CN107846027A - 一种三相电网不平衡下mmc的三相电压支撑方法 - Google Patents

一种三相电网不平衡下mmc的三相电压支撑方法 Download PDF

Info

Publication number
CN107846027A
CN107846027A CN201711181455.8A CN201711181455A CN107846027A CN 107846027 A CN107846027 A CN 107846027A CN 201711181455 A CN201711181455 A CN 201711181455A CN 107846027 A CN107846027 A CN 107846027A
Authority
CN
China
Prior art keywords
voltage
phase
grid
power
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711181455.8A
Other languages
English (en)
Other versions
CN107846027B (zh
Inventor
杭丽君
邱键
何远彬
朱明琳
王文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201711181455.8A priority Critical patent/CN107846027B/zh
Publication of CN107846027A publication Critical patent/CN107846027A/zh
Application granted granted Critical
Publication of CN107846027B publication Critical patent/CN107846027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种三相电网不平衡下MMC的三相电压支撑方法,该方法基于一种多变量保护控制方法,旨在改善电网发生不平衡故障时MMC的输出行为。由于交流电网故障时系统的三相电流会不平衡且在直流侧会存在较大电压纹波及功率波动,严重时危及变换器安全、缩短变换器寿命,因此必须要合理控制电网负序分量对系统的影响。本发明采用一种灵活正负序控制算法(FPNSC),采用d‑q坐标系下灵活正负和负序控制策略,通过参变量的调节,合理调整网侧电流参考的正负序含量,使得网侧电流波形质量和系统瞬时有功功率、无功功率得到合理控制,从而实现在三相电网不平衡下对MMC的三相电压支撑。

Description

一种三相电网不平衡下MMC的三相电压支撑方法
技术领域
本发明涉及一种三相电网不平衡下MMC的对交流电网电压的支撑方法,属于电力电子功率变换器领域。
背景技术
柔性直流输电的应用,扩大了电力电子变流技术在电力系统输电领域的应用,MMC(如图一)以其较好的延展性被认为是较有应用前景的拓扑电路,广泛应用在柔性直流输电(VSC-HVDC)领域,尤其是在近年来兴起的多端柔性直流输电领域。
在交直流混合型输配电中,电网故障时由于电网负序分量的存在会导致系统三相电流不平衡或非正弦、直流侧存在较大电压纹波、功率波动等问题,危及变流器安全、缩短变流器寿命。并网导则规定在一定交流电网故障下分布式并网发电系统需要正常并网运行并提供动态无功支撑。
目前电网不平衡时变换器提供三相电压支撑的控制方法主要有如下几种:瞬时有功-无功控制,对称正序控制,正负序控制,平均有功-无功控制。瞬时有功-无功控制可精确的控制系统的有功和无功功率,但如果网侧电压出现不平衡跌落,该方法将导致网侧电流波形畸变严重;对称正序控制策略不考虑电网电压负序分量,可得到对称的网侧电流;正负序控制、平均有功-无功控制均考虑电网电压负序分量,但这两种控制方法均为单一控制目标的方法无法灵活的调节电流参考中网侧电压负序分量的含量。
发明内容
本发明针对现有技术的不足,提出了一种三相电网不平衡下MMC的三相电压支撑方法,以柔性直流输电(VSC-HVDC)为应用目标,从交流网侧电流质量、MMC桥臂电流、直流侧电压纹波以及中点电位平衡多个控制变量出发,提出了灵活的多变量保护控制策略,使MMC系统在交流电网故障下能够正常运行并提供动态电压支撑。
一种三相电网不平衡下MMC的三相电压支撑方法,本发明提出的MMC三相电压支撑方法基于一种多变量保护控制方法,即选择一种较为灵活的控制方法,将恒有功功率控制的对称正序控制,正负序控制,平均有功-无功控制三种方法统一,通过调节控制变量,达到动态调节电流参考中的网侧电压负序分量部分的目的,在一定程度上消除系统瞬时有功功率的二倍频振荡,相对减小电流参考的幅值,实现对网侧电流波形质量和系统功率波动的灵活调节与控制,达到支撑电压的目的;当电网出现不平衡故障时,通过从MMC向电网注入适当的有功功率与无功功率,可对并网点实现最优电压支撑,满足并网规范要求,保证系统运行在安全稳定的状态;
本发明具体包含以下步骤:
步骤1.忽略电网电压的零序分量,计算MMC采用恒有功功率控制方法下并网三相电流;
其中:V+、V-和V0分别表示电网电压向量的正序、负序和零序的幅值;θ+、θ-和θ0分别表示电网电压向量的正序、负序和零序的角度,k为多变量保护方法中的控制参数;ω表示电网频率,t表示时间;
步骤2.根据步骤1计算出三相电网电压的幅值如下:
其中:
假设电压最大值Umax=max(Ua,Ub,Uc),电压最小值Umin=min(Ua,Ub,Uc),得出Umax,Umin的关系如表1所示;由表可以看出,被分成六个区间,每个区间长度为π/3,可计算出不同下相应的电压幅值的最大值和最小值;即当时,A相电压的幅值最大,C相最小;时,B相电压的幅值最大,C相电压的幅值最小;时,B相电压的幅值最大,A相电压幅值最小;时,C相电压幅值最大,A相最小;C相电压幅值最大,B相最小;时,A相电压幅值最大,B相最小;
表1
步骤3.假设V+>V-,根据步骤1,步骤2计算出V+,V-和并网规范下的Umax、Umin的关系:
其中:k1和k2为中间变量,取值依据表2:
表2
得出并网规范下并网点电压正序V+和负序V-
步骤4.根据换流器与电网之间线路的等效电阻R和电感L来确定控制参数k以及注入的功率大小;
当R<<ωL,忽略电阻对并网点电压的影响,通过注入无功功率支撑并网点电压,调节参数k和注入的无功功率Q0的关系表达式如下:
当R和ωL相当,线路电阻对并网点电压的影响不可忽略,按下式分配有功和无功功率:
这样调节参数k和注入的无功功率Q0的表达式如下式所示:
通过对电网注入功率,以实现该控制方法下对并网点的最优电压支撑,满足并网规范要求。
本发明通过采用多变量保护控制方法,改变参数k来调节注入的有功功率P0和无功功率Q0,以实现并网规范范围内最好的电压支撑效果。
附图说明
图1为本发明所述MMC电路原理图;
图2为本发明所述三相电网不平衡下MMC三相电压支撑方法的控制框图;
图3为本发明所涉及的换流器接入电网简化电路;
图4为本发明所述三相电网不平衡下MMC三相电压支撑方法中电流参考值的计算流程图。
具体实施方式
如图1所示,本发明所述MMC电路,当网侧交流电压出现不平衡故障时,三相电流会不平衡且在直流侧会存在较大电压纹波及功率波动,严重时危及变换器安全。采用本发明提出的三相电网不平衡下MMC的三相电压支撑方法基于一种多变量保护控制方法,这种方法可以有效支撑电网电压,避免上述问题。多变量保护控制方法的系统控制框图如图3所示。方法主要步骤如下:
(1)方法变量初始化,设定所有电流电压相关参数,包括正负序电流在dq坐标系下的给定值i+ dref、i+ qref、i- dref、i- qref,保护控制参数k(-1<k<1)。
(2)对电网电压和网侧输出电流分别进行正负序分离,得到电网电压d轴正序分量vd +,d轴负序分量vd -,q轴正序分量vq +,q轴负序分量vq -,网侧电流d轴正序分量id +,d轴负序分量id -,q轴正序分量iq +,q轴负序分量vq -
(3)在电网不平衡故障下进行锁相环计算以及直流母线电压环调节,锁相环对网侧电压锁相之后输出的相位角度θ以及MMC给定有功功率参考值P0
(4)根据步骤(1)(2)(3)所得的vd +、vd -、vq +、vq -、P0、k,计算出dq坐标轴下网侧电流参考值,其公式如下:
(5)分别进行正序d轴电流环调节、正序q轴电流环调节、负序d轴电流环调节、负序q轴电流环调节,输出相应的控制电压U+ d,U+ q,U- d,U- q
(6)根据步骤(5)所得出的U+ d,U+ q,U- d,U- q,获得MMC系统三相调制信号,实现变换器的瞬时有功功率、无功功率和直流电压的控制。
基于多变量保护控制方法,通过调节参数k来调节注入的有功功率P0和无功功率Q0,以实现并网规范范围内最好的电压支撑效果。
并网换流器接入电网的简化电路如图2所示,其中R、L为换流器与电网之间线路的等效电阻和电感,ij(j=a,b,c)为换流器注入电网的电流,uj和Vgj分别为并网点和电网侧的端口电压,P0和Q0为换流器注入电网的有功和无功功率,P1和Q1为电网接收的有功和无功功率。
由图2可得出以下等式:
其中j=(a,b,c)。
设ΔU1和δU1是uj与Vgj之差的幅值和相角,根据电力系统相关理论可得出下式:
如果线路电阻远小于感抗,即R<<ωL,可通过向故障电网注入无功功率支撑来并网点电压。若电阻R不可忽略,为获得最大的电压支撑效果,可按下式分配有功和无功功率:
在电网不平衡时,三相电网电压的幅值计算如下:
其中
假设Umax=max(Ua,Ub,Uc),Umin=min(Ua,Ub,Uc),可得出Umax,Umin的关系如下表所示。由表中可以看出,被分成六个区间,每个区间长度为π/3,可计算出不同下相应的电压幅值的最大值和最小值。即当时,A相电压的幅值最大,C相最小; 时,B相电压的幅值最大,C相电压的幅值最小;时,B相电压的幅值最大,A相电压幅值最小;时,C相电压幅值最大,A相最小;C相电压幅值最大,B相最小;时,A相电压幅值最大,B相最小。
假设V+>V-,综上所述可计算出V+,V-和并网规范下的Umax、Umin的关系如下所示:
其中,k1和k2为中间变量,k1和k2的取值依据下表:
又根据并网规范,Umax和Umin需满足以下不等式:
其中U为相电压幅值。
由此可得出并网规范下并网点电压正序V+和负序V-,也可进一步得出并网规范下需要注入电网的功率量。
关于参数k和注入的有功无功功率P0和Q0的计算分以下两种情况讨论:
1、如果R<<ωL,可忽略电阻对并网点电压的影响,通过注入无功功率支撑并网点电压。调节参数k和注入的无功功率Q0的关系表达式如下:
2、如果R和ωL相当,线路电阻对并网点电压的影响不可忽略,调节参数k和注入的无功功率Q0的表达式如下式所示:
根据以上分析,可以得出参数k和注入功率参考值。设计方法及具体流程如图4所示。首先对线路阻抗进行估算,并设置并网规范允许的Umin和Umax。然后计算出并网点电压的正序分量V+和负序分量V-。根据线路电阻和电抗的关系,计算出调节参数k和注入的功率量。在确定调节参数k和注入的功率量后,确定交流电流参考值。
本发明提出的控制方法下可以实现对并网点的最优电压支撑,满足并网规范要求。

Claims (1)

1.一种三相电网不平衡下MMC的三相电压支撑方法,其特征在于,该方法具体包含以下步骤:
步骤1.忽略电网电压的零序分量,计算MMC采用恒有功功率控制方法下并网三相电流;
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>P</mi> <mn>0</mn> </msub> <mrow> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>kV</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mi>t</mi> <mo>+</mo> <msup> <mi>&amp;theta;</mi> <mo>+</mo> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>kV</mi> <mo>-</mo> </msup> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mi>t</mi> <mo>+</mo> <msup> <mi>&amp;theta;</mi> <mo>-</mo> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mi>t</mi> <mo>+</mo> <msup> <mi>&amp;theta;</mi> <mo>+</mo> </msup> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>kV</mi> <mo>-</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mi>t</mi> <mo>+</mo> <msup> <mi>&amp;theta;</mi> <mo>-</mo> </msup> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mi>t</mi> <mo>+</mo> <msup> <mi>&amp;theta;</mi> <mo>+</mo> </msup> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>kV</mi> <mo>-</mo> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mi>t</mi> <mo>+</mo> <msup> <mi>&amp;theta;</mi> <mo>-</mo> </msup> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中:V+、V-和V0分别表示电网电压向量的正序、负序和零序的幅值;θ+、θ-和θ0分别表示电网电压向量的正序、负序和零序的角度,k为多变量保护算法中的控制参数;ω表示电网频率,t表示时间;
步骤2.根据步骤1计算出三相电网电压的幅值如下:
其中:
假设电压最大值Umax=max(Ua,Ub,Uc),电压最小值Umin=min(Ua,Ub,Uc),得出Umax,Umin的关系如表1所示;由表可以看出,被分成六个区间,每个区间长度为π/3,可计算出不同下相应的电压幅值的最大值和最小值;即当时,A相电压的幅值最大,C相最小;时,B相电压的幅值最大,C相电压的幅值最小; 时,B相电压的幅值最大,A相电压幅值最小;时,C相电压幅值最大,A相最小;C相电压幅值最大,B相最小;时,A相电压幅值最大,B相最小;
表1
步骤3.假设V+>V-,根据步骤1,步骤2计算出V+,V-和并网规范下的Umax、Umin的关系:
其中:k1和k2为中间变量,取值依据表2:
表2
得出并网规范下并网点电压正序V+和负序V-
步骤4.根据换流器与电网之间线路的等效电阻R和电感L来确定控制参数k以及注入的功率大小;
当R<<ωL,忽略电阻对并网点电压的影响,通过注入无功功率支撑并网点电压,调节参数k和注入的无功功率Q0的关系表达式如下:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <mfrac> <msup> <mi>V</mi> <mo>+</mo> </msup> <msup> <mi>V</mi> <mo>-</mo> </msup> </mfrac> <mfrac> <mrow> <msup> <mi>V</mi> <mo>-</mo> </msup> <mo>-</mo> <msubsup> <mi>V</mi> <mi>g</mi> <mo>-</mo> </msubsup> </mrow> <mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> <mo>-</mo> <msubsup> <mi>V</mi> <mi>g</mi> <mo>+</mo> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mfrac> <mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> <mo>-</mo> <msubsup> <mi>V</mi> <mi>g</mi> <mo>+</mo> </msubsup> </mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> </mfrac> <mfrac> <mrow> <mo>(</mo> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>kV</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <mi>&amp;omega;</mi> <mi>L</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
当R和ωL相当,线路电阻对并网点电压的影响不可忽略,按下式分配有功和无功功率:
<mrow> <mfrac> <msub> <mi>P</mi> <mn>0</mn> </msub> <msub> <mi>Q</mi> <mn>0</mn> </msub> </mfrac> <mo>=</mo> <mfrac> <mi>R</mi> <mi>X</mi> </mfrac> </mrow>
这样调节参数k和注入的无功功率Q0的表达式如下式所示:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>k</mi> <mo>=</mo> <mfrac> <msup> <mi>V</mi> <mo>+</mo> </msup> <msup> <mi>V</mi> <mo>-</mo> </msup> </mfrac> <mfrac> <mrow> <msup> <mi>V</mi> <mo>-</mo> </msup> <mo>-</mo> <msubsup> <mi>V</mi> <mi>g</mi> <mo>-</mo> </msubsup> </mrow> <mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> <mo>-</mo> <msubsup> <mi>V</mi> <mi>g</mi> <mo>+</mo> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mfrac> <mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> <mo>-</mo> <msubsup> <mi>V</mi> <mi>g</mi> <mo>+</mo> </msubsup> </mrow> <msup> <mi>V</mi> <mo>+</mo> </msup> </mfrac> <mfrac> <mrow> <mo>(</mo> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>kV</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>)</mo> <mo>(</mo> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>kV</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>kV</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mi>L</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>kV</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
通过对电网注入功率,以实现该控制方法下对并网点的最优电压支撑,满足并网规范要求。
CN201711181455.8A 2017-11-23 2017-11-23 一种三相电网不平衡下mmc的三相电压支撑方法 Active CN107846027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711181455.8A CN107846027B (zh) 2017-11-23 2017-11-23 一种三相电网不平衡下mmc的三相电压支撑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711181455.8A CN107846027B (zh) 2017-11-23 2017-11-23 一种三相电网不平衡下mmc的三相电压支撑方法

Publications (2)

Publication Number Publication Date
CN107846027A true CN107846027A (zh) 2018-03-27
CN107846027B CN107846027B (zh) 2020-04-21

Family

ID=61680197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711181455.8A Active CN107846027B (zh) 2017-11-23 2017-11-23 一种三相电网不平衡下mmc的三相电压支撑方法

Country Status (1)

Country Link
CN (1) CN107846027B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574295A (zh) * 2018-04-24 2018-09-25 上海电力学院 基于李雅普诺夫函数的不平衡电网电压下mmc控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505841A (zh) * 2014-12-03 2015-04-08 许继电气股份有限公司 电网不对称短路故障的静止同步发电机无功支撑控制方法
CN105743371A (zh) * 2016-04-13 2016-07-06 上海交通大学 适用于不平衡电压下的mmc的控制器制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505841A (zh) * 2014-12-03 2015-04-08 许继电气股份有限公司 电网不对称短路故障的静止同步发电机无功支撑控制方法
CN105743371A (zh) * 2016-04-13 2016-07-06 上海交通大学 适用于不平衡电压下的mmc的控制器制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁营玉等: "电网电压不平衡时MMC-HVDC的无差拍直接功率控制", 《电工技术学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574295A (zh) * 2018-04-24 2018-09-25 上海电力学院 基于李雅普诺夫函数的不平衡电网电压下mmc控制方法
CN108574295B (zh) * 2018-04-24 2021-03-02 上海电力学院 基于李雅普诺夫函数的不平衡电网电压下mmc控制方法

Also Published As

Publication number Publication date
CN107846027B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN111313438B (zh) 一种柔性直流输电系统高频振荡抑制方法及其系统
CN106849135B (zh) 微网逆变器与有源滤波器的功率/电流质量协同方法
CN108154315B (zh) 一种考虑锁相环影响的并网变流器次同步振荡风险分析方法
JP6043543B2 (ja) インバータ回路を制御する制御回路、および、当該制御回路を備えたインバータ装置
JP7182009B2 (ja) 系統連系電力変換装置
CN112600235B (zh) 一种柔性直流换流器等效阻抗的优化控制方法和装置
CN111769588A (zh) 一种基于电网不平衡故障下vsg低电压穿越控制方法和系统
CN112600234B (zh) 一种改善柔性直流换流器等效阻抗的控制方法和装置
CN112671010A (zh) 基于虚拟阻抗的风机并网次同步振荡抑制及高频谐波抑制方法
CN104950202A (zh) 一种基于无功-频率正反馈的孤岛检测方法及系统
CN110176770B (zh) 电网电压不平衡时mmc型有源电力滤波器的控制方法
CN113422381B (zh) 一种柔性直流换流器定交流侧电压控制系统及方法
Yang et al. A broadband active damping method for high-frequency resonance suppression in MMC-HVDC system
Xue et al. A comprehensive study on impedance models of grid-tied voltage-source converters
CN107846027B (zh) 一种三相电网不平衡下mmc的三相电压支撑方法
CN110601519B (zh) 一种交直流混合微电网并联换流器环流抑制方法
CN111030131A (zh) 基于负序虚拟阻抗的mmc-statcom环流抑制装置
CN114566962B (zh) 一种分布式能源并网系统同步频率谐振抑制方法
CN115395809A (zh) 一种mmc自适应相功率均衡控制方法及系统
CN112583050A (zh) 一种多vsg逆变器环流抑制及故障处理的控制方法和系统
CN106505581B (zh) 光伏并网逆变器的补偿方法和装置
CN115189361A (zh) 一种阻尼性能提升的柔性直流输电系统交流电压前馈方法
CN111934575B (zh) 一种列车辅助变流器输出电压平衡控制方法及介质
CN114123206A (zh) 面向电动汽车充电站的谐波治理方法
CN112542846A (zh) 一种用于等效扩容的储能系统容量自适应分配控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant