数据根据数学误差处理进行评估:
步骤2、基于改进的遗传算法的变量选择和神经网络建模,改进的遗传算法同时优化了两个目标J1、J2,然后设计了编码方法和变量选择,选择模型的结构和参数优化的各种算法以解决问题,其步骤是:
2-1.初始化种群大小Np、最大进化代数G、算子概率Pc、Pm,首先对神经网络模型参数进行编码,为了简单起见,输入层中的n被设置为2,而根据现有知识将一个输入变量的m设置为1。隐藏层中的神经元数nh及其高斯函数参数ci,σi,i=1,…,nh被优化,1≤nh≤H,H是隐层的最大隐藏层数。设计了不同变量选择的编码和改进的神经网络,并导出第i条染色体Ci,形式如下所示:
其中1≤i≤Np,Np是群体大小。
2-2.根据矩阵知识导出[1,nh]行中的元素,如下所示:
σj=rwmax 1≤j≤nh
其中r在[0.01,1]中随机产生的系数,umax和umin是最大和最小输入,ymax和ymin是最大和最小输出,wmax是高斯基函数的最大宽度,设置为umax、ymax的较大值。
最后一行Ci代表3-8列被选择,他们是由特定的编码模式表示,其有效位为[3-8]。例如编码cH+1:
cH+1=[0 0 0 0 1 1 0 1 1 0]
这意味着u3,u4,u6被选择,列c5,c6,c8是高斯函数的有效中心。一旦Ci获得,确定了改进的神经网络的结构和参数,然后由步骤1-4中方法使用训练数据获得权值ω。
2-3.改进的遗传算法并选择算子
在改进的遗传算法中使用排序算法,得到排序和拥挤距离。排第一的个体被视为精英,被选为父母。为了保持群体的多样性,具有相同值的J1和J2的个体被认为是一个个体。排第1的个体选择到父母群体中,直到超过群体规模。通过下降排序比较当前前面的拥挤距离,并且将具有较大拥挤距离的个体选择到父母群体中。如果大小仍然小于设定的群体规模,在改进算法的基础上,来选择J1和J2剩余种群数的一半。在选定的群体中通过优化的遗传方法,产生后代。
2-4类染色体联会过程,产生遗传算法的算子,在Ci行和C′i行之间执行概率为pc的算子,见图1,其中,在Ci和C′i之间在[1,9]之间随机生成交叉位置。基函数的参数发生变化,后代中所选择的变量也发生了变化。但是隐藏节点的数量不能改变。
2-5.步骤2-1中的元素以概率Pm突变。当实现变异算子时,根据步骤2-2生成元素,其中的元素执行逻辑非运算,即1到0和0到1得到新的结构,然后可以获得改进的神经网络模型和不同的变量。
2-6.延长剪切算子
如果隐藏神经元的数目小于2,则随机添加神经元新元素[1,H-2]之间的随机数,并根据步骤2-2计算新神经元的元素。在Ci中只有一个不为零的神经元将被剪切,并且隐藏的神经元的数量减少。
2-7.循环重复优化搜素,依照步骤1-1到2-6,直到达到允许的最大进化代数结束优化搜索计算,得到改进后的遗传算法优化后的染色体,经解码后得到优化后的神经网络模型的参数。
综上,本发明针对当前对于裂解反应炉温度的动态特性,使用神经网络具有良好的逼近速度,同时可以提高压力预测模型的精度,又可以简化模型结构。基于实际过程提出一种新型神经网络来改善模型精度和简化其结构。通过改进的主成分分析方法,建立在自然选择和自然遗传学基础上的迭代自适应随机全局优化搜索算法,能够解决许多传统优化方法不能解决的难题。通过选取合适的遗传算子,将改进的遗传算法用于优化神经网络模型,对裂解反应炉温度应用改进的主成分分析方法和神经网络建模精度,使用优化的进化算法来解决问题,通过和神经网络模型相结合,既能迅速逼近裂解反应炉实际温度,又保证了模型响应能力强结构简单的特点。
Claims (1)
1.一种裂解反应炉温度的主成分分析建模方法,以裂解反应炉温度为实际对象,以燃料阀门的开度为输入,以裂解反应炉的温度为输出,来建立裂解反应炉温度的模型,其特征在于该方法具体是:
步骤1、采集过程的实时运行数据,建立过程对象神经网络模型,具体步骤如下:
1-1.根据建立模型,综合主成分分析方法,得到给定子集p的最优解如下形式:
将其转换为最小化问题表示为J1,形式如下:
J1=1/f1
其中,x(k)=[y(k-1),…,y(k-n),u(k-1),…,u(k-m)]是阀门开度观测输入,y(k-1),…,y(k-n)分别是k-1,…,k-n时刻裂解炉温度输出;u(k-1),…,u(k-m)分别是k-1,…,k-m时刻选取的干扰;n和m分别是输出和输入的最大阶次,f表示模型的映射关系;
1-4.给出N1个训练数据样本,Y1=[y1(1),…,y1(N1)],U=[u(1),…,u(N1)],通过递归方法计算权重系数:
其中,Y1是训练数据,U是主成分分析方法所选取的干扰,0<μ<1是遗忘因子,P(k)、P(k-1)是k,k-1时刻的正定的协方差矩阵,P(0)=α2I,I是一个(n+m)×(n+m)单位矩阵,α是一个足够大的实数;设置为105,ω(0)=ε,ε是一个充分小的n+m的实矩阵,设置为10-3,K(k)是一个权重矩阵,fi(k)是第i个神经元k时刻训练输出,ωi(k-1)是第i个神经元k-1时刻训练权重,T是转置符号;
1-5.训练建立的模型,其建模精度通过使用训练和测试数据根据数学误差处理进行评估:
步骤2、基于改进的遗传算法的变量选择和神经网络建模,具体步骤如下:
2-1.初始化种群大小Np、最大世代G、算子概率Pc、Pm,首先对神经网络模型参数进行编码,将输入层中的n被设置为2,将一个输入变量的m设置为1;隐藏层中的神经元数nh及其高斯函数参数ci,σi,i=1,…,nh被优化,1≤nh≤H,H是隐层的最大隐藏层数;设计不同变量选择的编码和改进的神经网络,并导出第i条染色体Ci,形式如下所示:
其中1≤i≤Np,Np是群体大小;
2-2.根据矩阵知识导出[1,nh]行中的元素,如下所示:
σj=rwmax 1≤j≤nh
其中r在[0.01,1]中随机产生的系数,umax和umin是最大和最小输入,ymax和ymin是最大和最小输出,wmax是高斯基函数的最大宽度,设置为umax、ymax的较大值;
最后一行Ci代表3-8列被选择,其有效位为[3-8];一旦Ci获得,确定了改进的神经网络的结构和参数,然后通过步骤1-4使用训练数据获得权值ω;
2-3.改进的遗传算法并选择算子
在改进的遗传算法中使用排序算法,得到排序和拥挤距离;排第一的个体被视为精英,被选为父母;为了保持群体的多样性,具有相同值的J1和J2的个体被认为是一个个体;排第1的个体选择到父母群体中,直到超过群体规模;通过下降排序比较当前前面的拥挤距离,并且将具有较大拥挤距离的个体选择到父母群体中;如果大小仍然小于设定的群体规模,在改进算法的基础上,来选择J1和J2剩余群体数的一半;在选定的群体中通过优化的遗传方法,产生后代;
2-4类染色体联会过程,产生遗传算法的算子,在Ci行和C′i行之间执行概率为pc的算子,其中,在Ci和C′i之间在1,9之间随机生成交叉位置;基函数的参数发生变化,后代中所选择的变量也发生了变化;但是隐藏节点的数量不能改变;
2-5.步骤2-1中的元素以概率Pm突变;当实现变异算子时,根据步骤2-2生成元素,其中的元素执行逻辑非运算,即1到0和0到1得到新的结构,然后获得改进的神经网络模型和不同的变量;
2-6.延长剪切算子
如果隐藏神经元的数目小于2,则随机添加神经元新元素[1,H-2]之间的随机数,并根据步骤2-2计算新神经元的元素;在Ci中只有一个不为零的神经元将被剪切,并且隐藏的神经元的数量减少;
2-7.循环重复优化搜素,依照步骤1-1到2-6,直到达到允许的最大进化代数结束优化搜索计算,得到优化后的遗传算法优化后的染色体,经解码后得到优化后的神经网络模型的参数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710953852.6A CN107894710B (zh) | 2017-10-13 | 2017-10-13 | 一种裂解反应炉温度的主成分分析建模方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710953852.6A CN107894710B (zh) | 2017-10-13 | 2017-10-13 | 一种裂解反应炉温度的主成分分析建模方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107894710A CN107894710A (zh) | 2018-04-10 |
CN107894710B true CN107894710B (zh) | 2020-04-24 |
Family
ID=61803501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710953852.6A Active CN107894710B (zh) | 2017-10-13 | 2017-10-13 | 一种裂解反应炉温度的主成分分析建模方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107894710B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108319139A (zh) * | 2018-02-02 | 2018-07-24 | 杭州电子科技大学 | 一种工业过程主元分析与神经网络优化建模方法 |
CN110343541B (zh) * | 2019-06-18 | 2021-08-06 | 广东石油化工学院 | 一种裂解炉管智能结焦监测边云协同平台及其工作方法 |
CN111595489B (zh) * | 2020-05-27 | 2021-06-25 | 吉林大学 | 一种基于变分自编码器的启发式高分辨率海洋水温分布建立方法 |
CN116149397B (zh) * | 2023-04-20 | 2023-06-23 | 福建天甫电子材料有限公司 | 电子级双氧水存储的温度自适应控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1916791A (zh) * | 2006-09-12 | 2007-02-21 | 浙江大学 | 一种丙烯聚合工业生产熔融指数软测量方法 |
CN102915445A (zh) * | 2012-09-17 | 2013-02-06 | 杭州电子科技大学 | 一种改进型的神经网络高光谱遥感影像分类方法 |
CN104318303A (zh) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | 遗传算法优化的rbf神经网络的焦化炉温度预测方法 |
CN105608295A (zh) * | 2016-01-29 | 2016-05-25 | 杭州电子科技大学 | 焦化炉压力的多目标遗传算法与rbf神经网络优化建模方法 |
CN105760344A (zh) * | 2016-01-29 | 2016-07-13 | 杭州电子科技大学 | 一种化学放热反应的分布式主元分析神经网络建模方法 |
-
2017
- 2017-10-13 CN CN201710953852.6A patent/CN107894710B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1916791A (zh) * | 2006-09-12 | 2007-02-21 | 浙江大学 | 一种丙烯聚合工业生产熔融指数软测量方法 |
CN102915445A (zh) * | 2012-09-17 | 2013-02-06 | 杭州电子科技大学 | 一种改进型的神经网络高光谱遥感影像分类方法 |
CN104318303A (zh) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | 遗传算法优化的rbf神经网络的焦化炉温度预测方法 |
CN105608295A (zh) * | 2016-01-29 | 2016-05-25 | 杭州电子科技大学 | 焦化炉压力的多目标遗传算法与rbf神经网络优化建模方法 |
CN105760344A (zh) * | 2016-01-29 | 2016-07-13 | 杭州电子科技大学 | 一种化学放热反应的分布式主元分析神经网络建模方法 |
Non-Patent Citations (3)
Title |
---|
Dynamic Modeling and Nonlinear Predictive Control Based on Partitioned Model and Nonlinear Optimization;Surin Khomfoi 等;《Industrial & Engineering Chemistry Research》;20111231;全文 * |
基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测;许童羽 等;《电力系统保护与控制》;20161116;第44卷(第22期);全文 * |
基于智能优化算法的教学质量评价方法;朱娅妮 等;《杭州电子科技大学学报》;20141130;第34卷(第6期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107894710A (zh) | 2018-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107894710B (zh) | 一种裂解反应炉温度的主成分分析建模方法 | |
CN109670580A (zh) | 一种基于时间序列的数据修复方法 | |
CN109241291A (zh) | 基于深度强化学习的知识图谱最优路径查询系统及其方法 | |
CN108537366B (zh) | 基于最优卷积二维化的水库调度方法 | |
CN109635245A (zh) | 一种鲁棒宽度学习系统 | |
CN105608295B (zh) | 焦化炉压力的多目标遗传算法与rbf神经网络优化建模方法 | |
CN105760344B (zh) | 一种化学放热反应的分布式主元分析神经网络建模方法 | |
CN111310348A (zh) | 一种基于pso-lssvm的材料本构模型预测方法 | |
Ye et al. | Cascaded GMDH-wavelet-neuro-fuzzy network | |
Sun et al. | Optimization of chemical composition for TC11 titanium alloy based on artificial neural network and genetic algorithm | |
CN106502093B (zh) | 基于ga‑svr的水岛加药在线控制方法 | |
CN109493921B (zh) | 一种基于多代理模型的常压精馏过程建模方法 | |
CN109408896B (zh) | 一种污水厌氧处理产气量多元智能实时监控方法 | |
CN108803343B (zh) | 甲醇制烯烃反应器的控制方法及装置 | |
CN102663493A (zh) | 一种用于时间序列预测的迟滞神经网络 | |
Zhu et al. | A novel intelligent model integrating PLSR with RBF-kernel based extreme learning machine: Application to modelling petrochemical process | |
CN110210623A (zh) | 基于模拟退火和信息熵的自适应多目标混合差分进化算法 | |
CN107273971B (zh) | 基于神经元显著性的前馈神经网络结构自组织方法 | |
CN117808054A (zh) | 基于机器学习的复杂系统辨识与重构方法 | |
MirRokni | Applying genetic algorithm in architecture and neural network training | |
CN105955350B (zh) | 遗传算法优化加热炉温度的分数阶预测函数控制方法 | |
CN117252114A (zh) | 一种基于遗传算法的电缆耐扭转实验方法 | |
Ghanbari et al. | Prediction of degree of crystallinity for the LTA zeolite using artificial neural networks | |
CN112488149A (zh) | 一种基于1d-cnn特征重构的网络安全数据分类方法 | |
CN111310974A (zh) | 一种基于ga-elm的短期需水预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |