CN107861562A - A kind of current generating circuit and its implementation - Google Patents
A kind of current generating circuit and its implementation Download PDFInfo
- Publication number
- CN107861562A CN107861562A CN201711072180.4A CN201711072180A CN107861562A CN 107861562 A CN107861562 A CN 107861562A CN 201711072180 A CN201711072180 A CN 201711072180A CN 107861562 A CN107861562 A CN 107861562A
- Authority
- CN
- China
- Prior art keywords
- current
- temperature coefficient
- mrow
- pmos
- positive temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000013461 design Methods 0.000 claims abstract description 5
- 230000005611 electricity Effects 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 101100299614 Homo sapiens PTPN13 gene Proteins 0.000 description 12
- 101100352663 Mus musculus Pnp gene Proteins 0.000 description 12
- 101150069896 PNP1 gene Proteins 0.000 description 12
- 102100033014 Tyrosine-protein phosphatase non-receptor type 13 Human genes 0.000 description 12
- 101150003852 pnp2 gene Proteins 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 208000033707 Early-onset X-linked optic atrophy Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000025019 optic atrophy 2 Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/267—Current mirrors using both bipolar and field-effect technology
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
本发明公开了一种电流产生电路及其实现方法,所述电路包括:正温度系数PTAT电流产生电路,用于产生一正温度系数的电流I0;偏置电路,用于将镜像恒流源的各PMOS管的栅极电压稳定在设计值;第一镜像恒流源,用于为所述正温度系数PTAT电流产生电路提供所述电流I0并将该电流向第二镜像恒流源;第二镜像恒流源,用于将电流源形式的正温度系数的电流I0转换为电流宿形式的正温度系数的电流Iref;负温度系数CTAT电流产生与合成电路,用于产生负温度系数的电流并与正温度系数的电流Iref合并形成与温度相关性小的输出电流,通过本发明,可产生一种功耗低与温度相关性较小的电流参考源。
The present invention discloses a current generation circuit and its realization method. The circuit comprises: a positive temperature coefficient PTAT current generation circuit for generating a current I 0 with a positive temperature coefficient; a bias circuit for converting the mirror constant current source The grid voltage of each PMOS transistor is stable at the design value; the first mirror constant current source is used to provide the current I0 for the positive temperature coefficient PTAT current generating circuit and this current to the second mirror constant current source; The second mirror constant current source is used to convert the current I0 of the positive temperature coefficient of the current source form into the current Iref of the positive temperature coefficient of the current sink form; the negative temperature coefficient CTAT current generation and synthesis circuit is used to generate the negative temperature coefficient The current is combined with the positive temperature coefficient current Iref to form an output current with little dependence on temperature. Through the present invention, a current reference source with low power consumption and little dependence on temperature can be produced.
Description
技术领域technical field
本发明涉及一种电流产生电路及其实现方法,特别是涉及一种与温度相关性较小甚至无关的电流产生电路及其实现方法。The present invention relates to a current generation circuit and its realization method, in particular to a current generation circuit with little or no temperature correlation and its realization method.
背景技术Background technique
在数模混合片上系统中,基准电流源为系统的各个模拟模块提供适当的偏置,成为系统不可缺少的一部分,被广泛应用于运算放大器、A/D、D/A等电路中。In the digital-analog hybrid system-on-chip, the reference current source provides appropriate bias for each analog module of the system and becomes an indispensable part of the system. It is widely used in operational amplifiers, A/D, D/A and other circuits.
基于片上应用的需求,基准电流源应该不随温度、电压和各种工艺参数的变化而变化。但目前出现的几种主流的基准电流,普遍存在温度系数偏大或者电路设计复杂导致电路功耗偏高的问题,如文献1(Chen J,Shi B.1V CMOS Current Reference with 50ppm/℃Temperature Coefficient[J].Electron.Lett.,2003,39:209-210)中提出的电路测试的温度系数为50ppm/℃,文献2(Franco Fiori,Paolo Stefano Crovetti.A New CompactTemperature Compensated CMOS Current Reference[J].IEEE Trans.on Circuit andSystem II:Express Briefs,2005,52.)提出一种非带隙电路通过二阶温度补偿产生基准电流,温度系数为28ppm/℃。文献3(Dehg hani R,Ataro di S M.A New Low VoltagePrecision CMOS Current Refer ence w ith no Ex ternal Compone nts[J].IEEE Trans.on Cir c.Syst.II:Analo g and Digital Sig nal Processing,2003,50(12):928-932)提出利用带隙基准电路产生正温系数基准电压和迁移率的负温效应相互抵消,产生基准电流,但温度系数大于15ppm/℃。文献4(周云,吕坚,吴志明,蒋亚东.一种低电压低温漂的基准电流源[J].现代电子技术,2009,285(8):178-181.)提出一种基于带隙基准通过二阶温度补偿产生基准电流,温度系数8.1ppm/℃,电路功耗几百微瓦。Based on the requirements of on-chip applications, the reference current source should not change with changes in temperature, voltage and various process parameters. However, the current mainstream reference currents generally have the problem of high temperature coefficient or complex circuit design, which leads to high power consumption of the circuit, such as document 1 (Chen J, Shi B. 1V CMOS Current Reference with 50ppm/℃Temperature Coefficient [J].Electron.Lett.,2003,39:209-210) the temperature coefficient of the circuit test is 50ppm/℃, document 2 (Franco Fiori, Paolo Stefano Crovetti.A New CompactTemperature Compensated CMOS Current Reference[J] .IEEE Trans. on Circuit and System II: Express Briefs, 2005, 52.) proposed a non-bandgap circuit to generate a reference current through second-order temperature compensation, with a temperature coefficient of 28ppm/°C. Document 3 (Dehg hani R, Ataro di S M.A New Low Voltage Precision CMOS Current Reference with no Ex ternal Components[J].IEEE Trans.on Cir c.Syst.II:Analog and Digital Signal Processing,2003, 50(12):928-932) proposed to use a bandgap reference circuit to generate a positive temperature coefficient reference voltage and the negative temperature effect of mobility to cancel each other out to generate a reference current, but the temperature coefficient is greater than 15ppm/°C. Document 4 (Zhou Yun, Lu Jian, Wu Zhiming, Jiang Yadong. A reference current source with low voltage and low temperature drift [J]. Modern Electronic Technology, 2009, 285(8): 178-181.) proposed a bandgap based reference The reference current is generated through second-order temperature compensation, the temperature coefficient is 8.1ppm/℃, and the power consumption of the circuit is several hundred microwatts.
发明内容Contents of the invention
为克服上述现有技术存在的不足,本发明之目的在于提供一种电流产生电路及其实现方法,以实现产生一种功耗低且与温度相关性较小的电流参考源。In order to overcome the shortcomings of the above-mentioned prior art, the object of the present invention is to provide a current generating circuit and its implementation method, so as to realize generating a current reference source with low power consumption and little dependence on temperature.
为达上述及其它目的,本发明提出一种电流产生电路,包括:In order to achieve the above and other purposes, the present invention proposes a current generating circuit, comprising:
正温度系数PTAT电流产生电路,用于产生一正温度系数的电流I0;A positive temperature coefficient PTAT current generating circuit, used to generate a positive temperature coefficient current I 0 ;
偏置电路,用于将镜像恒流源的各PMOS管的栅极电压稳定在设计值;The bias circuit is used to stabilize the gate voltage of each PMOS transistor of the mirror image constant current source at a design value;
第一镜像恒流源,用于为所述正温度系数PTAT电流产生电路提供所述电流I0并将该电流向第二镜像恒流源;The first mirror constant current source is used to provide the current I0 for the positive temperature coefficient PTAT current generating circuit and the current to the second mirror constant current source;
第二镜像恒流源,用于将电流源形式的正温度系数的电流I0转换为电流宿形式的正温度系数的电流Iref;The second mirror image constant current source is used to convert the current I 0 of the positive temperature coefficient of the current source form into the current Iref of the positive temperature coefficient of the current sink form;
负温度系数CTAT电流产生与合成电路,用于产生负温度系数的电流并与正温度系数的电流Iref合并形成与温度相关性小的输出电流。The negative temperature coefficient CTAT current generation and synthesis circuit is used to generate a negative temperature coefficient current and combine it with the positive temperature coefficient current Iref to form an output current with little temperature dependence.
进一步地,所述正温度系数PTAT电流产生电路包括第一PNP三极管、第二PNP三极管和第一电阻,所述第一PNP三极管和第二PNP三极管的集电极和基极接地,所述第一PNP三极管的发射极连接至第一电阻的一端,所述第一电阻的另一端连接所述偏置电路与所述第一镜像恒流源,所述第二PNP三极管的发射极连接至所述偏置电路与所述第一镜像恒流源。Further, the positive temperature coefficient PTAT current generating circuit includes a first PNP transistor, a second PNP transistor and a first resistor, the collectors and bases of the first PNP transistor and the second PNP transistor are grounded, and the first The emitter of the PNP transistor is connected to one end of the first resistor, the other end of the first resistor is connected to the bias circuit and the first mirror constant current source, and the emitter of the second PNP transistor is connected to the bias circuit with the first mirror constant current source.
进一步地,所述第一PNP三极管与所述第二PNP三极管的尺寸比为N:1。Further, the size ratio of the first PNP transistor to the second PNP transistor is N:1.
进一步地,所述偏置电路包括第一运放,所述第一运放的反相输入端连接所述第一电阻与所述第一镜像恒流源,所述第一运放的同相输入端连接所述第二PNP管的发射极与所述第一镜像恒流源,所述第一运放的输出端连接所述第一镜像恒流源。Further, the bias circuit includes a first operational amplifier, the inverting input terminal of the first operational amplifier is connected to the first resistor and the first mirror constant current source, and the non-inverting input terminal of the first operational amplifier is The terminal is connected to the emitter of the second PNP transistor and the first image constant current source, and the output end of the first operational amplifier is connected to the first image constant current source.
进一步地,所述第一镜像恒流源包括第一PMOS管、第二PMOS管、第三PMOS管,所述第一PMOS管的栅极与第二PMOS管的栅极和第三PMOS管的栅极相连,并连接至所述第一运放的输出端,所述第一PMOS管的源极、第二PMOS管的源极和第三PMOS管的源极接电源电压,所述第一PMOS管漏极连接所述第一电阻以及所述第一运放的反相输入端,所述第二PMOS管的漏极连接所述第二PNP管的发射极、第二运放的同相输入端,所述第三PMOS管的漏极输出所述正温度系数的电流Iref至所述第二镜像恒流源。Further, the first image constant current source includes a first PMOS transistor, a second PMOS transistor, and a third PMOS transistor, and the gate of the first PMOS transistor is connected to the gate of the second PMOS transistor and the gate of the third PMOS transistor. The gate is connected and connected to the output terminal of the first operational amplifier, the source of the first PMOS transistor, the source of the second PMOS transistor and the source of the third PMOS transistor are connected to the power supply voltage, and the first PMOS transistor is connected to the power supply voltage. The drain of the PMOS transistor is connected to the first resistor and the inverting input terminal of the first operational amplifier, and the drain of the second PMOS transistor is connected to the emitter of the second PNP transistor and the non-inverting input of the second operational amplifier. terminal, the drain of the third PMOS transistor outputs the positive temperature coefficient current Iref to the second mirror image constant current source.
进一步地,所述第一PMOS管、第二PMOS管、第三PMOS管的尺寸比为1:1:1。Further, the size ratio of the first PMOS transistor, the second PMOS transistor and the third PMOS transistor is 1:1:1.
进一步地,所述第二镜像恒流源包括第一NMOS管、第二NMOS管,所述第一NMOS管的漏极连接至所述第三PMOS管漏极,所述第二NMOS管的栅漏相连后与所述第一NMOS管的栅极相连,并连接至所述负温度系数CTAT电流产生与合成电路,所述第一NMOS管、第二NMOS管源极接地。Further, the second mirror image constant current source includes a first NMOS transistor and a second NMOS transistor, the drain of the first NMOS transistor is connected to the drain of the third PMOS transistor, and the gate of the second NMOS transistor After the drain is connected, it is connected to the gate of the first NMOS transistor, and connected to the negative temperature coefficient CTAT current generation and synthesis circuit, and the sources of the first NMOS transistor and the second NMOS transistor are grounded.
进一步地,所述负温度系数CTAT电流产生与合成电路包括第四PMOS管与第二电阻,所述第四PMOS管漏极接所述第二NMOS管的栅漏极,源极接电源电压,所述第二电阻接于所述第四PMOS管栅极与电源电压之间,并且所述第四PMOS管栅极输出所述与温度相关性小的输出电流。Further, the negative temperature coefficient CTAT current generation and synthesis circuit includes a fourth PMOS transistor and a second resistor, the drain of the fourth PMOS transistor is connected to the gate-drain of the second NMOS transistor, and the source is connected to the power supply voltage, The second resistor is connected between the gate of the fourth PMOS transistor and a power supply voltage, and the gate of the fourth PMOS transistor outputs the output current with little temperature dependence.
进一步地,所述第四PMOS管栅极输出的电流为Further, the current output by the gate of the fourth PMOS transistor is
其中,Iref为所述电流宿形式的正温度系数的电流,M为第一NMOS管与第二NMOS管尺寸的比值,(W/L)P4为第四PMOS管的宽长比,COX为单位面积栅电容,Vth4为第四PMOS管PM4的阈值电压,空穴迁移率μp为一个与温度成反比的量,R2为第二电阻的阻值。Wherein, I ref is the current of the positive temperature coefficient of the current sink form, M is the ratio of the size of the first NMOS tube to the second NMOS tube, (W/L) P4 is the width-to-length ratio of the fourth PMOS tube, C OX is the gate capacitance per unit area, V th4 is the threshold voltage of the fourth PMOS transistor PM4, the hole mobility μ p is a quantity inversely proportional to temperature, and R 2 is the resistance value of the second resistor.
为达到上述目的,本发明还提供一种电流产生电路的实现方法,包括如下步骤:In order to achieve the above object, the present invention also provides a method for implementing a current generating circuit, comprising the following steps:
步骤一,利用正温度系数PTAT电流产生电路产生一正温度系数的电流I0;Step 1, using a positive temperature coefficient PTAT current generating circuit to generate a positive temperature coefficient current I 0 ;
步骤二,利用第一镜像恒流源将该电流I0输出至第二镜像恒流源,将电流源形式的正温度系数的电流I0转换为电流宿形式的正温度系数的电流Iref;Step 2, using the first mirror image constant current source to output the current I 0 to the second mirror image constant current source, converting the current I 0 of the positive temperature coefficient of the current source form into the current Iref of the positive temperature coefficient of the current sink form;
步骤三,利用所述负温度系数CTAT电流产生与合成电路产生一负温度系数的电流并与所述正温度系数的电流Iref合并,产生并输出一个与温度相关性小的输出电流。Step 3, using the negative temperature coefficient CTAT current generating and synthesizing circuit to generate a negative temperature coefficient current and combine it with the positive temperature coefficient current Iref to generate and output an output current with little temperature dependence.
与现有技术相比,本发明一种电流产生电路及其实现方法通过正温度系数电流产生电路产生一正温度系数的电流,负温度系数电流产生与合成电路产生负温度系数的电流并与正温度系数的电流合并,基于迁移率与阈值电压相互补偿的机制,实现了产生与温度无关电流参考源地目的。Compared with the prior art, a current generation circuit and its implementation method of the present invention generate a current with a positive temperature coefficient through a positive temperature coefficient current generation circuit, and a negative temperature coefficient current generation and synthesis circuit generates a current with a negative temperature coefficient and is combined with a positive temperature coefficient current generation circuit. The current combination of temperature coefficient, based on the mechanism of mutual compensation between mobility and threshold voltage, realizes the purpose of generating a temperature-independent current reference source and ground.
附图说明Description of drawings
图1为本发明一种电流产生电路的电路结构图;Fig. 1 is the circuit structural diagram of a kind of electric current generating circuit of the present invention;
图2为本发明一种电流产生电路的实现方法的步骤流程图。FIG. 2 is a flow chart of steps of a method for implementing a current generating circuit of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。The implementation of the present invention is described below through specific examples and in conjunction with the accompanying drawings, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific examples, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
图1为本发明一种电流产生电路的电路结构图。如图1所示,本发明一种电流产生电路,包括:正温度系数PTAT电流产生电路10、偏置电路20、第一镜像恒流源30、第二镜像恒流源40以及负温度系数CTAT电流产生与合成电路50。Fig. 1 is a circuit structure diagram of a current generating circuit of the present invention. As shown in Figure 1, a current generation circuit of the present invention includes: a positive temperature coefficient PTAT current generation circuit 10, a bias circuit 20, a first mirror image constant current source 30, a second mirror image constant current source 40, and a negative temperature coefficient CTAT Current generating and synthesizing circuit 50 .
其中,正温度系数PTAT电流产生电路10由第一PNP三极管PNP1、第二PNP三极管PNP2和第一电阻R1组成,用于产生一正温度系数PTAT的电流I0;偏置电路20由第一运放OPA1组成,用于将镜像恒流源30的第一-第三PMOS管PM1-PM3的栅极电压稳定在设计值;镜像恒流源30由第一PMOS管PM1、第二PMOS管PM2和第三PMOS管PM3组成,用于为第一PNP三极管PNP1、第二PNP三极管PNP2提供相等的电流I0并将该电流向第二镜像恒流源40输出;第二镜像恒流源40由第一NMOS管NM1和第二NMOS管NM2组成,用于将电流源(Source)形式的正温度系数PTAT的电流I0转换为电流宿(Sink)形式的正温度系数PTAT的电流Iref;负温度系数CTAT电流产生与合成电路50,由第四PMOS管PM4和第二电阻R2组成,用于产生负温度系数的电流并与正温度系数的电流Iref合并得到两者的和,负温度系数的电流由具有负温度特性的第四PMOS管的阈值电压Vth4产生。这里需说明的是,图中的60为负载电路,由第三NMOS管NM3组成,用于模拟电路的负载。Wherein, the positive temperature coefficient PTAT current generating circuit 10 is composed of the first PNP transistor PNP1, the second PNP transistor PNP2 and the first resistor R1, and is used to generate a positive temperature coefficient PTAT current I 0 ; the bias circuit 20 is composed of the first operation OPA1 is used to stabilize the gate voltages of the first-third PMOS transistors PM1-PM3 of the mirror constant current source 30 at the design value; the mirror constant current source 30 is composed of the first PMOS transistor PM1, the second PMOS transistor PM2 and The 3rd PMOS tube PM3 is formed, is used for providing equal current I 0 for the first PNP transistor PNP1, the second PNP transistor PNP2 and this current is output to the second mirror image constant current source 40; The second mirror image constant current source 40 is provided by the second mirror image constant current source 40 An NMOS transistor NM1 and a second NMOS transistor NM2 are used to convert the current I0 of the positive temperature coefficient PTAT in the form of the current source (Source) into the current Iref of the positive temperature coefficient PTAT in the form of the current sink (Sink); the negative temperature coefficient The CTAT current generating and synthesizing circuit 50 is composed of a fourth PMOS transistor PM4 and a second resistor R2 for generating a current with a negative temperature coefficient and combining it with a current Iref with a positive temperature coefficient to obtain the sum of the two, and the current with a negative temperature coefficient is obtained by The threshold voltage V th4 of the fourth PMOS transistor with negative temperature characteristics is generated. It should be noted here that 60 in the figure is a load circuit, which is composed of a third NMOS transistor NM3 and is used for the load of the analog circuit.
在本发明具体实施例中,第一PNP管PNP1和第二PNP管PNP2的集电极和基极接地,第一PNP管PNP1的发射极连接至第一电阻R1的一端,第一电阻R1的另一端连接至第一运放OPA1的反相输入端和第一PMOS管PM1的漏极,第一PNP管PNP1的发射极连接至第一运放OPA1的同相输入端、第二PMOS管PM2的漏极和第二运放OPA2的同相输入端,第一PMOS管PM1的栅极与第二PMOS管PM2的栅极和第三PMOS管PM3的栅极相连,第一PMOS管PM1的源极、第二PMOS管PM2的源极、第三PMOS管PM3和第四PMOS管PM4的源极接电源VDD,第三PMOS管的漏极连接至第一NMOS管NM1的漏极和第三NMOS管NM3的栅极,第一NMOS管NM1的栅极与第四PMOS管的漏极、第二NMOS管NM2的栅极和漏极相连,第一NMOS管NM1、第二NMOS管NM2和第三NMOS管NM3的源极接地,第三NMOS管NM3的漏极与第四PMOS管PM4的栅极和第二电阻R2的一端相连,第二电阻R2的另一端连接至电源VDD。In a specific embodiment of the present invention, the collectors and bases of the first PNP transistor PNP1 and the second PNP transistor PNP2 are grounded, the emitter of the first PNP transistor PNP1 is connected to one end of the first resistor R1, and the other end of the first resistor R1 One end is connected to the inverting input terminal of the first operational amplifier OPA1 and the drain of the first PMOS transistor PM1, and the emitter of the first PNP transistor PNP1 is connected to the non-inverting input terminal of the first operational amplifier OPA1 and the drain of the second PMOS transistor PM2 pole and the non-inverting input terminal of the second operational amplifier OPA2, the gate of the first PMOS transistor PM1 is connected with the gate of the second PMOS transistor PM2 and the gate of the third PMOS transistor PM3, the source of the first PMOS transistor PM1, the gate of the second PMOS transistor PM1 The source of the second PMOS transistor PM2, the source of the third PMOS transistor PM3 and the fourth PMOS transistor PM4 are connected to the power supply VDD, and the drain of the third PMOS transistor is connected to the drain of the first NMOS transistor NM1 and the third NMOS transistor NM3. Gate, the gate of the first NMOS transistor NM1 is connected to the drain of the fourth PMOS transistor, the gate and drain of the second NMOS transistor NM2, the first NMOS transistor NM1, the second NMOS transistor NM2 and the third NMOS transistor NM3 The source of the third NMOS transistor NM3 is connected to the gate of the fourth PMOS transistor PM4 and one end of the second resistor R2, and the other end of the second resistor R2 is connected to the power supply VDD.
具体地,若流过第一PNP三极管PNP1的电流为I0,由于给第一PNP三极管PNP1与第二PNP三极管PNP2提供电流的PMOS管的尺寸比为1:1,故流过第二PNP三极管PNP2的电流也为I0,若第二PNP三极管PNP2的饱和电流为IS,由于第一PNP三极管PNP1与第二PNP三极管PNP2的尺寸比为N:1,,则根据微电子理论知道第一PNP三极管PNP1的饱和电流为N*IS,根据三极管知识有第二PNP三极管PNP2之基极发射极电压Vbe2与第一PNP三极管PNP1之基极发射极电压Vbe1分别为:Specifically, if the current flowing through the first PNP transistor PNP1 is I 0 , since the size ratio of the PMOS transistors that provide current to the first PNP transistor PNP1 and the second PNP transistor PNP2 is 1:1, the current flowing through the second PNP transistor The current of PNP2 is also I 0 , if the saturation current of the second PNP transistor PNP2 is I S , since the size ratio of the first PNP transistor PNP1 and the second PNP transistor PNP2 is N:1, then according to the theory of microelectronics, it is known that the first The saturation current of the PNP transistor PNP1 is N* IS . According to the triode knowledge, the base-emitter voltage V be2 of the second PNP transistor PNP2 and the base-emitter voltage V be1 of the first PNP transistor PNP1 are respectively:
其电压差为:Its voltage difference is:
由于第一运放OPA1的存在,电压V1=V2=Vbe2,故这个电压差即第一电阻R1的压降,故流过PNP1的电流为I0=ΔVbe/R1,第一PMOS管PM1与第一PNP三极管PNP1串联,则流过第一PMOS管PM1的电流为I0=ΔVbe/R1,另一方面第三PMOS管PM3与第一PMOS管PM1、第二PMOS管PM2的栅源电压一致且尺寸相同,故流过第三PMOS管PM3的电流与流过第一PMOS管PM1的电流一致,均为I0=ΔVbe/R1,已知VT=KT/q(其中,K为波耳兹曼常数,T为热力学温度,q为电子电荷),则流过第一PMOS管PM1、第二PMOS管PM2、第三PMOS管PM3的电流为:Due to the existence of the first operational amplifier OPA1, the voltage V1=V2=V be2 , so this voltage difference is the voltage drop of the first resistor R1, so the current flowing through PNP1 is I 0 =ΔV be /R1, the first PMOS tube PM1 In series with the first PNP transistor PNP1, the current flowing through the first PMOS transistor PM1 is I 0 =ΔV be /R1, on the other hand, the gate-source of the third PMOS transistor PM3 and the first PMOS transistor PM1 and the second PMOS transistor PM2 The voltage is the same and the size is the same, so the current flowing through the third PMOS transistor PM3 is consistent with the current flowing through the first PMOS transistor PM1, both of which are I 0 =ΔV be /R1, and it is known that VT=KT/q (where K is Boltzmann's constant, T is the thermodynamic temperature, and q is the electronic charge), then the current flowing through the first PMOS transistor PM1, the second PMOS transistor PM2, and the third PMOS transistor PM3 is:
即该电流是一个与温度成正比的电流。That is, the current is a current proportional to temperature.
流过第四PMOS管PM4的电流为:The current flowing through the fourth PMOS transistor PM4 is:
从而第四PMOS管PM4的栅源电压为:Therefore, the gate-source voltage of the fourth PMOS transistor PM4 is:
式中IP4=M×Iref Where I P4 =M×I ref
则输出电流 then the output current
其中M是晶体管NM1与NM2管的比值,(W/L)P4为第四PMOS管PM4的宽长比,COX为单位面积栅电容,Vth4为第四PMOS管PM4的阈值电压,空穴迁移率μp是一个与温度成反比的量(温度系数-1.5,该参数与工艺有一定的相关性),从而得到是一与温度成正比的量;Vth是一个与温度成反比的一个参数,通过调整式中的M(W/L)p4,从而就可得到一个与温度相关性很小甚至无关的电流Iout。Wherein M is the ratio of the transistor NM1 to the NM2 tube, (W/L) P4 is the width-to-length ratio of the fourth PMOS transistor PM4, C OX is the gate capacitance per unit area, V th4 is the threshold voltage of the fourth PMOS transistor PM4, and the hole Mobility μ p is a quantity that is inversely proportional to temperature (temperature coefficient -1.5, this parameter has a certain correlation with the process), so that is a quantity proportional to temperature; V th is a parameter inversely proportional to temperature, by adjusting M(W/L) p4 in the formula, a current I with little or no temperature correlation can be obtained out .
可见,本发明基于迁移率与阈值电压相互补偿的机制,可产生一个与温度无关的电流参考源。实验证明,在-40℃-80℃的宽温度范围内,本发明获得的参考电流源的温度系数为5ppm/℃,电路功耗小于10微瓦。It can be seen that the present invention can generate a temperature-independent current reference source based on the mutual compensation mechanism of mobility and threshold voltage. Experiments prove that in the wide temperature range of -40°C-80°C, the temperature coefficient of the reference current source obtained by the present invention is 5ppm/°C, and the power consumption of the circuit is less than 10 microwatts.
图2为本发明一种电流产生电路的实现方法的步骤流程图。如图2所示,本发明一种电流产生电路的实现方法,包括如下步骤:FIG. 2 is a flow chart of steps of a method for implementing a current generating circuit of the present invention. As shown in Figure 2, a method for realizing a current generating circuit of the present invention includes the following steps:
步骤201,利用正温度系数PTAT电流产生电路产生一正温度系数PTAT的电流I0。In step 201, a positive temperature coefficient PTAT current I 0 is generated by using a positive temperature coefficient PTAT current generating circuit.
步骤202,利用第一镜像恒流源将该电流I0输出至第二镜像恒流源,将电流源(Source)形式的正温度系数PTAT的电流I0转换为电流宿(Sink)形式的正温度系数PTAT的电流Iref。Step 202, using the first mirror constant current source to output the current I 0 to the second mirror constant current source, converting the current I 0 of the positive temperature coefficient PTAT in the form of the current source (Source) into a positive current I 0 in the form of the current sink (Sink). Current Iref with temperature coefficient PTAT.
步骤203,利用所述负温度系数CTAT电流产生与合成电路产生一负温度系数的电流并与所述正温度系数的电流Iref合并得到两者的和,所述负温度系数的电流由具有负温度特性的PMOS管的阈值电压Vth4产生。Step 203, using the negative temperature coefficient CTAT current generation and synthesis circuit to generate a current with a negative temperature coefficient and combining it with the current Iref with the positive temperature coefficient to obtain the sum of the two, the current with a negative temperature coefficient is composed of a current with a negative temperature The threshold voltage V th4 of the characteristic PMOS transistor is generated.
综上所述,本发明一种电流产生电路及其实现方法通过正温度系数电流产生电路产生一正温度系数的电流,负温度系数电流产生与合成电路产生负温度系数的电流并与正温度系数的电流合并,基于迁移率与阈值电压相互补偿的机制,实现了产生与温度无关电流参考源地目的。In summary, a current generation circuit and its implementation method of the present invention generate a current with a positive temperature coefficient through a current generation circuit with a positive temperature coefficient, and a current with a negative temperature coefficient is generated by a current generation and synthesis circuit with a negative temperature coefficient and combined with a current with a positive temperature coefficient The combination of currents, based on the mechanism of mutual compensation between mobility and threshold voltage, achieves the purpose of generating a temperature-independent current reference source and ground.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be listed in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711072180.4A CN107861562B (en) | 2017-11-03 | 2017-11-03 | A current generating circuit and its realization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711072180.4A CN107861562B (en) | 2017-11-03 | 2017-11-03 | A current generating circuit and its realization method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107861562A true CN107861562A (en) | 2018-03-30 |
CN107861562B CN107861562B (en) | 2020-01-24 |
Family
ID=61700763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711072180.4A Active CN107861562B (en) | 2017-11-03 | 2017-11-03 | A current generating circuit and its realization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107861562B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109917843A (en) * | 2019-04-17 | 2019-06-21 | 南京芯耐特半导体有限公司 | A kind of the constant current generative circuit structure and constant current generation method of automatic biasing |
CN110708809A (en) * | 2019-11-08 | 2020-01-17 | 深圳市德普微电子有限公司 | Constant current source generating circuit of common-anode LED display screen driving chip |
CN111880068A (en) * | 2019-05-02 | 2020-11-03 | 西门子股份公司 | Circuit arrangement and method for controlling a power semiconductor switch |
CN111897209A (en) * | 2020-05-19 | 2020-11-06 | 成都天锐星通科技有限公司 | A millimeter wave chip gain high and low temperature adaptive bias structure and method |
CN112230704A (en) * | 2020-11-17 | 2021-01-15 | 普冉半导体(上海)股份有限公司 | Reference current source circuit |
CN112332786A (en) * | 2020-10-30 | 2021-02-05 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Chip-level fully-integrated low-gain temperature-drift radio frequency amplifier |
CN113566997A (en) * | 2021-07-26 | 2021-10-29 | 深圳青铜剑技术有限公司 | Temperature sensing circuit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030090A1 (en) * | 2003-08-07 | 2005-02-10 | Texas Instruments, Inc. | Current biasing circuit with temperature compensation and related methods of compensating output current |
US20050285666A1 (en) * | 2004-06-25 | 2005-12-29 | Silicon Laboratories Inc. | Voltage reference generator circuit subtracting CTAT current from PTAT current |
CN102253684A (en) * | 2010-06-30 | 2011-11-23 | 中国科学院电子学研究所 | Bandgap reference circuit employing current subtraction technology |
US20120007659A1 (en) * | 2010-07-08 | 2012-01-12 | Paolo Giovanni Cusinato | Temperature Compensated Current Source |
CN103440015A (en) * | 2013-08-30 | 2013-12-11 | 厦门意行半导体科技有限公司 | Band-gap reference circuit |
US8947067B1 (en) * | 2011-01-19 | 2015-02-03 | Marvell International Ltd. | Automatic bandgap voltage calibration |
-
2017
- 2017-11-03 CN CN201711072180.4A patent/CN107861562B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030090A1 (en) * | 2003-08-07 | 2005-02-10 | Texas Instruments, Inc. | Current biasing circuit with temperature compensation and related methods of compensating output current |
US20050285666A1 (en) * | 2004-06-25 | 2005-12-29 | Silicon Laboratories Inc. | Voltage reference generator circuit subtracting CTAT current from PTAT current |
CN102253684A (en) * | 2010-06-30 | 2011-11-23 | 中国科学院电子学研究所 | Bandgap reference circuit employing current subtraction technology |
US20120007659A1 (en) * | 2010-07-08 | 2012-01-12 | Paolo Giovanni Cusinato | Temperature Compensated Current Source |
US8947067B1 (en) * | 2011-01-19 | 2015-02-03 | Marvell International Ltd. | Automatic bandgap voltage calibration |
CN103440015A (en) * | 2013-08-30 | 2013-12-11 | 厦门意行半导体科技有限公司 | Band-gap reference circuit |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109917843A (en) * | 2019-04-17 | 2019-06-21 | 南京芯耐特半导体有限公司 | A kind of the constant current generative circuit structure and constant current generation method of automatic biasing |
CN109917843B (en) * | 2019-04-17 | 2023-09-12 | 南京芯耐特半导体有限公司 | Self-biased constant current generation circuit structure and constant current generation method |
CN111880068A (en) * | 2019-05-02 | 2020-11-03 | 西门子股份公司 | Circuit arrangement and method for controlling a power semiconductor switch |
CN111880068B (en) * | 2019-05-02 | 2023-10-17 | 西门子股份公司 | Circuit arrangement and method for controlling a power semiconductor switch |
CN110708809A (en) * | 2019-11-08 | 2020-01-17 | 深圳市德普微电子有限公司 | Constant current source generating circuit of common-anode LED display screen driving chip |
CN111897209A (en) * | 2020-05-19 | 2020-11-06 | 成都天锐星通科技有限公司 | A millimeter wave chip gain high and low temperature adaptive bias structure and method |
CN111897209B (en) * | 2020-05-19 | 2021-06-04 | 成都天锐星通科技有限公司 | A millimeter wave chip gain high and low temperature adaptive bias structure and method |
CN112332786A (en) * | 2020-10-30 | 2021-02-05 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Chip-level fully-integrated low-gain temperature-drift radio frequency amplifier |
CN112332786B (en) * | 2020-10-30 | 2023-09-05 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Chip-level fully-integrated low-gain temperature drift radio frequency amplifier |
CN112230704A (en) * | 2020-11-17 | 2021-01-15 | 普冉半导体(上海)股份有限公司 | Reference current source circuit |
CN113566997A (en) * | 2021-07-26 | 2021-10-29 | 深圳青铜剑技术有限公司 | Temperature sensing circuit |
Also Published As
Publication number | Publication date |
---|---|
CN107861562B (en) | 2020-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107861562B (en) | A current generating circuit and its realization method | |
CN102270008B (en) | Band-gap reference voltage source with wide input belt point curvature compensation | |
CN110874114B (en) | Subbandgap Compensation Reference Voltage Generation Circuit | |
CN101807088B (en) | Bandgap reference circuit with output insensitive to offset voltage | |
CN103365331B (en) | Second order compensation reference voltage generating circuit | |
CN107608441B (en) | A High Performance Reference Voltage Source | |
CN104166423B (en) | A kind of reference source with compensation in full temperature range characteristic | |
CN105974996B (en) | Reference voltage source | |
CN108334144B (en) | High-performance reference voltage source and implementation method thereof | |
CN104977963B (en) | A kind of band-gap reference circuit of the high PSRR of low-power consumption without amplifier | |
CN107390771A (en) | The Fiducial reference source circuit with gap of various temperature characteristic reference electric current is produced simultaneously | |
CN102253684A (en) | Bandgap reference circuit employing current subtraction technology | |
CN107300942B (en) | Three rank temperature-compensating CMOS bandgap voltage references | |
CN103399606A (en) | Low-voltage bandgap-free reference voltage source | |
CN103901937B (en) | Bandgap Voltage Reference | |
CN109343641B (en) | High-precision current reference circuit | |
CN103365330A (en) | Reference voltage/current generator | |
CN104977971A (en) | Free-operational amplifier low power-consumption band-gap reference circuit | |
CN104977970A (en) | Operational amplifier-free high power supply rejection ratio band-gap reference source circuit | |
JP2009251877A (en) | Reference voltage circuit | |
CN107066006B (en) | Novel band gap reference circuit structure | |
CN103246311A (en) | Non-resistor band-gap reference voltage source with high-order curvature compensation | |
CN110989758A (en) | Reference source circuit structure with high-order compensation circuit | |
CN107272811B (en) | A Low Temperature Coefficient Reference Voltage Source Circuit | |
CN114356015A (en) | Band-gap reference voltage source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |