CN107065568A - 一种基于粒子群支持向量机的变压器故障诊断方法 - Google Patents
一种基于粒子群支持向量机的变压器故障诊断方法 Download PDFInfo
- Publication number
- CN107065568A CN107065568A CN201710386850.3A CN201710386850A CN107065568A CN 107065568 A CN107065568 A CN 107065568A CN 201710386850 A CN201710386850 A CN 201710386850A CN 107065568 A CN107065568 A CN 107065568A
- Authority
- CN
- China
- Prior art keywords
- fault
- support vector
- vector machine
- feature
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 46
- 239000002245 particle Substances 0.000 title claims abstract description 45
- 238000012706 support-vector machine Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000013598 vector Substances 0.000 claims abstract description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 16
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 15
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 13
- 238000011156 evaluation Methods 0.000 claims description 9
- 206010020843 Hyperthermia Diseases 0.000 claims description 4
- 230000036031 hyperthermia Effects 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 238000013021 overheating Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000013480 data collection Methods 0.000 abstract 1
- 230000000875 corresponding effect Effects 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Housings And Mounting Of Transformers (AREA)
Abstract
Description
特征名 | 特征内容 | 特征名 | 特征内容 |
R1 | H2% | R13 | CH4/C2H2 |
R2 | CH4% | R14 | CH4/TH |
R3 | C2H6% | R15 | C2H6/C2H4 |
R4 | C2H4% | R16 | C2H6/C2H2 |
R5 | C2H2% | R17 | C2H6/TH |
R6 | H2/CH4 | R18 | C2H4/C2H2 |
R7 | H2/C2H6 | R19 | C2H4/TH |
R8 | H2/C2H4 | R20 | C2H2/TH |
R9 | H2/C2H2 | R21 | C2H2/TD |
R10 | H2/TH | R22 | C2H4/TD |
R11 | CH4/C2H6 | R23 | CH4/TD |
R12 | CH4/C2H4 | R24 | TS |
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710386850.3A CN107065568B (zh) | 2017-05-26 | 2017-05-26 | 一种基于粒子群支持向量机的变压器故障诊断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710386850.3A CN107065568B (zh) | 2017-05-26 | 2017-05-26 | 一种基于粒子群支持向量机的变压器故障诊断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107065568A true CN107065568A (zh) | 2017-08-18 |
CN107065568B CN107065568B (zh) | 2020-04-28 |
Family
ID=59610658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710386850.3A Active CN107065568B (zh) | 2017-05-26 | 2017-05-26 | 一种基于粒子群支持向量机的变压器故障诊断方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107065568B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107576435A (zh) * | 2017-09-11 | 2018-01-12 | 山东大学 | 基于过程数据分析的拧紧工艺在线故障检测仪及其方法 |
CN107862114A (zh) * | 2017-10-25 | 2018-03-30 | 广西电网有限责任公司电力科学研究院 | 基于三比值特征量的小波pso‑svm变压器故障诊断方法 |
CN107907807A (zh) * | 2017-12-25 | 2018-04-13 | 国网湖北省电力公司信息通信公司 | 一种气体绝缘组合电器局部放电模式识别方法 |
CN108398266A (zh) * | 2018-01-22 | 2018-08-14 | 武汉科技大学 | 一种基于集成迁移学习的轴承故障诊断方法 |
CN108681835A (zh) * | 2018-06-29 | 2018-10-19 | 广东工业大学 | 一种变压器绝缘油劣化状态评估方法 |
CN108764265A (zh) * | 2018-03-26 | 2018-11-06 | 海南电网有限责任公司电力科学研究院 | 一种基于支持向量机算法的故障诊断方法 |
CN110852017A (zh) * | 2019-10-08 | 2020-02-28 | 湖南省计量检测研究院 | 基于粒子群优化的支持向量机的氢燃料电池故障诊断方法 |
CN112630564A (zh) * | 2020-12-07 | 2021-04-09 | 国网宁夏电力有限公司电力科学研究院 | 基于邻域粗糙集与ampos-elm的变压器dga故障诊断方法 |
CN114019365A (zh) * | 2021-11-05 | 2022-02-08 | 国网河南省电力公司电力科学研究院 | 一种基于油中气体检测技术的有载分接开关故障诊断方法 |
CN114372093A (zh) * | 2021-12-15 | 2022-04-19 | 南昌大学 | 一种变压器dga在线监测数据的处理方法 |
CN114896883A (zh) * | 2022-05-13 | 2022-08-12 | 西安工程大学 | 一种基于mea-svm分类机的变压器故障诊断方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590688A (zh) * | 2012-03-13 | 2012-07-18 | 广州供电局有限公司 | 六氟化硫变压器运行工况评估方法 |
US20130024131A1 (en) * | 2011-07-19 | 2013-01-24 | Arizona Public Service Company | Method and system for estimating transformer remaining life |
CN105891629A (zh) * | 2016-03-31 | 2016-08-24 | 广西电网有限责任公司电力科学研究院 | 一种变压器设备故障的辨识方法 |
CN106093612A (zh) * | 2016-05-26 | 2016-11-09 | 国网江苏省电力公司电力科学研究院 | 一种电力变压器故障诊断方法 |
CN106569056A (zh) * | 2016-10-21 | 2017-04-19 | 广州供电局有限公司 | 电力变压器的故障诊断方法及诊断装置 |
CN106646158A (zh) * | 2016-12-08 | 2017-05-10 | 西安工程大学 | 基于多分类支持向量机变压器故障诊断提升方法 |
-
2017
- 2017-05-26 CN CN201710386850.3A patent/CN107065568B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130024131A1 (en) * | 2011-07-19 | 2013-01-24 | Arizona Public Service Company | Method and system for estimating transformer remaining life |
CN102590688A (zh) * | 2012-03-13 | 2012-07-18 | 广州供电局有限公司 | 六氟化硫变压器运行工况评估方法 |
CN105891629A (zh) * | 2016-03-31 | 2016-08-24 | 广西电网有限责任公司电力科学研究院 | 一种变压器设备故障的辨识方法 |
CN106093612A (zh) * | 2016-05-26 | 2016-11-09 | 国网江苏省电力公司电力科学研究院 | 一种电力变压器故障诊断方法 |
CN106569056A (zh) * | 2016-10-21 | 2017-04-19 | 广州供电局有限公司 | 电力变压器的故障诊断方法及诊断装置 |
CN106646158A (zh) * | 2016-12-08 | 2017-05-10 | 西安工程大学 | 基于多分类支持向量机变压器故障诊断提升方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107576435B (zh) * | 2017-09-11 | 2019-08-23 | 山东大学 | 基于过程数据分析的拧紧工艺在线故障检测仪及其方法 |
CN107576435A (zh) * | 2017-09-11 | 2018-01-12 | 山东大学 | 基于过程数据分析的拧紧工艺在线故障检测仪及其方法 |
CN107862114A (zh) * | 2017-10-25 | 2018-03-30 | 广西电网有限责任公司电力科学研究院 | 基于三比值特征量的小波pso‑svm变压器故障诊断方法 |
CN107907807A (zh) * | 2017-12-25 | 2018-04-13 | 国网湖北省电力公司信息通信公司 | 一种气体绝缘组合电器局部放电模式识别方法 |
CN108398266A (zh) * | 2018-01-22 | 2018-08-14 | 武汉科技大学 | 一种基于集成迁移学习的轴承故障诊断方法 |
CN108398266B (zh) * | 2018-01-22 | 2020-06-23 | 武汉科技大学 | 一种基于集成迁移学习的轴承故障诊断方法 |
CN108764265A (zh) * | 2018-03-26 | 2018-11-06 | 海南电网有限责任公司电力科学研究院 | 一种基于支持向量机算法的故障诊断方法 |
CN108681835A (zh) * | 2018-06-29 | 2018-10-19 | 广东工业大学 | 一种变压器绝缘油劣化状态评估方法 |
CN110852017A (zh) * | 2019-10-08 | 2020-02-28 | 湖南省计量检测研究院 | 基于粒子群优化的支持向量机的氢燃料电池故障诊断方法 |
CN112630564A (zh) * | 2020-12-07 | 2021-04-09 | 国网宁夏电力有限公司电力科学研究院 | 基于邻域粗糙集与ampos-elm的变压器dga故障诊断方法 |
CN112630564B (zh) * | 2020-12-07 | 2023-02-28 | 国网宁夏电力有限公司电力科学研究院 | 基于邻域粗糙集与ampos-elm的变压器dga故障诊断方法 |
CN114019365A (zh) * | 2021-11-05 | 2022-02-08 | 国网河南省电力公司电力科学研究院 | 一种基于油中气体检测技术的有载分接开关故障诊断方法 |
CN114019365B (zh) * | 2021-11-05 | 2024-07-30 | 国网河南省电力公司电力科学研究院 | 一种基于油中气体检测技术的有载分接开关故障诊断方法 |
CN114372093A (zh) * | 2021-12-15 | 2022-04-19 | 南昌大学 | 一种变压器dga在线监测数据的处理方法 |
CN114896883A (zh) * | 2022-05-13 | 2022-08-12 | 西安工程大学 | 一种基于mea-svm分类机的变压器故障诊断方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107065568B (zh) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107065568A (zh) | 一种基于粒子群支持向量机的变压器故障诊断方法 | |
CN107656154B (zh) | 基于改进模糊c均值聚类算法的变压器故障诊断方法 | |
CN110007652B (zh) | 一种水电机组劣化趋势区间预测方法与系统 | |
Chakraborty et al. | Design of a material handling equipment selection model using analytic hierarchy process | |
CN106569056B (zh) | 电力变压器的故障诊断方法及诊断装置 | |
KR102707889B1 (ko) | 전지의 용량 측정 장치 및 방법, 및 상기 장치를 포함하는 전지 제어 시스템 | |
CN106896219B (zh) | 基于变压器油中溶解气体数据的变压器亚健康状态识别及平均剩余寿命估计方法 | |
CN107037306A (zh) | 基于隐马尔科夫模型的变压器故障动态预警方法 | |
US20020013664A1 (en) | Rotating equipment diagnostic system and adaptive controller | |
CN109030790A (zh) | 一种电力变压器故障诊断方法和装置 | |
CN109597307A (zh) | 一种基于隐马尔科夫模型的故障容错控制方法 | |
CN106021858A (zh) | 一种表征室内空气环境质量的指标评价数据的计算方法 | |
CN111832955B (zh) | 一种基于可靠度与多元统计的接触网状态评价方法 | |
CN108268689A (zh) | 加热元件的状态诊断与评估方法及其应用 | |
CN112084709B (zh) | 基于遗传算法和径向基神经网络的大型发电机绝缘状态评估方法 | |
CN116819377B (zh) | 电池组异常识别诊断方法和系统 | |
CN109623814A (zh) | 一种机械臂控制方法 | |
Trivedi et al. | Predictive maintenance of air conditioning systems using supervised machine learning | |
CN104428727A (zh) | 用于通过监测涡轮机的性能来检测所述涡轮机的劣化的方法 | |
CN109856530A (zh) | 一种有载分接开关在线监测故障诊断方法 | |
CN117540285A (zh) | 基于能量熵和回归型支持向量机的轴承运行状态评估方法 | |
CN109242093A (zh) | 一种基于模糊神经网络的电动汽车电机的可靠性评价方法 | |
Zhou et al. | Novel probabilistic neural network models combined with dissolved gas analysis for fault diagnosis of oil-immersed power transformers | |
Sharma et al. | Voltage stability assessment using artificial neural network | |
CN116204825A (zh) | 一种基于数据驱动的生产线设备故障检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231027 Address after: 510620, No. two, No. 2, Tianhe South Road, Guangzhou, Guangdong, Tianhe District Patentee after: Guangzhou Power Supply Bureau of Guangdong Power Grid Co.,Ltd. Patentee after: TSINGHUA University Address before: Electric Power Testing and Research Institute, No. 38 Huangshi East Road, Baiyun District, Guangzhou City, Guangdong Province, 510620 Patentee before: GUANGZHOU POWER SUPPLY Co.,Ltd. Patentee before: TSINGHUA University |