CN107849731A - 外延硅晶片 - Google Patents

外延硅晶片 Download PDF

Info

Publication number
CN107849731A
CN107849731A CN201680043772.0A CN201680043772A CN107849731A CN 107849731 A CN107849731 A CN 107849731A CN 201680043772 A CN201680043772 A CN 201680043772A CN 107849731 A CN107849731 A CN 107849731A
Authority
CN
China
Prior art keywords
silicon substrate
boron
concentration
oxygen
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680043772.0A
Other languages
English (en)
Inventor
鸟越和尚
小野敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Publication of CN107849731A publication Critical patent/CN107849731A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种外延硅晶片,其即使在通过器件工序中的任意的热处理而使氧析出物生长的情况下,也能够抑制硅基板中的硼的加速扩散。解决手段在于:外延硅晶片(10)具备掺杂有硼的硅基板(11)与形成于硅基板(11)的表面的外延层(13),硅基板中的硼浓度为2.7×1017个原子/cm3以上且1.3×1019个原子/cm3以下,硅基板中的初始氧浓度为11×1017个原子/cm3以下。该外延硅晶片(10)在实施了依次进行例如在700℃下的3小时的热处理与在1000℃下的16小时的热处理的氧析出物评价热处理的情况下,硅基板(11)中的氧析出物密度为1×1010个/cm3以下。

Description

外延硅晶片
技术领域
本发明涉及一种外延硅晶片,尤其涉及一种在掺杂有硼的p型硅基板的表面形成有外延层的外延硅晶片。
背景技术
作为半导体器件的基板材料,广泛地使用外延硅晶片。外延硅晶片是在块硅基板的表面形成有外延层,由于晶体的完整性高,因此能够制造高品质且可靠度高的半导体器件。
用于固体成像元件或功率半导体器件等用途的外延硅晶片中,使用含高浓度p型或n型杂质的硅基板。例如在专利文献1中记载有一种外延硅晶片,具备氮浓度为1×1012个原子/cm3以上或由于硼掺杂而比电阻设定为20mΩ·cm以下的晶片和设于晶片表面的外延层,且晶片的初始氧浓度为14×1017个原子/cm3以下。
由于氮、硼使氧析出核的稳定性增大,因此高浓度地掺杂有氮、硼的硅晶片与一般的晶片相比,在器件工序中容易形成氧析出物,当在板状的氧析出物生长成较大的状态下进行了LSA(Laser Spike Anneal:激光尖峰退火)时,容易以该氧析出物为起点而发生位错。然而根据上述外延硅晶片,即使在器件工序中进行了LSA的情况下,也能够防止以氧析出物为起点的位错的发生。
而且,在专利文献2中记载有一种背照式固体成像元件用外延晶片,其具有添加有碳及氮,且电阻率小于100Ω·cm的p型硅基板、p型硅基板上的p型第一外延层及p型第一外延层上的p型或n型第二外延层,p型硅基板中的晶格间氧浓度为10×1017~20×1017个原子/cm3,在p型硅基板的深度方向中心部的析出物密度为5×105/cm2以上且5×107/cm2以下。根据该外延晶片,能够以更高成品率来制造背照式固体成像元件。
现有技术文献
专利文献
专利文献1:日本特开2011-228459号公报
专利文献2:日本特开2012-138576号公报
在用于固体成像元件等用途的外延晶片中,为了确保吸杂能力及基板的低电阻化,硅基板中的硼为不可缺少的物质。然而,当大量的硼从硅基板扩散到外延层侧时,存在外延层的杂质分布发生变化,从而在晶片面内的电阻率的均匀性恶化这样的问题。而且有可能会在与硅基板交界附近的外延层中的硼浓度过渡区域(电阻变动层)范围变大,外延层的有效厚度变薄,半导体器件的特性恶化。因此,需要尽可能抑制硅基板中的硼的扩散。
已知硅基板中的硼通过氧化性气氛下的热处理而加速扩散。当在硅基板的表面形成热氧化膜时,空间被SiO2占据而失去位置的Si原子被挤出晶格之外,晶格间的硅增加。另一方面,由于硼一边替代晶格间的硅,一边踢出扩散(kick-out diffusi on),从而通过晶格间的硅的增加,硼将会加速扩散。因此,抑制硼的加速扩散的一个方法,是尽可能不进行氧化性气氛下的热处理工序。
然而,即使在器件工序中不包含氧化性气氛下的热处理的情况下,也会发生器件特性因硼的扩散而恶化的状况,因此为了抑制硼的加速扩散,希望进一步进行改善。
发明内容
本发明鉴于上述问题而完成,其目的在于提供一种在硅基板中的硼的加速扩散被抑制的外延硅晶片。
用于解决技术问题的方案
本申请的发明人等针对硅晶片中的硼的扩散机理反复进行了深入研究的结果,可知不限于在氧化性气氛下的热处理,硅基板中的氧析出物通过任意的热处理而生长时也会释放晶格间的硅,经由该晶格间的硅促进硼的踢出扩散。尤其是起因于氧析出物的硼的扩散,会从硅基板中的氧析出物密度超出某一阈值等级时起急剧地进展,且本发明着眼于此而完成。
本发明是基于这样的技术性见解的发明,根据本发明的外延硅晶片,其在掺杂有硼的硅基板的表面形成有外延层,所述外延硅晶片的特征在于,所述硅基板中的硼浓度为2.7×1017个原子/cm3以上且1.3×1019个原子/cm3以下,所述硅基板中的初始氧浓度为11×1017个原子/cm3以下,在对所述外延硅晶片实施了氧析出物评价热处理的情况下,所述硅基板中的氧析出物密度为1×1010个/cm3以下。
根据本发明,即使在通过器件工序中的任意的热处理而使硅基板中的氧析出物生长的情况下,硅基板中的氧析出物密度也为1×1010个/cm3以下,因此能够抑制晶格间的硅会随着氧析出物密度的增加而增加,且硅基板中的硼经由晶格间的硅而踢出扩散至外延层侧的情况,并能够抑制与氧析出物密度实质上为零的情况同样的扩散程度。
在本发明中,所述硅基板中的硼浓度优选为2.7×1017个原子/cm3以上且1.3×1019个原子/cm3以下,所述硅基板中的初始氧浓度优选为11×1017个原子/cm3以下。若硅基板中的初始氧浓度为11×1017个原子/cm3以下,则即使在通过器件工序中的任意的热处理而使硅基板中的氧析出物生长的情况下,也能够将硅基板中的氧析出物密度抑制在1×1010个/cm3以下。
在本发明中,所述硼浓度Y(个原子/cm3)及所述初始氧浓度X(×1017个原子/cm3),优选为满足X≤-4.3×10-19Y+16.3的关系式。当在硅基板中的硼浓度及初始氧浓度满足该条件时,能够不依赖于硅基板中的硼浓度而将氧析出物密度抑制在1×1010个/cm3以下。因此,能够抑制起因于氧析出物的硼的加速扩散。
发明效果
如此,根据本发明,能够提供一种外延硅晶片,即使在通过器件工序中的任意的热处理而使氧析出物生长的情况下,也能够抑制硅基板中的硼的加速扩散。
附图说明
图1是表示根据本发明的实施方式的外延硅晶片结构的示意剖面图。
图2是用于说明外延硅晶片的制造方法的流程图。
图3是表示氧析出物评价热处理前后的外延硅晶片样品#1~#4的硼浓度深度分布的曲线图。
图4是表示氧析出物密度与初始氧浓度及硼浓度的关系的曲线图。
具体实施方式
以下,参考附图,并且对本发明的优选实施方式进行详细说明。
图1是表示根据本发明的实施方式的外延硅晶片结构的示意剖面图。
如图1所示,根据本实施方式的外延硅晶片10由硅基板11与形成于硅基板11的表面的外延层12构成。硅基板11为从根据切克劳斯基法(CZ法)培养的硅单晶锭切出,且表面被镜面研磨后的抛光晶片(Polished wafer)。硅基板11确保外延硅晶片10的机械性强度的同时,并实现作为捕获重金属的吸杂槽(gettering sink)的作用。硅基板11的厚度,只要能够确保机械性强度则并无特别限定,例如能够设为725mm。
硅基板11是掺杂有硼的p型硅基板。硅基板11中的硼浓度优选为2.7×1017个原子/cm3以上且1.3×1019个原子/cm3以下,硅基板11的比电阻优选为20mΩ·cm以下。通过如此使用高浓度地掺杂有硼的硅基板11,能够实现硅基板11的低电阻化,并且能够确保充分的吸杂能力。
在硅基板11的表面形成有外延层12,MOS晶体管等的半导体器件形成于外延层12。外延层12的厚度优选为1~10μm。外延层12还可以是层叠有特性不同的多个外延层的多层结构。通常,外延层12的比电阻设定为比硅基板11还高,而且是添加有p型掺杂物(硼)或n型掺杂物(磷、砷、锑)的外延层。
在对外延硅晶片10实施了氧析出物评价热处理的情况下,硅基板11中的氧析出物密度为1×1010个/cm3以下。将详细内容进行后述,若氧析出物密度为1×1010个/cm3以下,则硅基板11中的氧析出物对硼的扩散所赋予的影响非常小,并能够抑制与氧析出物密度实质上为零的情况同样的扩散程度。
氧析出物评价热处理为依次进行例如在700℃下的3个小时的热处理(成核工序)与在1000℃下的16个小时的热处理(核成长工序)的2个阶段的热处理,并且为模拟器件工序的热处理。由于这些热处理都不是在氧化性气氛下而是在氮气氛下进行,因此不会形成热氧化膜,且不会发生由于热氧化膜的发生而硼的加速扩散的问题。然而,由于硅基板11中的氧析出核的生长使氧析出物密度变高,且这成为硼扩散的新的原因。而且,已知有在硅基板11中的硼中具有促进氧析出的作用,硼浓度越高则硅基板中的氧析出物密度会越高。为了确保吸杂能力需要某种程度的氧析出物,但通过氧析出物量的增加,硼会加速扩散。
为了将硅基板11中的氧析出物密度设为1×1010个/cm3以下,需要将硅基板11的晶格间的初始氧浓度设为11×1017个原子/cm3以下。当在初始氧浓度高于11×1017个原子/cm3时,晶格间的硅随着氧析出物密度的增加而增加,硼会经由晶格间的硅而加速扩散。而且,初始氧浓度则越低越好,且下限值没有特别限定,但现状,根据CZ法培养初始氧浓度低于1×1017个原子/cm3的硅单晶,难以制造。另外,在本说明书中记载的氧浓度全部为根据由ASTM F-121(1979)规格化的傅里叶转换红外分光光度法(FT-IR)的测定值。
硅基板11中的初始氧浓度的优选范围是按照硼浓度而变化。其原因如下:在硅基板11中的硼浓度低时,初始氧浓度即使稍微高也并不会有问题,但在硼浓度高时,由于氧析出核容易生长,若不降低初始氧浓度,则所产生的氧析出物就会变得过多,而无法将氧析出物密度抑制在1×1010个/cm3以下。将硅基板11中的初始氧浓度设为X(×1017个原子/cm3),将硼浓度设为Y(个原子/cm3)时,它们优选满足X≤-4.3×10-19Y+16.3的关系式。当满足该关系式时,无论硼浓度如何而能够将硅基板11中的氧析出物密度抑制在1×1010个/cm3以下。
图2是用于说明外延硅晶片10的制造方法的流程图。
如图2所示,在外延硅晶片10的制造中,首先根据CZ法培养掺杂有硼的硅单晶锭(步骤S1)。此时在硅单晶中掺杂有2.7×1017~1.3×1019个原子/cm3的硼。而且,在硅单晶中过饱和地含有从石英坩埚溶出的氧,但通过控制上拉条件,从而硅单晶中的氧浓度被控制。即如上所述,上拉条件以硅单晶中的氧浓度X(×1017个原子/cm3)及硼浓度Y(个原子/cm3)满足X≤-4.3×10-19Y+16.3的关系式的方式被控制。
单晶中的硼在将硅原料下料至石英坩埚内时,通过与硅原料一起填充规定量的硼而被添加。硼通过填充使位于单晶的顶部的成为目标电阻率的量,将硼与硅原料一起熔解,从而生成含硼的硅熔液。从该硅熔液中拉出的单晶含有一定比例的硼,但由于硼浓度通过偏析会随着晶体生长的进行而向拉出锭的长度方向变高,为了满足上述关系式,需要使单晶中的氧浓度向拉出锭的长度方向降低。
单晶中的氧浓度是能够通过调整石英坩埚的旋转速度或加热器功率等控制。若要降低单晶中的氧浓度,只要使石英坩埚低速旋转或将加热器功率设定为低输出即可。如此控制上拉条件,能够将单晶中的氧浓度抑制得较低。
作为降低单晶中的氧浓度的方法,一边对硅熔液施加磁场,一边上拉单晶的MCZ法也非常有效。根据MCZ法由于磁场的影响而能够抑制熔液对流,因此能够抑制氧从石英坩埚溶出到硅熔液,并能够将从硅熔液拉出的单晶中的氧浓度抑制得较低。
接着,加工硅单晶锭来制作硅基板11(步骤S2)。如上所述,硅基板11是从硅单晶锭切出的、表面被镜面研磨的抛光晶片。该硅基板11的硼浓度为2.7×1017个原子/cm3以上且1.3×1019个原子/cm3以下,硅基板11中的初始氧浓度为11×1017个原子/cm3以下。
接着,根据周知的方法在该硅基板11的表面形成外延层12(步骤S3)。通过以上方法,完成外延硅晶片10。
如此制造的外延硅晶片10是作为半导体器件的基板材料而使用,经过各种加工工序而成为各种半导体器件。在加工工序中包含各种热处理工序,由此在硅基板中形成氧析出核,且氧析出核生长,并增加硅基板中的氧析出物密度。然而,由于硅基板中的氧析出物密度为1×1010个/cm3以下,因此能够防止起因于氧析出物的硼的加速扩散。
若掌握硅基板中的硼浓度及初始氧浓度,还掌握器件工序中的热处理条件(热履历),就能够通过模拟预测到这样的外延硅晶片在器件工序中被热处理时的硅基板中的氧析出物密度及硼的加速扩散量。然后,模拟的结果,当通过硼的加速扩散而变宽的过渡区域的宽度不处于容许范围内时,将初始氧浓度调整至处于容许范围内即可。如此,能够从器件工序中的热处理条件预测用于获得任意的氧析出物密度所需要的硅基板中的初始氧浓度,由此能够使硼的加速扩散处于容许范围内。
如以上说明,根据本实施方式的外延硅晶片10是具备掺杂有硼的硅基板11、形成于硅基板11的表面的外延层12,在实施了氧析出物评价热处理的情况下,硅基板11中的氧析出物密度为1×1010个/cm3以下,因此能够抑制硅基板11中的硼随着氧析出物密度的增加而加速扩散到外延层12侧。
根据本实施方式的外延硅晶片10能够优选作为背照式固体成像元件的基板材料而使用。在制造背照式固体成像元件时,硅基板中的金属杂质会使传感部的暗电流增加,成为产生被称为白斑缺陷的缺陷的要因。然而,当使用高浓度地掺杂有硼的p型硅基板时,由于硅基板成为吸杂槽,能够解决金属杂质的问题。
并且,由于背照式固体成像元件的配线层等配置于比传感部更下层,能够将来自外界的光直接组合在传感部,由此能够拍摄更鲜明的图像或动态图像,但为了将配线层等配置于比传感部更下层,通过研磨而去除硅基板11而需要仅留下外延层12的加工。在此,在因硼的加速扩散而外延层12中的过渡区域的宽度扩张,并在晶片面内的电阻率的均匀性恶化时,从而会变得难以确定硅基板11的适当的研磨量,而且因外延层12的有效厚度变薄,从而固体成像元件的特性有可能恶化。然而,当过渡区域的宽度窄、外延层12的有效厚度充分厚时,能够解决上述那样的问题,并能够制造高品质的背照式固体成像元件。
以上,对本发明的优选实施方式进行了说明,但本发明并不限定于上述的实施方式,能够在不脱离本发明的主旨的范围内进行各种变更,这些变更也包含于本发明的范围内是不言而喻的。
实施例
从根据CZ法培养的硅单晶锭切出面方位(100)的硅基板,将硅基板的表面进行了镜面研磨。该硅基板是添加有1.0×1019个原子/cm3的硼的硅基板。并且,硅基板的初始氧浓度为6×1017个原子/cm3。在该硅基板的表面,以1150℃的温度使5μm的外延层气相生长,而获得样品#1的外延硅晶片。进一步,与样品#1同样地准备了初始氧浓度与样品#1不同的外延硅晶片的样品#2~#4。样品#2的初始氧浓度为10×1017个原子/cm3,样品#3的初始氧浓度为11×1017个原子/cm3,样品#4的初始氧浓度为13×1017个原子/cm3
接着,对外延硅晶片的样品#1~#4进行了氧析出物评价热处理。在氧析出物评价热处理中,在700℃的氮气氛下进行3小时的热处理之后,在1000℃的氮气氛下进行16小时的热处理。并且,根据SIMS(Secondary Ion Mass Spectroscopy:次级离子质谱法)测定了在氧析出物评价热处理前与氧析出物评价处理后的样品#1~#4的硼浓度的深度分布。
图3是表示氧析出物评价热处理前后的外延硅晶片样品#1~#4的硼浓度的深度分布的曲线图,横轴表示从晶片的最表面起算的深度(相对值),纵轴表示硼浓度(相对值)。
如图3所示,氧析出物评价热处理前的晶片的样品#1~#4成为大致相同的硼浓度分布,在硅基板与外延层的交界附近急剧地变化,而到达外延层的硼的扩散量均非常少。图中的长虚线X为以共通的线所表示的氧析出物评价热处理前的样品#1~#4的硼浓度分布。
另一方面,氧析出物评价热处理后的样品#1~#4,与评价热处理前相比,浓度分布变化较大,进入外延层的硼扩散量大幅地增加。可认为硼浓度分布如此大幅变化的主要原因为由于评价热处理的硼的热扩散。
其中,“样品#1”的硼浓度分布(实线)是硼未实际存在于外延层的表层附近,呈良好的结果。硼浓度从深度0.7左右开始急速增加,深度0.8时的硼浓度成为0.015,深度0.9时的硼浓度成为0.2,深度1时的硼浓度成为0.5。并且,“样品#2”(短虚线)及“样品#3”(点线)的硼浓度分布也是与样品#1的硼浓度分布大致相同的浓度分布。
“样品#4”的硼浓度分布(一点划线)与样品#1~#3差异较大,呈现硼的扩散进展到外延层的表层附近的结果。即,硼浓度从深度0.6左右开始增加,深度0.7时的硼浓度为0.004,深度0.8时的硼浓度为0.07,深度0.9时的硼浓度成为0.25。深度1时的硼浓度与样品#1~#3相同,且成为0.5。
根据以上的结果能够看出在样品#1~#3中几乎未见到硼的扩散,但在样品#4中硼的扩散速度非常大。可认为样品#4的硼浓度分布尤其变化较大的理由是因硼的加速扩散而造成的。
接着,在厚度方向劈开氧析出物评价热处理后的外延硅晶片的样品#1~#4,进行使用赖特蚀刻(Wright Etching)液而将劈开剖面蚀刻2μm深度的选择蚀刻处理之后,以光学显微镜观察在硅晶片的厚度中心部的劈开剖面,测定100μm×100μm见方区域内的蚀坑且作为氧析出物密度。将其结果示于表1中。
[表1]
如表1所示,样品#1的氧析出物密度成为测定极限以下(小于1×107个/cm3)。并且,样品#2的氧析出物密度成为1×109个/cm3,样品#3的氧析出物密度成为1×1010个/cm3,样品#4的氧析出物密度成为3×1010个/cm3。然后根据表1的结果及图3的曲线图得知在氧析出物密度为1×1010个/cm3以下的样品#1~#3中几乎未见到硼的加速扩散。
接着,为了对初始氧浓度与硼浓度及氧析出物密度的关系进行研究,准备28片以硅基板中的初始氧浓度与硼浓度作为参数的各种外延硅晶片的样品,对这些进行氧析出物评价热处理后,测定了氧析出物的密度。
图4是表示氧析出物密度与初始氧浓度及硼浓度的关系的曲线图,横轴表示氧浓度(×1017个原子/cm3)、纵轴表示硼浓度(个原子/cm3)。然后,将氧析出物密度为1×1010个/cm3以下的样品的图示标记(plot mark)设为“○”,超过1×1010个/cm3的样品的图示标记设为“×”。
如从图4显而易见,得知如果不与硼浓度增高相应地降低初始氧浓度,则无法满足1×1010个/cm3以下的氧析出物密度。例如硼浓度低至4.8×1018个原子/cm3时,能够满足1×1010个/cm3以下的氧析出物密度的初始氧浓度的最大值为约14×1017个原子/cm3。并且,硼浓度高达1.6×1019个原子/cm3时,能够满足1×1010个/cm3以下的氧析出物密度的初始氧浓度的最大值约为9×1017个原子/cm3
然后,以氧浓度与硼浓度的一次函数表示图示标记“○”与“×”的交界线,定义了图示标记“○”的区域。根据以上的结果可知:氧浓度X(×1017个原子/cm3)及硼浓度Y(个原子/cm3)满足X≤-4.3×10-19Y+16.3的条件时,能够使氧析出物密度设为1×1010个/cm3以下。
附图标记说明
10-外延硅晶片,11-硅基板,12-外延层。

Claims (2)

1.一种外延硅晶片,其在掺杂有硼的硅基板的表面形成有外延层,所述外延硅晶片的特征在于,
所述硅基板中的硼浓度为2.7×1017个原子/cm3以上且1.3×1019个原子/cm3以下,
所述硅基板中的初始氧浓度为11×1017个原子/cm3以下,
在对所述外延硅晶片实施了氧析出物评价热处理的情况下,所述硅基板中的氧析出物密度为1×1010个/cm3以下。
2.根据权利要求1所述的外延硅晶片,其中,
所述硼浓度Y(个原子/cm3)及所述初始氧浓度X(×1017个原子/cm3)满足X≤-4.3×10- 19Y+16.3的关系式。
CN201680043772.0A 2015-07-28 2016-07-06 外延硅晶片 Pending CN107849731A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-148558 2015-07-28
JP2015148558A JP6610056B2 (ja) 2015-07-28 2015-07-28 エピタキシャルシリコンウェーハの製造方法
PCT/JP2016/069980 WO2017018141A1 (ja) 2015-07-28 2016-07-06 エピタキシャルシリコンウェーハ

Publications (1)

Publication Number Publication Date
CN107849731A true CN107849731A (zh) 2018-03-27

Family

ID=57884539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680043772.0A Pending CN107849731A (zh) 2015-07-28 2016-07-06 外延硅晶片

Country Status (7)

Country Link
US (2) US20180204960A1 (zh)
JP (1) JP6610056B2 (zh)
KR (1) KR102057086B1 (zh)
CN (1) CN107849731A (zh)
DE (1) DE112016003412T5 (zh)
TW (1) TWI605494B (zh)
WO (1) WO2017018141A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782423A (zh) * 2021-08-25 2021-12-10 中国科学院宁波材料技术与工程研究所 杂质扩散方法和太阳能电池制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792462B (zh) * 2021-07-30 2023-02-11 合晶科技股份有限公司 供磊晶成長的複合基板及其製作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008957A1 (ja) * 2004-07-22 2006-01-26 Shin-Etsu Handotai Co., Ltd. シリコンエピタキシャルウェーハおよびその製造方法
JP2007145692A (ja) * 2005-10-24 2007-06-14 Sumco Corp シリコン半導体基板およびその製造方法
JP2010083712A (ja) * 2008-09-30 2010-04-15 Sumco Corp 結晶欠陥状態予測方法、シリコンウェーハの製造方法
CN104704608A (zh) * 2012-09-13 2015-06-10 松下知识产权经营株式会社 氮化物半导体结构物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW331017B (en) * 1996-02-15 1998-05-01 Toshiba Co Ltd Manufacturing and checking method of semiconductor substrate
JPH10303208A (ja) 1997-04-30 1998-11-13 Toshiba Corp 半導体基板およびその製造方法
KR100541882B1 (ko) * 1998-05-01 2006-01-16 왁커 엔에스씨이 코포레이션 실리콘 반도체 기판 및 그의 제조 방법
JP4510997B2 (ja) * 2000-01-18 2010-07-28 シルトロニック・ジャパン株式会社 シリコン半導体基板およびその製造方法
JP4700965B2 (ja) * 2002-11-06 2011-06-15 あすか製薬株式会社 ピラゾロナフチリジン誘導体
JP4853237B2 (ja) * 2006-11-06 2012-01-11 株式会社Sumco エピタキシャルウェーハの製造方法
JP2010141272A (ja) * 2008-12-15 2010-06-24 Sumco Corp エピタキシャルウェーハとその製造方法
JP5504664B2 (ja) * 2009-03-25 2014-05-28 株式会社Sumco シリコンエピタキシャルウェーハおよびその製造方法
WO2010109873A1 (ja) 2009-03-25 2010-09-30 株式会社Sumco シリコンウェーハおよびその製造方法
JP2011021898A (ja) * 2009-07-13 2011-02-03 Fujitsu Ltd 走査プローブ顕微鏡用標準試料及びキャリア濃度測定方法
JP2011228459A (ja) 2010-04-19 2011-11-10 Sumco Corp シリコンウェーハ及びその製造方法
TW201234570A (en) 2010-12-09 2012-08-16 Sumco Corp Epitaxial substrate for back-illuminated solid-state imaging device, and method of manufacturing the same
JP2012151458A (ja) * 2010-12-27 2012-08-09 Elpida Memory Inc 半導体装置及びその製造方法
US9634098B2 (en) * 2013-06-11 2017-04-25 SunEdison Semiconductor Ltd. (UEN201334164H) Oxygen precipitation in heavily doped silicon wafers sliced from ingots grown by the Czochralski method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008957A1 (ja) * 2004-07-22 2006-01-26 Shin-Etsu Handotai Co., Ltd. シリコンエピタキシャルウェーハおよびその製造方法
JP2007145692A (ja) * 2005-10-24 2007-06-14 Sumco Corp シリコン半導体基板およびその製造方法
JP2010083712A (ja) * 2008-09-30 2010-04-15 Sumco Corp 結晶欠陥状態予測方法、シリコンウェーハの製造方法
CN104704608A (zh) * 2012-09-13 2015-06-10 松下知识产权经营株式会社 氮化物半导体结构物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
万积庆等: "《功率晶体管原理》", 31 March 2009 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782423A (zh) * 2021-08-25 2021-12-10 中国科学院宁波材料技术与工程研究所 杂质扩散方法和太阳能电池制造方法
CN113782423B (zh) * 2021-08-25 2022-08-23 中国科学院宁波材料技术与工程研究所 杂质扩散方法和太阳能电池制造方法

Also Published As

Publication number Publication date
WO2017018141A1 (ja) 2017-02-02
US20200020817A1 (en) 2020-01-16
US20180204960A1 (en) 2018-07-19
US10861990B2 (en) 2020-12-08
JP2017024965A (ja) 2017-02-02
KR102057086B1 (ko) 2019-12-18
TWI605494B (zh) 2017-11-11
JP6610056B2 (ja) 2019-11-27
KR20180016580A (ko) 2018-02-14
TW201715579A (zh) 2017-05-01
DE112016003412T5 (de) 2018-04-19

Similar Documents

Publication Publication Date Title
CN100527369C (zh) Igbt用硅晶片及其制备方法
CN101187058B (zh) 硅半导体晶片及其制造方法
TWI278040B (en) Silicon epitaxial wafer and manufacturing method for same
CN101024895B (zh) 外延晶片以及制造外延晶片的方法
CN101768777B (zh) 硅晶片及其制造方法
CN107533959A (zh) 外延硅晶片的制造方法
US8545622B2 (en) Annealed wafer and manufacturing method of annealed wafer
US20050229842A1 (en) Manufacturing method of silicon wafer
JPWO2006003812A1 (ja) シリコンウェーハの製造方法及びこの方法により製造されたシリコンウェーハ
EP2199435A1 (en) Annealed wafer and method for producing annealed wafer
US8864907B2 (en) Silicon substrate and manufacturing method of the same
US20130161793A1 (en) Silicon Single Crystal Substrate and Method Of Manufacturing The Same
CN100345263C (zh) 具有氮/碳稳定的氧沉淀物成核中心的硅片及其制造方法
US6626994B1 (en) Silicon wafer for epitaxial wafer, epitaxial wafer, and method of manufacture thereof
EP2098620A1 (en) Method of manufacturing silicon substrate
CN107849731A (zh) 外延硅晶片
JPH1050715A (ja) シリコンウェーハとその製造方法
CN107532325B (zh) 硅外延晶圆及其制造方法
JP2004319642A (ja) Soi基板の製造方法およびsoi基板
JP7331520B2 (ja) エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、シリコンウェーハの製造方法および半導体装置の製造方法
TWI533356B (zh) 磊晶矽晶圓及磊晶矽晶圓的製造方法
JP2002009006A (ja) 拡散シリコンウェハおよびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180327