CN107879756B - 一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法 - Google Patents
一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法 Download PDFInfo
- Publication number
- CN107879756B CN107879756B CN201711132310.9A CN201711132310A CN107879756B CN 107879756 B CN107879756 B CN 107879756B CN 201711132310 A CN201711132310 A CN 201711132310A CN 107879756 B CN107879756 B CN 107879756B
- Authority
- CN
- China
- Prior art keywords
- gas
- silicon carbide
- ceramic
- prepared
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 239000002131 composite material Substances 0.000 title claims abstract description 47
- 239000000919 ceramic Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 32
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 24
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 239000007789 gas Substances 0.000 claims abstract description 50
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 16
- HPNSNYBUADCFDR-UHFFFAOYSA-N chromafenozide Chemical compound CC1=CC(C)=CC(C(=O)N(NC(=O)C=2C(=C3CCCOC3=CC=2)C)C(C)(C)C)=C1 HPNSNYBUADCFDR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011153 ceramic matrix composite Substances 0.000 claims abstract description 13
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 239000012159 carrier gas Substances 0.000 claims description 7
- 239000003085 diluting agent Substances 0.000 claims description 7
- 230000005587 bubbling Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- 239000012495 reaction gas Substances 0.000 abstract description 8
- 238000002360 preparation method Methods 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 230000004044 response Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 208000037656 Respiratory Sounds Diseases 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000007792 gaseous phase Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 206010011376 Crepitations Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 230000003026 anti-oxygenic effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- DWAWYEUJUWLESO-UHFFFAOYSA-N trichloromethylsilane Chemical compound [SiH3]C(Cl)(Cl)Cl DWAWYEUJUWLESO-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C04B35/806—
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/005—Growth of whiskers or needles
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/18—Quartz
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/62—Whiskers or needles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5276—Whiskers, spindles, needles or pins
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明具体涉及一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法,主要解决了现有方法制备纳米二氧化硅所需的环境温度高、需要有加热过程、反应气体流量大、不适合在陶瓷基复合材料内部反应的问题。方法包括以下步骤:1)将碳化硅陶瓷基复合材料放入化学气相沉积炉内,炉内温度在900~1100℃;2)将制备碳化硅陶瓷基体的先驱体气体与空气的混合气体引入沉积炉内发生反应;3)陶瓷基复合材料内部在线原位形成氧化硅晶须。本发明方法所需环境温度低、反应气体流量小,可有效降低成本。
Description
技术领域
本发明涉及一种氧化硅晶须的制备方法,具体涉及一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法。
背景技术
陶瓷基复合材料作为一种新型的复合材料,不但具有陶瓷材料优异的高温性能,同时克服了陶瓷具有脆性、具有类金属材料断裂行为的缺陷,已成为应用研究的热点材料,在航空航天领域具有广泛的应用潜力。但由于陶瓷基复合材料各组元热膨胀系数不同,导致该材料基体内部存在裂纹,在氧化环境下易氧化而受损。现有技术表明存在于复合材料内部的氧化硅晶须可缓解材料内部不同组元引起的热应力,减少复合材料基体内部的裂纹数量,同时也可减缓材料的氧化。
公开号CN1590292 A公开了一种利用四氯化硅气体可简单高效制备二氧化硅的方法,但该方法所需的环境温度高(反应温度为1600~2100℃)、需要有加热过程、反应气体流量大(惰性载气流速100~150L/min,氧气流速50~80L/min),不适合在陶瓷基复合材料内部制备纳米二氧化硅。
发明内容
本发明的目的是解决现有方法制备纳米二氧化硅所需环境温度高、需要有加热过程、反应气体流量大,不适合在陶瓷基复合材料内部反应的问题,提供一种在陶瓷基复合材料内部在线原位制备氧化硅晶须的方法。
本发明解决上述问题的技术方案是,一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法,包括以下步骤:
1)将碳化硅陶瓷基复合材料放入化学气相沉积炉内反应,炉内温度在900~1100℃之间;
2)当碳化硅陶瓷基复合材料密度增大后,将制备碳化硅陶瓷基体的先驱体气体与空气的混合气体引入沉积炉内发生反应;
3)在陶瓷基复合材料内部在线原位形成氧化硅晶须。
进一步地,所述碳化硅陶瓷基复合材料为纤维增强的碳化硅陶瓷基体复合材料,密度低于1.3g/cm3。
进一步地,制备碳化硅陶瓷基体的先驱体气体通过以下方法得到,采用气相运输的方法,将载气气体氢气通入MTS液体内,通过鼓泡的形式带出MTS气体,并与稀释气体氩气一起混合形成先驱气体。
进一步地,所述MTS液体的环境温度为室温,压力为常压,可有效降低成本。
进一步地,载气气体氢气的流速为1~3L/min,稀释气体氩气的流速为1~2L/min,空气的流速为0.1~0.3L/min。本发明方法反应气体流量小,可有效降低成本。
进一步地,化学气相沉积炉内的压力为2~5kPa。
本发明的有益效果为:
1.本发明提供了一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法,不但可以缓解不同组元(碳、硅、碳化硅)之间的热应力,减少内部裂纹数量,而且氧化硅晶须也有强化基体的作用。
2.本发明方法所需环境温度低(900~1100℃)、反应气体流量小(氢气的流速为1~3L/min,氩气的流速为1~2L/min,空气的流速为0.1~0.3L/min),可有效降低成本。
3.本发明工艺方法是在线原位形成氧化硅晶须,可减少复合材料制备过程中升降温环节,从而减少制备所需的工时,提高了制备效率。
4.本发明方法是在制备复合材料碳化硅陶瓷基体的体系上,引入空气,可使复合材料在线原位形成氧化硅晶须,不会引入其他体系,不会影响后续碳化硅基体的制备。
5.本发明可提高陶瓷复合材料的力学性能及抗氧化性能,是一种易操作、低成本、高效率的工艺路线。
附图说明
图1为复合材料内部在线原位形成的氧化硅晶须SEM形貌图;
图2为氧化硅EDS能谱结果。
具体实施方式
以下结合具体实施例对本发明的内容作进一步详细描述:
为了实现在陶瓷基复合材料基体内部形成晶须结构,缓解复合材料各组元不同的热膨胀系数引起的热应力,减少基体中裂纹的数量,本发明公开了一种在陶瓷基复合材料内部在线原位制备氧化硅晶须的方法,
1)前期先按照制备碳化硅陶瓷基体的工艺进行,将碳化硅陶瓷基复合材料放入化学气相沉积炉内反应,炉内温度在900~1100℃之间;
2)当陶瓷基复合材料密度增大后,将制备碳化硅陶瓷基体的先驱体气体与空气的混合气体引入沉积炉内发生反应;
3)在陶瓷基复合材料内部在线原位形成氧化硅晶须。
本发明的方法具体为:先将密度较低(密度低于1.3g/cm3)的碳化硅陶瓷基复合材料放入化学气相沉积炉内,炉内温度在900~1100℃内,炉内压力为2~5kPa,利用鼓泡的方法,将氢气引入到MTS液体内,带出MTS气相并与稀释气体氩气一起汇合形成先驱气体,进入化学气相沉积炉内,在复合材料内部制备碳化硅陶瓷基体,当复合材料到达半致密化状态(密度在1.3~1.8g/cm3)时,在先驱气体中引入空气,并充分混合后进入反应炉内,发生化学反应,空气中的氧元素渗透到复合材料孔隙内部,在碳化硅表面原位发生硅-氧体系的氧化反应,可在复合材料基体内部原位生成氧化硅晶须,半致密化的碳化硅陶瓷基复合材料具体为纤维增强的碳化硅陶瓷基体复合材料。引入空气后,发生氧化反应,形成氧化硅晶须,通过化学气相沉积法,在线原位生长成氧化硅晶须。
制备碳化硅陶瓷基体的先驱气体为三氯甲基硅烷(MTS),载气为氢气,稀释气体为氩气,采用气相运输的办法,将氢气通入到MTS液体内,通过鼓泡的形式带出MTS气体,然后与空气混为一起;其中,通入MTS液体中载气氢气的流速为1~3L/min,稀释气体氩气的流速为1~2L/min,空气流速为0.1~0.3L/min,MTS液体所处容器的环境温度为室温,压力为常压。
实施例一
先将密度为1.0g/cm3的碳化硅陶瓷基复合材料放入化学气相沉积炉内,设定化学气相沉积炉内的温度为1000℃,压力为5kPa,然后按3L/min的流速将氢气引入到MTS液体内,带出MTS反应气体,再与氩气(流速为2L/min)汇合后统一进入反应炉内,在复合材料内部形成碳化硅基体,当陶瓷基复合材料密度达到1.3~1.5g/cm3后,在原有的反应体系中引入空气,流速为0.1L/min,与MTS等气体混合后统一进入反应炉内,最终在复合材料内部原位形成氧化硅晶须,如图1所示。图2为该晶须的能谱结果,分析表明该工艺可在陶瓷基复合材料原位形成氧化硅晶须。
实施例二
先将密度为1.1g/cm3的碳化硅陶瓷基复合材料放入化学气相沉积炉内,设定化学气相沉积炉内的温度为900℃,压力为2kPa,然后按1L/min的流速将氢气引入到MTS液体内,带出MTS反应气体,再与氩气(流速为1L/min)汇合后统一进入反应炉内,在复合材料内部形成碳化硅基体,当陶瓷基复合材料密度达到1.5~1.8g/cm3后,在原有的反应体系中引入空气,流速为0.3L/min,与MTS等气体混合后统一进入反应炉内,最终在复合材料内部原位形成氧化硅晶须。
实施例三
先将密度为1.2g/cm3的碳化硅陶瓷基复合材料放入化学气相沉积炉内,设定化学气相沉积炉内的温度为1100℃,压力为4kPa,然后按2L/min的流速将氢气引入到MTS液体内,带出MTS反应气体,再与氩气(流速为1.5L/min)汇合后统一进入反应炉内,在复合材料内部形成碳化硅基体,当陶瓷基复合材料密度达到1.8~2.0g/cm3后,在原有的反应体系中引入空气,流速为0.2L/min,与MTS等气体混合后统一进入反应炉内,最终在复合材料内部原位形成氧化硅晶须。
Claims (4)
1.一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法,其特征在于:包括以下步骤,
1)将碳化硅陶瓷基复合材料放入化学气相沉积炉内反应,炉内温度在900~1100℃之间;
2)当碳化硅陶瓷基复合材料密度增大后,将制备碳化硅陶瓷基体的先驱体气体与空气的混合气体引入沉积炉内发生反应;
制备碳化硅陶瓷基体的先驱体气体通过以下方法得到,采用气相运输的方法,将载气气体氢气通入MTS液体内,通过鼓泡的形式带出MTS气体,并与稀释气体氩气一起混合形成先驱体 气体;载气气体氢气的流速为1~3L/min,稀释气体氩气的流速为1~2L/min,空气的流速为0.1~0.3L/min;
3)在陶瓷基复合材料内部在线原位形成氧化硅晶须。
2.根据权利要求1所述的在碳陶复合材料内部在线原位制备氧化硅晶须的方法,其特征在于:所述碳化硅陶瓷基复合材料为纤维增强的碳化硅陶瓷基体复合材料,密度低于1.3g/cm3。
3.根据权利要求2所述的在碳陶复合材料内部在线原位制备氧化硅晶须的方法,其特征在于:所述MTS液体的环境温度为室温,压力为常压。
4.根据权利要求1至3内任一所述的在碳陶复合材料内部在线原位制备氧化硅晶须的方法,其特征在于:化学气相沉积炉内的压力为2~5kPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711132310.9A CN107879756B (zh) | 2017-11-15 | 2017-11-15 | 一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711132310.9A CN107879756B (zh) | 2017-11-15 | 2017-11-15 | 一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107879756A CN107879756A (zh) | 2018-04-06 |
CN107879756B true CN107879756B (zh) | 2019-11-15 |
Family
ID=61777424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711132310.9A Active CN107879756B (zh) | 2017-11-15 | 2017-11-15 | 一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107879756B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775176A (zh) * | 2012-07-18 | 2012-11-14 | 西安鑫垚陶瓷复合材料有限公司 | 三维针刺碳/碳化硅复合材料螺栓的制备方法 |
CN103011874A (zh) * | 2012-12-07 | 2013-04-03 | 西安鑫垚陶瓷复合材料有限公司 | 碳/碳化硅复合材料构件的连接方法 |
CN104030716A (zh) * | 2014-06-09 | 2014-09-10 | 西北工业大学 | 溶胶凝胶法原位合成SiC纳米线改性碳/碳复合材料预制体的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200526824A (en) * | 2004-02-11 | 2005-08-16 | Ind Tech Res Inst | Manufacturing method of silicon nanowire |
-
2017
- 2017-11-15 CN CN201711132310.9A patent/CN107879756B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775176A (zh) * | 2012-07-18 | 2012-11-14 | 西安鑫垚陶瓷复合材料有限公司 | 三维针刺碳/碳化硅复合材料螺栓的制备方法 |
CN103011874A (zh) * | 2012-12-07 | 2013-04-03 | 西安鑫垚陶瓷复合材料有限公司 | 碳/碳化硅复合材料构件的连接方法 |
CN104030716A (zh) * | 2014-06-09 | 2014-09-10 | 西北工业大学 | 溶胶凝胶法原位合成SiC纳米线改性碳/碳复合材料预制体的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107879756A (zh) | 2018-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5906318B2 (ja) | 耐熱複合材料の製造方法及び製造装置 | |
CN105541412A (zh) | 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法 | |
CN100497265C (zh) | 一种C/SiC复合材料表面抗氧化涂层及其制备方法 | |
CN105503266A (zh) | 一种石墨热场表面制备SiC涂层的方法 | |
CN110382735A (zh) | 多孔体和其制备方法 | |
Gu et al. | Low-temperature preparation of porous SiC ceramics using phosphoric acid as a pore-forming agent and a binder | |
CN112899650A (zh) | 一种稳定性能优异的(Ta,Hf,Zr)C复合涂层的制备方法 | |
CN105399082A (zh) | 制备石墨烯薄膜的化学气相沉积设备及方法 | |
CN107879756B (zh) | 一种在碳陶复合材料内部在线原位制备氧化硅晶须的方法 | |
CN105439645A (zh) | 一种用于石墨热场表面的复合涂层及其制备方法 | |
Cuffe et al. | The development of nanoporous membranes for separation of carbon dioxide at high temperatures | |
US11597686B2 (en) | Method for fabricating ceramic matrix composite components | |
KR101581448B1 (ko) | 고순도 탄화규소 제품 제조 방법 | |
CN105506735A (zh) | 一种多晶硅铸锭用碳材料结构件及其制备方法 | |
CN105503265B (zh) | 一种石墨加热炉内石墨热场表面制备SiC涂层的方法 | |
CN105236988B (zh) | 一种高纯高密重结晶碳化硅器件及其制备方法 | |
CN105541405B (zh) | 石墨发热体炉内碳素材料表面均匀沉积SiC涂层的方法 | |
CN111243681A (zh) | 一种应力氧化环境下陶瓷基复合材料内部氧化形貌预测方法 | |
CN107619284B (zh) | 一种SiBNC陶瓷泡沫的制备方法 | |
Tian et al. | Formation of Si3N4 coating on SiC substrate by gas transporting self‐propagating high‐temperature synthesis with the addition of NH4Cl | |
Yoon et al. | Effect of Cl/H input ratio on the growth rate of MoSi2 coatings formed by chemical vapor deposition of Si on Mo substrates from SiCl4–H2 precursor gases | |
CN105503270A (zh) | 一种SiC涂层的制备方法 | |
Popovska et al. | Kinetic analysis of the processing of porous biomorphic titanium carbide ceramics by chemical vapor infiltration | |
CN102659086B (zh) | 一种氮化硅纳米纤维毡的制备方法 | |
KR101931170B1 (ko) | 탄화 규소의 제조방법 및 제조장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 710117 West Section 912 of Biyuan Road, Xi'an High-tech Zone, Shaanxi Province Patentee after: Xi'an Xinyao Ceramic Composite Co.,Ltd. Country or region after: China Address before: 710065 808, Building IBC-A, Huixin, Zhangbayi Road, High tech Zone, Xi'an City, Shaanxi Province Patentee before: XI'AN GOLDEN MOUNTAIN CERAMIC COMPOSITES CO.,LTD. Country or region before: China |