CN107879738A - 一种太赫兹波段介质材料、制备方法及制成电介质的方法 - Google Patents

一种太赫兹波段介质材料、制备方法及制成电介质的方法 Download PDF

Info

Publication number
CN107879738A
CN107879738A CN201711153953.1A CN201711153953A CN107879738A CN 107879738 A CN107879738 A CN 107879738A CN 201711153953 A CN201711153953 A CN 201711153953A CN 107879738 A CN107879738 A CN 107879738A
Authority
CN
China
Prior art keywords
product
dielectric material
wave band
terahertz wave
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711153953.1A
Other languages
English (en)
Inventor
胡明哲
曾志伟
尹跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liupanshui Normal University
Original Assignee
Liupanshui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liupanshui Normal University filed Critical Liupanshui Normal University
Priority to CN201711153953.1A priority Critical patent/CN107879738A/zh
Publication of CN107879738A publication Critical patent/CN107879738A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种太赫兹波段介质材料、制备方法及制成电介质的方法。该介质材料的化学配比通式为[(Mg1‑x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV;其中0≤x≤0.3,y=1或2。本发明具有烧结温度低,介电损耗低和介电常数适中的优点。

Description

一种太赫兹波段介质材料、制备方法及制成电介质的方法
技术领域
本发明涉及一种通信领域用的材料及制备方法,特别是一种太赫兹波段介质材料、制备方法及制成电介质的方法。
背景技术
大数据时代无线通信迅猛发展,技术上要求无线通讯器件具有不断向高频(微波、太赫兹波)、高增益(或低插入损耗)方向发展的特性。基于此,介质天线、滤波器等通讯器件要求电介质在微波或太赫兹波段的介电损耗应较低,并且其介电常数适中,以满足上述要求。但目前能应用于太赫兹波段的电介质材料还存在介电损耗偏高、烧结温度较高的缺点。
发明内容
本发明的目的,是提供一种太赫兹波段介质材料、制备方法及制成电介质的方法。本发明具有烧结温度低,介电损耗低和介电常数适中的优点。
本发明是这样实现的。一种太赫兹波段介质材料,该介质材料的化学配比通式为[(Mg1-x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV;其中0≤x≤0.3,y=1或2。
前述的太赫兹波段介质材料的制备方法,按下述步骤制备:
a、将原料Al2O3、MgCO3和Nb2O5按化学配比通式[(Mg1-x Al2/3x )1/3Nb2/3]O2配料混合,其中0≤x≤0.3,得A品;
b、将A品、磨球和水按照体积比1:1:1混匀后球磨3~5小时,得B品;
c、将B品烘干,并过40~80目筛,得C品;
d、将C品在空气中以1200±5oC预烧2~6小时,得D品;
e、将Al2O3 、B2O3、SiO2、MgO及V2O5按重量比2:7:8:1:2混合,得E品;
f、将E品与水混匀,之后球磨3~5小时,得F品;
g、将F品烘干,之后加热至大于1250oC,并在空气中淬火得ABSMV玻璃,将ABSMV玻璃粉碎,得G品;
h、将D品和G品按化学配比通式[(Mg1-x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV配料混合,其中y=1或2,得H品;
i、将H品、磨球和水按照体积比1:1:1混匀后,再加入0.5~2wt%的表面活性剂球磨3~5小时,将球磨产物烘干即得。
前述的太赫兹波段介质材料的制备方法所述的步骤a中,所述的x=0.2。
前述的太赫兹波段介质材料的制备方法所述的步骤e中,所述的MgO,是由MgCO3引入的MgO。
前述的太赫兹波段介质材料的制备方法所述的步骤b、f和i中,所述的水为去离子水。
前述的太赫兹波段介质材料的制备方法所述的步骤i中,所述的表面活性剂是十八烷酸。
前述的太赫兹波段介质材料制备电介质的方法,按下述步骤制备:
a、向介质材料加入3~5wt% PVA混匀,混匀后过40~80目筛,得A品;
b、将A品在150MPa下压制成片状,得B品;
c、将B品在1100~1250oC的空气中烧结1~8小时,即得。
有益效果:与现有技术相比,本发明采用[(Mg1-x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV(0≤x≤0.3,y=1, 2)为化学配比通式,通过调节配比通式中的x值,来调控其介电性能,特别是其介电常数和介电损耗性能,通过调节配比通式中的y值,来调控其烧结温度、烧结密度等性能。通过该方法,本发明制备出的[(Mg0.8Al0.1333)1/3Nb2/3]O2 + 2 wt% ABSMV (x=0.2,y=2)介质材料,在烧结温度为1200±5oC的条件下介电性能为最佳,可达到:1THz波段下,复介电常数实部ε r =12.9064;复介电常数虚部ε’’ r=0.2859;介电损耗tanδ=0.02215。由此可知,本发明在较低的烧结温度下(传统的烧结温度约为1450oC),即能得到介电损耗低和介电常数适中的介质材料。
综上,本发明具有烧结温度低,介电损耗低和介电常数适中的优点。
为了说明本发明的有益效果,申请人进行了以下实验检测:
对发明制备得到的电介质样品经打磨、抛光后采用太赫兹时域光谱系统,根据时域透射谱的峰位来计算其复介电常数实部εr、复介电常数虚部ε’’ r及介电损耗(tanδ值)。测试波段为0.2~1.0THz。图1示出了ABSMV玻璃掺量为2wt%(y=2)的[(Mg1-x Al2/3x )1/3Nb2/3]O2(0≤x≤0.3)样品的XRD衍射物相结构,由图1可见,样品均形成了良好的[(Mg1-x Al2/3x )1/3Nb2/3]O2单相特性,杂相很少。图2~4示出了ABSMV玻璃掺量为2wt%(y=2)的[(Mg1-x Al2/3x )1/3Nb2/3]O2(0≤x≤0.3)样品在0.2~1.0THz波段的介电性能检测结果。图2为样品在室温下、0.2~1THz波段的介电常数特性,它表明样品在0.2~1太赫兹波段介电常数随x值的升高而降低,并在x=0.2时具有适中的介电常数,图3和图4分别为样品在在室温下、0.2~1THz波段的复介电常数虚部和介电损耗特性,它们表明样品在0.2~1太赫兹波段复介电常数虚部随x值的升高而不断降低,而介电损耗图则说明Al3+的取代Mg2+可以改善介质的损耗特性,提高介质的Q值,当x=0.2时,样品在0.7~1太赫兹波段具有最低的介电损耗值。
附图说明
图1是化学配比通式为[(Mg1-x Al2/3x )1/3Nb2/3]O2(0≤x≤0.3)+2wt% ABSMV的介质材料制备的电介质的XRD衍射图谱;
图2是化学配比通式为[(Mg1-x Al2/3x )1/3Nb2/3]O2(0≤x≤0.3)+2wt% ABSMV的介质材料制备的电介质在室温下、0.2~1THz波段的复介电常数实部性能;
图3是化学配比通式为[(Mg1-x Al2/3x )1/3Nb2/3]O2(0≤x≤0.3)+2wt% ABSMV的介质材料制备的电介质在室温下、0.2~1THz波段的复介电常数虚部性能;
图4是化学配比通式为[(Mg1-x Al2/3x )1/3Nb2/3]O2(0≤x≤0.3)+2wt% ABSMV的介质材料制备的电介质在室温下、0.2~1THz波段的介电损耗性能。
具体实施方式
实施例1。 一种太赫兹波段介质材料,该介质材料的化学配比通式为[(Mg1- x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV;其中0≤x≤0.3,y=1或2。
前述的太赫兹波段介质材料按下述步骤制备:
a、将原料Al2O3、MgCO3和Nb2O5按化学配比通式[(Mg1-x Al2/3x )1/3Nb2/3]O2配料混合,其中0≤x≤0.3,得A品;
b、将A品、磨球和水按照体积比1:1:1混匀后球磨3~5小时,得B品;
c、将B品烘干,并过40~80目筛(最优60目筛),得C品;
d、将C品在空气中以1200±5oC预烧2~6小时,得D品;
e、将Al2O3 、B2O3、SiO2、MgO及V2O5按重量比2:7:8:1:2混合,得E品;
f、将E品与水混匀,之后球磨3~5小时,得F品;
g、将F品烘干,之后加热至大于1250oC,并在空气中淬火得ABSMV玻璃,将ABSMV玻璃粉碎,得G品;
h、将D品和G品按化学配比通式[(Mg1-x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV配料混合,,其中y=1或2,得H品;
i、将H品、磨球和水按照体积比1:1:1混匀后,再加入0.5~2wt%(最优为1wt%)的表面活性剂球磨3~5小时,将球磨产物烘干即得。
最优地,前述的x=0.2。
前述的步骤e中,所述的MgO,是由MgCO3引入的MgO。
前述的步骤b、f和i中,所述的水为去离子水。
前述的,步骤i中,所述的表面活性剂是十八烷酸。
前述的太赫兹波段介质材料制备电介质的方法:按下述步骤制备:
a、向介质材料加入3~5wt%(最优为5wt%) PVA混匀,混匀后过40~80目筛(最优为50目筛),得A品;
b、将A品在150MPa下压制成片状,得B品;
c、将B品在1100~1250oC的空气中烧结1~8小时,即得。
本发明通过调控[(Mg1-x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV(0≤x≤0.3,y=1, 2)的化学配比通式中xy值,其中,采用调节配比通式中的x值,来调控其介电性能,特别是其介电常数和介电损耗性能,通过调节配比通式中的y值,来调控其烧结温度、烧结密度等性能。其中,制备出的[(Mg0.8Al0.1333)1/3Nb2/3]O2 + 2 wt% ABSMV (x=0.2, y=2)样品,在烧结温度为1200±5oC的条件下介电性能为最佳,可达到:1THz波段下,复介电常数实部ε r =12.9064;复介电常数虚部ε’’ r=0.2859;介电损耗tanδ=0.02215。
本发明所提供的这种新型低损耗的电介质材料可广泛地应用于微波、太赫兹波导等电磁元器件中。

Claims (7)

1. 一种太赫兹波段介质材料,其特征在于:该介质材料的化学配比通式为[(Mg1- x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV;其中0≤x≤0.3,y=1或2。
2.如权利要求1所述的太赫兹波段介质材料的制备方法,其特征在于,按下述步骤制备:
a、将原料Al2O3、MgCO3和Nb2O5按化学配比通式[(Mg1-x Al2/3x )1/3Nb2/3]O2配料混合,其中0≤x≤0.3,得A品;
b、将A品、磨球和水按照体积比1:1:1混匀后球磨3~5小时,得B品;
c、将B品烘干,并过40~80目筛,得C品;
d、将C品在空气中以1200±5oC预烧2~6小时,得D品;
e、将Al2O3 、B2O3、SiO2、MgO及V2O5按重量比2:7:8:1:2混合,得E品;
f、将E品与水混匀,之后球磨3~5小时,得F品;
g、将F品烘干,之后加热至大于1250oC,并在空气中淬火得ABSMV玻璃,将ABSMV玻璃粉碎,得G品;
h、将D品和G品按化学配比通式[(Mg1-x Al2/3x )1/3Nb2/3]O2 + y wt% ABSMV配料混合,其中y=1或2,得H品;
i、将H品、磨球和水按照体积比1:1:1混匀后,再加入0.5~2wt%的表面活性剂球磨3~5小时,将球磨产物烘干即得。
3.根据权利要求2所述的太赫兹波段介质材料的制备方法,其特征在于,步骤a中,所述的x=0.2。
4.根据权利要求2所述的太赫兹波段介质材料的制备方法,其特征在于,步骤e中,所述的MgO,是由MgCO3引入的MgO。
5.根据权利要求2所述的太赫兹波段介质材料的制备方法,其特征在于,步骤b、f和i中,所述的水为去离子水。
6.根据权利要求2所述的太赫兹波段介质材料的制备方法,其特征在于,步骤i中,所述的表面活性剂是十八烷酸。
7.根据权利要求1所述的太赫兹波段介质材料制备电介质的方法,其特征在于:按下述步骤制备:
a、向介质材料加入3~5wt%PVA混匀,混匀后过40~80目筛,得A品;
b、将A品在150MPa下压制成片状,得B品;
c、将B品在1100~1250oC的空气中烧结1~8小时,即得。
CN201711153953.1A 2017-11-20 2017-11-20 一种太赫兹波段介质材料、制备方法及制成电介质的方法 Withdrawn CN107879738A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711153953.1A CN107879738A (zh) 2017-11-20 2017-11-20 一种太赫兹波段介质材料、制备方法及制成电介质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711153953.1A CN107879738A (zh) 2017-11-20 2017-11-20 一种太赫兹波段介质材料、制备方法及制成电介质的方法

Publications (1)

Publication Number Publication Date
CN107879738A true CN107879738A (zh) 2018-04-06

Family

ID=61778023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711153953.1A Withdrawn CN107879738A (zh) 2017-11-20 2017-11-20 一种太赫兹波段介质材料、制备方法及制成电介质的方法

Country Status (1)

Country Link
CN (1) CN107879738A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504991A (zh) * 2020-11-26 2021-03-16 西南科技大学 一种固体粉末的太赫兹光学参数提取方法及系统
CN112757552A (zh) * 2020-12-18 2021-05-07 南京锐码毫米波太赫兹技术研究院有限公司 一种用于毫米波太赫兹频段的介质基板的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260895A (ja) * 2005-03-16 2006-09-28 Tdk Corp 複合誘電体材料及びこれを用いたプリプレグ、金属箔塗工物、成形体、複合誘電体基板、多層基板
CN102617137A (zh) * 2012-03-28 2012-08-01 厦门松元电子有限公司 一种BaO-TiO2系无铅Y5P电容器介质瓷料及其制备方法
CN103265271A (zh) * 2013-05-27 2013-08-28 电子科技大学 频率温度系数可调低温烧结氧化铝陶瓷材料及制备方法
CN103794363A (zh) * 2011-04-01 2014-05-14 徐孝华 一种电子零件、积层陶瓷电容器及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260895A (ja) * 2005-03-16 2006-09-28 Tdk Corp 複合誘電体材料及びこれを用いたプリプレグ、金属箔塗工物、成形体、複合誘電体基板、多層基板
CN103794363A (zh) * 2011-04-01 2014-05-14 徐孝华 一种电子零件、积层陶瓷电容器及其制造方法
CN102617137A (zh) * 2012-03-28 2012-08-01 厦门松元电子有限公司 一种BaO-TiO2系无铅Y5P电容器介质瓷料及其制备方法
CN103265271A (zh) * 2013-05-27 2013-08-28 电子科技大学 频率温度系数可调低温烧结氧化铝陶瓷材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
权微娟 等: "添加V2O5对Mg4Nb2O9微波介质陶瓷性能的影响", 《电子元件与材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504991A (zh) * 2020-11-26 2021-03-16 西南科技大学 一种固体粉末的太赫兹光学参数提取方法及系统
CN112757552A (zh) * 2020-12-18 2021-05-07 南京锐码毫米波太赫兹技术研究院有限公司 一种用于毫米波太赫兹频段的介质基板的制备方法

Similar Documents

Publication Publication Date Title
CN104310980B (zh) 一种微波介质陶瓷材料及其制备方法
CN103304186B (zh) 一种铁氧体基复合磁介天线基板材料及其制备方法
Saini et al. Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range
CN102408202B (zh) 一种微带天线复合基板材料及其制备方法
Saini et al. Low loss composite nano ferrite with matching permittivity and permeability in UHF band
Ullah et al. Design of a novel dielectric resonator antenna using MgTiO3–CoTiO3 for wideband applications
CN102850048B (zh) 一种铌镁钛酸铋陶瓷材料及其制备方法
Zheng et al. Low-loss NiZnCo ferrite composites with tunable magneto-dielectric performances for high-frequency applications
Rahman et al. A compact 5G antenna printed on manganese zinc ferrite substrate material
Li et al. Co-substituted CuO–ZrO2–Nb2O5 composite ceramics with low-temperature sintering and low-loss for high-performance patch antenna
CN107879738A (zh) 一种太赫兹波段介质材料、制备方法及制成电介质的方法
Kaur et al. Tailoring of electromagnetic absorption in substituted hexaferrites from 8.2 GHz to 12.4 GHz
CN103311658A (zh) 天线装置
Azevedo et al. Design and characterization study of LaFeO3 and CaTiO3 composites at microwave frequencies and their applications as dielectric resonator antennas
CN102898135A (zh) 一种高介电常数微波介质陶瓷材料及其制备方法
CN110171962B (zh) 一种低温共烧陶瓷微波与毫米波材料
Sun et al. Synergistic effect of dielectric resonance and plasma oscillation on negative permittivity behavior in La1-xSrxMnO3 single-phase ceramic
CN109467432A (zh) 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
CN103833351A (zh) 微波介质陶瓷及其制备方法
Beigi et al. Enhanced bandwidth reconfigurable single and dual band-notch antenna by using DGS for UWB and KU applications
Tripathi et al. Preparation and characterization of liquid phase (55B2O3–45Bi2O3) sintered cobalt doped magnesium titanate for wideband stacked rectangular dielectric resonator antenna (RDRA)
CN104496450A (zh) 一种窄线宽低损耗旋磁铁氧体材料及其制备方法
JP2013207234A (ja) 高周波用圧粉体、及びそれを用いた電子部品
Chaudhary et al. Synthesis and microwave characterisation of (Zr0. 8Sn0. 2) TiO4–epoxy composite and its application in wideband stacked rectangular dielectric resonator antenna
Gangwar et al. Microwave dielectric properties of (Zn1− xMgx) TiO3 (ZMT) ceramics for dielectric resonator antenna application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180406

WW01 Invention patent application withdrawn after publication