CN107862114A - 基于三比值特征量的小波pso‑svm变压器故障诊断方法 - Google Patents

基于三比值特征量的小波pso‑svm变压器故障诊断方法 Download PDF

Info

Publication number
CN107862114A
CN107862114A CN201711005718.XA CN201711005718A CN107862114A CN 107862114 A CN107862114 A CN 107862114A CN 201711005718 A CN201711005718 A CN 201711005718A CN 107862114 A CN107862114 A CN 107862114A
Authority
CN
China
Prior art keywords
ratio
transformer
wavelet
fault diagnosis
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711005718.XA
Other languages
English (en)
Inventor
马虹哲
杨春燕
张炜
邬蓉蓉
黎新
宾冬梅
李俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangxi Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guangxi Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guangxi Power Grid Co Ltd filed Critical Electric Power Research Institute of Guangxi Power Grid Co Ltd
Priority to CN201711005718.XA priority Critical patent/CN107862114A/zh
Publication of CN107862114A publication Critical patent/CN107862114A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

本发明公开了基于三比值特征量的小波PSO‑SVM变压器故障诊断方法,涉及电力变压器故障诊断技术领域,通过对所选变压器油中溶解气体(DGA)特征量的比值进行分析,由归一化预处理,得到DGA三比值特征量数据,实现了三比值特征量的有效性和简洁性;采用粒子群优化算法优化支持向量机的核函数参数,构建小波核函数支持向量机诊断模型,并采用该模型对电力变压器的油中溶解气体进行诊断,从而判断变压器的运行状态并分析出相应的故障类型。

Description

基于三比值特征量的小波PSO-SVM变压器故障诊断方法
技术领域
本发明属于电气设备故障诊断方法技术领域,具体涉及一种基于三比值特征量的小波PSO-SVM变压器故障诊断方法。
背景技术
油浸式变压器是电网的核心设备,承担着电压变换和电能传输等重任。变压器部分一旦发生故障可能导致电网严重故障,进而造成大停电等巨大损失。因此,如何准确判断变压器的运行状态,评估变压器的故障情况,降低变压器的故障风险,是电力企业急需解决的关键问题,也是保障电力系统稳定运行的重中之重。
溶解气体分析法(DGA)作为应用最广泛、最可靠的缺陷类型诊断方法之一,可有效区分变压器内部存在的缺陷类型。其原理主要是:变圧器在运行过程中,主要受到热应力及电应力的影响,变压器中的油纸绝缘系统逐渐受到破坏,进而分解产生CO、CO2及低分子烃类等相关产物,这些特征气体溶解于油中。因为不同性质故障所产生的气体含量和种类有所差异,所以能够根据变压器油中溶解气体的特征来判断故障类型。常用的故障表征气体包括:H2、CH4、C2H2、C2H4、C2H6、CO和CO2。DGA油中溶解气体分析法不仅可有效诊断变压器内部的潜伏性故障,且方便在线监测。但是现有的DGA诊断方法涉及特征量较多,且一些理化特征量(如油中溶解CO、CO2和糠醛含量等)作为评估变压器故障诊断的参考依据时受到现场换滤油、温度、适度等因素影响,有效性难以保证。
在实际工程应用中多采用气体体积分数相对比值的方法进行诊断,如我国现行的DL/T 722-2000《导则》中推荐的即是三比值法。比值法计算简单,判断法则直观,对操作人员要求不高,适合现场工作人员使用。因此引入三比值法对采集到的DGA特征量进行处理和归一变换,以保证其有效性。但比值法存在编码边界过于绝对,编码不全等问题。
目前变压器故障诊断的研究主要集中在基于已有的DGA特征量(即DGA比值,如Roger比值、IEC比值等),采用支持向量机(SVM)等技术建立变压器故障诊断模型。然而,不同文献中SVM诊断模型采用的DGA特征量有明显的区别,且部分DGA气体比值不具备变压器故障诊断的能力,采用这些气体比值反而会影响故障诊断的效果。因此,亟需综合应用DGA三比值特征量和SVM模型的优点,进行变压器故障诊断,提升变压器故障诊断的准确率。
发明内容
本发明的目的在于针对现有技术中的上述问题,提供一种基于三比值特征量的小波PSO-SVM变压器故障诊断方法。
为实现上述发明目的,本发明采用了如下技术方案:
基于三比值特征量的小波PSO-SVM变压器故障诊断方法,包括如下步骤:
(1)采集变压器故障样本数据,选取变压器油中DGA特征量,对DGA特征量的比值进行分析;
(2)对所述步骤(1)分析后的DGA特征量的比值进行归一化预处理,得到归一化后的溶解气体分析三比值特征量数据;
(3)构建非线性多分类的支持向量机模型,并求解优化函数;
(4)采用小波核函数作为所述步骤(3)中支持向量机模型的核函数,通过所述步骤(3)的优化函数和小波核函数,计算出非线性多分类时支持向量机模型的分类决策函数;
(5)构建粒子群优化算法以优化支持向量机核函数的参数;
(6)采用所述步骤(5)的粒子群优化算法对所述步骤(4)中的核函数进行参数优化,构建小波PSO-SVM故障诊断模型;
(7)利用DGA特征量、待定惩罚因子和核参数的支持向量机模型形成故障诊断的目标函数,计算出目标函数的最优解,即为故障诊断的最优函数适应度;
(8)计算所述步骤(7)中目标函数最优解所对应的支持向量机模型惩罚因子和核参数,即为最优的支持向量机模型惩罚因子和核参数;
(9)将所述步骤(8)中最优的支持向量机模型惩罚因子和核参数代入所述步骤(7)中的故障诊断目标函数,构建小波核函数支持向量机诊断模型,采用该诊断模型对电力变压器油中溶解气体进行故障诊断,判断变压器的运行状态。
上述步骤(1)中溶解气体分析特征量的比值包括C2H2/C2H4、CH4/H2和C2H4/C2H6三组气体的浓度比。
上述步骤(2)中归一化预处理表达式为:
式中,xsn为归一化计算后的溶解气体分析三比值特征量数据,xn为归一化前的溶解气体分析特征量比值,xnmax为归一化前溶解气体分析特征量比值的最大值,xnmin为归一化前溶解气体分析特征量比值的最小值。
上述步骤(3)中的优化函数为:
式中,ω为超平面的法向量,C为惩罚因子,ξi为松弛变量,l为松弛变量个数;
同时满足以下约束条件:
其中,设{(x1,y1),(x2,y2),...,(xn,yn)}的样本个数为n,样本xi(i=1,2,...,n)对应的类别yi∈{-1,1},为非线性映射,b为偏差量。
上述步骤(4)中小波核函数的表达式为:
式中,N为粒子群算法的种群数,a′为尺度因子。
上述步骤(4)中的分类决策函数为:
式中,ω为超平面的法向量,b为偏差量,jk表示多分类,为非线性映射,即核参数σ。
上述步骤(5)中粒子群优化算法的数学表达式为:
vsd(t+1)=vsd(t)+c1(t)r1(t)(psd(t)-xsd(t))+c2(t)r2(t)(pgd(t)-xsd(t));
xsd(t+1)=xsd(t)+vsd(t+1);
式中:t为进化代数,随机变量r1(t)、r2(t)为服从(0,1)区间的均匀分布,c1(t)、c2(t)为加速常数;xsd(t)为t代第s个粒子的位置;psd为t代群体内所有粒子搜索到的最优位置,vsd(t)为t代第s个粒子的速度,pgd(t)为t代群体内所有粒子搜索到的极值。
上述步骤(1)中的DGA特征量包括总烃含量、总烃产气率、油击穿电压和油介质损耗的特征量。
相比于现有技术,本发明的优势在于:
本发明所提供的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,对所选变压器油中溶解气体(DGA)特征量的比值进行分析,由归一化预处理,得到DGA三比值特征量数据,实现了三比值特征量的有效性和简洁性;采用粒子群优化算法优化支持向量机的核函数参数,构建小波核函数支持向量机诊断模型,采用该模型对电力变压器的油中溶解气体进行诊断,从而判断变压器的运行状态并分析出相应的故障类型;本发明采用DGA比值作为特征量进行故障诊断,并采用粒子群优化算法进行核函数的参数优化,提高了故障诊断的准确率;本发明将二分类SVM拓展为多分类SVM,能够对变压器的多种故障类型进行一次性的诊断识别,简单快捷,便于工程中的实际运用。
本发明为判断变压器的运行状态、评估变压器的故障情况、降低变压器的故障风险、保障电力系统稳定运行提供了新思路。
附图说明
图1是本发明基于三比值特征量的小波PSO-SVM变压器故障诊断方法的流程图。
图2是本发明油浸式变压器内DGA气体分类图。
图3是本发明最优函数的适应度迭代图。
图4是本发明的小波核函数支持向量机诊断模型的训练准确率。
图5是本发明的小波核函数支持向量机诊断模型的测试准确率。
具体实施方式
以下结合实施例及其附图对本发明技术方案进行清楚、完整地描述。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,基于三比值特征量的小波PSO-SVM变压器故障诊断方法,包括如下步骤:
(1)采集变压器故障样本数据,结合《国家电网公司状态评价导则》和老化特征量分析部分结果进行变压器油中DGA特征量的选取,所选取的DGA特征量包括总烃含量、总烃产气率、油击穿电压、油介质损耗等与变压器老化相关的特征量。
采用三比值法对溶解气体分析特征量的比值进行分析:油浸式变压器受热应力及电应力的影响,会导致变压器油和绝缘纸(板)分解,产物包括H2、CH4、C2H2、C2H4、C2H6、CO和CO2等特征气体,如图2所示(油浸式变压器内DGA气体分类),该七种特征气体和总烃TH(CH4、C2H2、C2H4、C2H6之和)采用三比值法对溶解气体分析特征量的比值进行分析;根据变压器在故障下分解产生气体组分含量的相对浓度与温度的相互依赖关系,从七种特征气体中选择两种溶解度和扩散系数相近似的气体组分组成三对比值数据进行分析,这三对比值数据分别为C2H2/C2H4、CH4/H2和C2H4/C2H6
(2)对步骤(1)分析后的溶解气体分析特征量比值进行归一化预处理,得到归一化后的溶解气体分析三比值特征量数据;
归一化预处理的表达式如下式:
式中,xsn为归一化计算后的溶解气体分析三比值特征量数据,xn为归一化前的溶解气体分析特征量比值,xnmax为归一化前溶解气体分析特征量比值的最大值,xnmin为归一化前溶解气体分析特征量比值的最小值。
(3)构建非线性多分类的支持向量机模型,并求解优化函数minΦ(ω,ξ);
式中,ω为超平面的法向量,C惩罚因子,ξi为松弛变量,l为松弛变量个数;同时满足以下约束条件:
其中,设{(x1,y1),(x2,y2),...,(xn,yn)}的样本个数为n,样本xi(i=1,2,...,n)对应的类别yi∈{-1,1},为非线性映射,b为偏差量。本文中的T均指代矩阵转置符号。
(4)对于式(2)和式(3)的QP问题(Quadratic Programming Problem),构建拉格朗日函数为:
式中,αi和βi均为拉格朗日乘子,且αi>0和βi>0,有
将式(5)代入拉格朗日函数式(4)中,得到如下对偶优化形式:
由式(5)中C与αi的关系转换,得出计算分类问题的决策函数为:
式中,K(x,x′)为小波核函数,采用小波核函数作为支持向量机模型的核函数:
式中,N为粒子群算法的种群数,a′为尺度因子。
采用OAO(one-Agains-one decomposition)方法将二分类支撑向量机拓展为多分类支持向量机,即求解式(6)的优化问题,得出非线性多分类时支持向量机模型的分类决策函数为:
式中,ω为超平面的法向量,b为偏差量,jk表示多分类,为非线性映射,即核参数σ。
(5)构建粒子群优化算法:粒子X={X1,...,Xs,...,XS}以速度vs=[vs1,vs2,...,vsd]T(s=1,2,...,S)在解空间(设在d的搜索空间)内飞行,且该粒子速度可按照其历史行为逐渐向其最优搜索位置动态调整(设第s个粒子搜索到的最优位置Ps=[ps1,ps2,...,psd]T),其中psd为d维空间中,第s个粒子搜索到的最优解,vsd为d维空间中,第s个粒子搜索到的最优解),粒子群优化算法的数学表达式为:
vsd(t+1)=vsd(t)+c1(t)r1(t)(psd(t)-xsd(t))+c2(t)r2(t)(pgd(t)-xsd(t)) (10)
xsd(t+1)=xsd(t)+vsd(t+1)(11)
式中:t为进化代数,随机变量r1(t)、r2(t)为服从(0,1)区间的均匀分布,c1(t)、c2(t)为加速常数;xsd(t)为t代第s个粒子的位置;psd为t代群体内所有粒子搜索到的最优位置,vsd(t)为t代第s个粒子的速度,pgd(t)为t代群体内所有粒子搜索到的极值。
(6)支持向量机的惩罚因子c和核参数σ决定支持向量机的最优分类曲面即故障诊断准确率,因此,采用步骤(5)的粒子群优化算法对步骤(4)中的核函数进行参数优化。
构建小波PSO-SVM故障诊断模型:粒子群优化算法首先随机生成初始例子X1,...,Xi,...,XS,组成种群X,其粒子适应度值由f(Xi1,X2,...,XiN)来表示;小波PSO-SVM故障诊断模型表达式
式中,an为运用SVM算法分类时第n个验证集中的样本个数(n表示参加验证样本总个数,在算法中表现为最后一个),为运用SVM算法分类时该验证集中被正确分类的个数,e为交叉验证CV的折数,本实施例取值e=5;f(Xi1,X2,...,XiN)中粒子适应度是评价粒子优劣的标准,粒子适应度越大越好,f(Xi1,X2,...,XiN)表现为f(c,σ),f(c,σ)的值利用训练集和待定惩罚因子c、核参数σ不断迭代产生,当它达到最优时,对应了最佳的惩罚因子c、核参数σ,从而代入式(9)得出小波PSO-SVM故障诊断模型。
(7)计算故障诊断的最优函数适应度:利用DGA特征量、待定惩罚因子c、核参数σ的支持向量机形成故障诊断的目标函数,经过迭代、交叉等处理,计算出目标函数的最优解,即为f(Xi1,X2,...,XiN)中粒子适应度最大值。
(8)计算步骤(7)中目标函数的最优解所对应的支持向量机模型惩罚因子c和核参数σ,即为最优的支持向量机模型惩罚因子c和核参数σ。
(9)将步骤(8)中最优的支持向量机惩罚因子c和核参数σ代入步骤(7)中的故障诊断目标函数,得到小波核函数支持向量机诊断模型,并用测试集进行计算验证;采用该小波核函数支持向量机诊断模型对电力变压器油中溶解气体进行故障诊断,判断变压器的运行状态。
实施例:
本实例采用118组IEC TC 10故障数据进行算法测试。将变压器故障划分为:低能放电(L-D)、高能放电(H-D)、中低温过热(L-T)、高温过热(H-T)、正常状态(N-C)五种状态,得到118组IEC TC 10变压器故障样本数据如表1所示。
表1变压器故障样本数据
故障类型 LE-D HE-D LM-T H-T N-C
IEC TC 10故障样本 23 45 10 14 26
对搜集的118组DGA数据进行三比值计算和归一化预处理得到归一化后的DGA特征量(三比值特征量数据),并通过不同的气体比值得到不同的DGA特征量(IEC三比值法数据,包括C2H2/C2H4,CH4/H2和C2H4/C2H6比值)。
本发明提出的小波核函数支持向量机诊断模型中,惩罚因子c和核参数σ的搜索区间分别设为[1,103]和[10–3,10],CV的折数e为9,最大迭代次数为10,初始生成的粒子群数为5,应用小波核函数支持向量机诊断模型对三比值特征数据进行故障诊断。
对分析后的DGA特征量比值进行归一化预处理,得到归一化后的溶解气体分析三比值特征量数据:
构建非线性多分类的支持向量机模型:
满足以下约束条件:
构建拉格朗日函数为:
式中,αi和βi均为拉格朗日乘子,且αi>0和βi>0,有
由对偶优化得:
得出决策函数为:
其中小波核函数为:
粒子群函数优化得到计算函数f2(c,σ):
由此,通过函数粒子适应度的评价优劣性,求得SVM惩罚因子c和核参数σ,为非线性映射,即核参数σ。
采用OAO(one-Agains-one decomposition)方法将二分类支撑向量机拓展为多分类支持向量机,得出非线性多分类时支持向量机模型的分类决策函数为:
PSO每一次迭代的平均结果和最优结果如图3至图5所示。参数c和σ粒子群优化算法对SVM故障诊断模型进行参数优化的适应度收敛曲线,由适应度值得到对应的最优参数。从图3中可以看到,适应度曲线在前期内收敛较快,而后经短暂波动,最终趋近一致收敛,即实现了参数的优化。
通过图4得出的SVM惩罚因子c=100(即图4、图5中的参数Bestc)和核参数σ=77.7949(即图4、图5中的参数Bestg)对实际的测试集进行上述步骤的计算,其结果由图5所示,其准确率为82.61%,这表明了该变压器故障诊断模型的准确性和有效性。得出的特征值的训练最大、最小、平均准确率,优选DGA比值的故障诊断准确率如表2所示。另选取23组训练集中的10组以供校验,变压器故障诊断的准确率比较如表3所示,从表3可以看出,本发明的PSO-SVM模型的故障诊断准确率相对于其他方法更高。10组训练集校验数据如表4所示。
表2
表3
表4
以上所揭露的仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或变型,都应涵盖在本发明的保护范围之内。

Claims (8)

1.基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于,包括如下步骤:
(1)采集变压器故障样本数据,选取变压器油中DGA特征量,对DGA特征量的比值进行分析;
(2)对所述步骤(1)分析后的DGA特征量的比值进行归一化预处理,得到归一化后的溶解气体分析三比值特征量数据;
(3)构建非线性多分类的支持向量机模型,并求解优化函数;
(4)采用小波核函数作为所述步骤(3)中支持向量机模型的核函数,通过所述步骤(3)的优化函数和小波核函数,计算出非线性多分类时支持向量机模型的分类决策函数;
(5)构建粒子群优化算法以优化支持向量机核函数的参数;
(6)采用所述步骤(5)的粒子群优化算法对所述步骤(4)中的核函数进行参数优化,构建小波PSO-SVM故障诊断模型;
(7)利用DGA特征量、待定惩罚因子和核参数的支持向量机模型形成故障诊断的目标函数,计算出目标函数的最优解,即为故障诊断的最优函数适应度;
(8)计算所述步骤(7)中目标函数最优解所对应的支持向量机模型惩罚因子和核参数,即为最优的支持向量机模型惩罚因子和核参数;
(9)将所述步骤(8)中最优的支持向量机模型惩罚因子和核参数代入所述步骤(7)中的故障诊断目标函数,构建小波核函数支持向量机诊断模型,采用该诊断模型对电力变压器油中溶解气体进行故障诊断,判断变压器的运行状态。
2.根据权利要求1所述的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于:所述步骤(1)中DGA特征量的比值包括C2H2/C2H4、CH4/H2和C2H4/C2H6三组气体的浓度比。
3.根据权利要求1所述的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于,所述步骤(2)中归一化预处理表达式为:
<mrow> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mi>min</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mi>min</mi> </mrow> </msub> </mrow> </mfrac> <mo>;</mo> </mrow>
式中,xsn为归一化计算后的溶解气体分析三比值特征量数据,xn为归一化前的溶解气体分析特征量比值,xnmax为归一化前溶解气体分析特征量比值的最大值,xnmin为归一化前溶解气体分析特征量比值的最小值。
4.根据权利要求1所述的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于,所述步骤(3)中的优化函数为:
<mrow> <mi>min</mi> <mi>&amp;Phi;</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>,</mo> <mi>&amp;xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>|</mo> <mo>|</mo> <mi>&amp;omega;</mi> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mi>C</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>;</mo> </mrow>
式中,ω为超平面的法向量,C为惩罚因子,ξi为松弛变量,l为松弛变量个数;
同时满足以下约束条件:
其中,设{(x1,y1),(x2,y2),...,(xn,yn)}的样本个数为n,样本xi(i=1,2,...,n)对应的类别yi∈{-1,1},为非线性映射,b为偏差量。
5.根据权利要求1所述的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于,所述步骤(4)中小波核函数的表达式为:
<mrow> <mi>K</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Pi;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <mn>1.75</mn> <mfrac> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> </mfrac> </mrow> <mo>)</mo> <mi>exp</mi> <mo>(</mo> <mrow> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>a</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
式中,N为粒子群算法的种群数,a′为尺度因子。
6.根据权利要求1所述的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于,所述步骤(4)中的分类决策函数为:
式中,ω为超平面的法向量,b为偏差量,jk表示多分类,为非线性映射,即核参数σ。
7.根据权利要求1所述的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于,所述步骤(5)中粒子群优化算法的数学表达式为:
vsd(t+1)=vsd(t)+c1(t)r1(t)(psd(t)-xsd(t))+c2(t)r2(t)(pgd(t)-xsd(t));
xsd(t+1)=xsd(t)+vsd(t+1);
式中:t为进化代数,随机变量r1(t)、r2(t)为服从(0,1)区间的均匀分布,c1(t)、c2(t)为加速常数;xsd(t)为t代第s个粒子的位置;psd为t代群体内所有粒子搜索到的最优位置,vsd(t)为t代第s个粒子的速度,pgd(t)为t代群体内所有粒子搜索到的极值。
8.根据权利要求1所述的基于三比值特征量的小波PSO-SVM变压器故障诊断方法,其特征在于:所述步骤(1)中的DGA特征量包括总烃含量、总烃产气率、油击穿电压和油介质损耗的特征量。
CN201711005718.XA 2017-10-25 2017-10-25 基于三比值特征量的小波pso‑svm变压器故障诊断方法 Pending CN107862114A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711005718.XA CN107862114A (zh) 2017-10-25 2017-10-25 基于三比值特征量的小波pso‑svm变压器故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711005718.XA CN107862114A (zh) 2017-10-25 2017-10-25 基于三比值特征量的小波pso‑svm变压器故障诊断方法

Publications (1)

Publication Number Publication Date
CN107862114A true CN107862114A (zh) 2018-03-30

Family

ID=61697310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711005718.XA Pending CN107862114A (zh) 2017-10-25 2017-10-25 基于三比值特征量的小波pso‑svm变压器故障诊断方法

Country Status (1)

Country Link
CN (1) CN107862114A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983052A (zh) * 2018-07-26 2018-12-11 武汉大学 一种基于sf6气体绝缘设备分解组分的三类故障三角形诊断方法
CN109030791A (zh) * 2018-09-07 2018-12-18 广西电网有限责任公司电力科学研究院 一种基于帝国殖民竞争算法的优化svm变压器故障诊断方法
CN109034646A (zh) * 2018-08-13 2018-12-18 东华大学 一种双类混合特征选取的电力变压器故障诊断方法及系统
CN109164248A (zh) * 2018-09-18 2019-01-08 山东理工大学 一种变压器油中溶解气体浓度预测方法
CN109270390A (zh) * 2018-09-14 2019-01-25 广西电网有限责任公司电力科学研究院 基于高斯变换与全局寻优svm的变压器故障诊断方法
CN109799405A (zh) * 2019-01-31 2019-05-24 西安工程大学 一种基于时间序列-卡尔曼滤波的变压器故障预测方法
CN109918720A (zh) * 2019-01-23 2019-06-21 广西大学 基于磷虾群优化支持向量机的变压器故障诊断方法
CN109919178A (zh) * 2019-01-23 2019-06-21 广西大学 基于特征量优选和小波核函数lssvm的故障预测方法
CN110503132A (zh) * 2019-07-25 2019-11-26 武汉大学 基于多小波支持向量机WSVM集成的全波形LiDAR点云分类方法
CN110888025A (zh) * 2019-11-27 2020-03-17 华东师范大学 一种基于机器学习的gis设备故障判断方法
CN110969096A (zh) * 2019-11-07 2020-04-07 国电南京自动化股份有限公司 基于粒子群优化支持向量机的电机故障模式诊断方法
CN111077384A (zh) * 2019-10-17 2020-04-28 华北电力大学(保定) 一种变压器内部故障在线监测方法
CN111476318A (zh) * 2020-04-30 2020-07-31 常州大学 一种基于模糊决策的变压器故障诊断方法及系统
CN111695288A (zh) * 2020-05-06 2020-09-22 内蒙古电力(集团)有限责任公司电力调度控制分公司 一种基于Apriori-BP算法的变压器故障诊断方法
CN112033689A (zh) * 2020-09-03 2020-12-04 华能国际电力股份有限公司玉环电厂 一种基于baso—svm的汽轮机振动故障诊断方法
CN112269151A (zh) * 2020-10-15 2021-01-26 芜湖金牛电气股份有限公司 变压器油中气体故障诊断方法
CN117150374A (zh) * 2023-10-27 2023-12-01 国网江西省电力有限公司电力科学研究院 一种基于特征重要性排序的变压器故障辨识方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526370A (zh) * 2016-10-27 2017-03-22 国家电网公司 一种基于化学反应算法的rvm变压器故障诊断方法
CN107065568A (zh) * 2017-05-26 2017-08-18 广州供电局有限公司 一种基于粒子群支持向量机的变压器故障诊断方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526370A (zh) * 2016-10-27 2017-03-22 国家电网公司 一种基于化学反应算法的rvm变压器故障诊断方法
CN107065568A (zh) * 2017-05-26 2017-08-18 广州供电局有限公司 一种基于粒子群支持向量机的变压器故障诊断方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. KAVEH 等: "Optimum design of skeletal structures using imperialist competitive algorithm", 《COMPUTERS AND STRUCTURES》 *
王时征: "基于集成学习的电力变压器故障诊断方法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
郑含博 等: "基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法", 《高电压技术》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983052B (zh) * 2018-07-26 2021-02-19 武汉大学 一种基于sf6气体绝缘设备分解组分的三类故障三角形诊断方法
CN108983052A (zh) * 2018-07-26 2018-12-11 武汉大学 一种基于sf6气体绝缘设备分解组分的三类故障三角形诊断方法
CN109034646A (zh) * 2018-08-13 2018-12-18 东华大学 一种双类混合特征选取的电力变压器故障诊断方法及系统
CN109030791A (zh) * 2018-09-07 2018-12-18 广西电网有限责任公司电力科学研究院 一种基于帝国殖民竞争算法的优化svm变压器故障诊断方法
CN109270390A (zh) * 2018-09-14 2019-01-25 广西电网有限责任公司电力科学研究院 基于高斯变换与全局寻优svm的变压器故障诊断方法
CN109164248A (zh) * 2018-09-18 2019-01-08 山东理工大学 一种变压器油中溶解气体浓度预测方法
CN109918720A (zh) * 2019-01-23 2019-06-21 广西大学 基于磷虾群优化支持向量机的变压器故障诊断方法
CN109919178A (zh) * 2019-01-23 2019-06-21 广西大学 基于特征量优选和小波核函数lssvm的故障预测方法
CN109799405A (zh) * 2019-01-31 2019-05-24 西安工程大学 一种基于时间序列-卡尔曼滤波的变压器故障预测方法
CN110503132A (zh) * 2019-07-25 2019-11-26 武汉大学 基于多小波支持向量机WSVM集成的全波形LiDAR点云分类方法
CN111077384B (zh) * 2019-10-17 2021-12-10 华北电力大学(保定) 一种变压器内部故障在线监测方法
CN111077384A (zh) * 2019-10-17 2020-04-28 华北电力大学(保定) 一种变压器内部故障在线监测方法
CN110969096A (zh) * 2019-11-07 2020-04-07 国电南京自动化股份有限公司 基于粒子群优化支持向量机的电机故障模式诊断方法
CN110888025B (zh) * 2019-11-27 2021-11-19 华东师范大学 一种基于机器学习的gis设备故障判断方法
CN110888025A (zh) * 2019-11-27 2020-03-17 华东师范大学 一种基于机器学习的gis设备故障判断方法
CN111476318A (zh) * 2020-04-30 2020-07-31 常州大学 一种基于模糊决策的变压器故障诊断方法及系统
CN111695288A (zh) * 2020-05-06 2020-09-22 内蒙古电力(集团)有限责任公司电力调度控制分公司 一种基于Apriori-BP算法的变压器故障诊断方法
CN111695288B (zh) * 2020-05-06 2023-08-08 内蒙古电力(集团)有限责任公司电力调度控制分公司 一种基于Apriori-BP算法的变压器故障诊断方法
CN112033689A (zh) * 2020-09-03 2020-12-04 华能国际电力股份有限公司玉环电厂 一种基于baso—svm的汽轮机振动故障诊断方法
CN112269151A (zh) * 2020-10-15 2021-01-26 芜湖金牛电气股份有限公司 变压器油中气体故障诊断方法
CN117150374A (zh) * 2023-10-27 2023-12-01 国网江西省电力有限公司电力科学研究院 一种基于特征重要性排序的变压器故障辨识方法及系统

Similar Documents

Publication Publication Date Title
CN107862114A (zh) 基于三比值特征量的小波pso‑svm变压器故障诊断方法
CN107301296B (zh) 基于数据的断路器故障影响因素定性分析方法
CN107132310B (zh) 基于高斯混合模型的变压器设备健康状态判别方法
Zeng et al. SF 6 fault decomposition feature component extraction and triangle fault diagnosis method
CN101587155B (zh) 一种油浸式变压器的故障诊断方法
CN103389430B (zh) 一种基于贝叶斯判别理论的油浸式变压器故障检测方法
CN113435652B (zh) 一种一次设备缺陷诊断与预测方法
CN107037306B (zh) 基于隐马尔科夫模型的变压器故障动态预警方法
CN109633368A (zh) 基于vmd和dfa的含分布式电源配电网电能质量扰动检测方法
CN103745119A (zh) 一种基于故障概率模型的油浸式变压器故障诊断方法
CN107807860B (zh) 一种基于矩阵分解的电力故障分析方法及系统
CN111537845A (zh) 基于拉曼光谱聚类分析的油纸绝缘设备老化状态识别方法
CN112183590A (zh) 一种基于OneclassSVM算法的变压器故障诊断方法
CN108304567A (zh) 高压变压器工况模式识别与数据分类方法及系统
CN110197222A (zh) 一种基于多分类支持向量机变压器故障诊断的方法
CN107977672A (zh) 基于海量数据并行运算的sf6设备二级故障诊断方法
CN111797566A (zh) 一种表征变压器健康状态的关键特征量确定方法和系统
Han et al. Oil-immersed transformer internal thermoelectric potential fault diagnosis based on decision-tree of KNIME platform
CN112085064B (zh) 基于支持向量机多分类概率输出的变压器故障诊断方法
CN114266396A (zh) 一种基于电网特征智能筛选的暂态稳定判别方法
CN114184861A (zh) 一种油浸式变压器的故障诊断方法
CN105137238A (zh) 一种气体绝缘组合电器故障诊断系统
Tang et al. An improved fuzzy C-means clustering algorithm for transformer fault
CN110244690B (zh) 一种多变量工业过程故障辨识方法及系统
CN105741184A (zh) 一种变压器状态评估方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180330

WD01 Invention patent application deemed withdrawn after publication