CN107845462A - 一种低磁滞损耗的磁性材料制备方法 - Google Patents

一种低磁滞损耗的磁性材料制备方法 Download PDF

Info

Publication number
CN107845462A
CN107845462A CN201711004949.9A CN201711004949A CN107845462A CN 107845462 A CN107845462 A CN 107845462A CN 201711004949 A CN201711004949 A CN 201711004949A CN 107845462 A CN107845462 A CN 107845462A
Authority
CN
China
Prior art keywords
magnetic material
melting
magnetic
material preparation
hystersis loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711004949.9A
Other languages
English (en)
Inventor
肖翰松
李洪达
刘刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neijiang Rising Environment Technology Co Ltd
Original Assignee
Neijiang Rising Environment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neijiang Rising Environment Technology Co Ltd filed Critical Neijiang Rising Environment Technology Co Ltd
Priority to CN201711004949.9A priority Critical patent/CN107845462A/zh
Publication of CN107845462A publication Critical patent/CN107845462A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种低磁滞损耗的磁性材料的制备方法,属于磁性材料领域。本发明包括以下质量比的原料:硼0.65~0.75%,镨钕26.5~28.5%,铌0.08~0.11%,铝0.45~0.68%,铜0.26~0.45%,锌1.25~1.55%,锰2.3~2.5%,钛0.01~0.02%,钼0.01~0.02%,锂0.25~0.45%,余量为铁及不可避免杂质,本发明的磁性材料经混料、熔炼、粉碎、压制和烧结工艺制成。所得磁性材料具有良好的温度稳定性和较高的磁感应强度,其功率损耗通现有技术相比低得多;本发明提供的磁性材料制备方法,工艺简单,生产成本低,操作安全,适合工业化生产。

Description

一种低磁滞损耗的磁性材料制备方法
技术领域
本发明涉及磁性材料领域,更具体的是涉及一种低磁滞损耗的磁性材料制备方法。
背景技术
磁性材料的应用十分广泛,其主要应用于电磁炉、空调、电脑通讯、电子变压器等配套产品中,还可以应用于汽车电子和电力电机等领域。般磁性材料的制备方法可分为固相法、气相法和液相法。固相法的工序较简单,但是在需要高于600℃的温度下进行反应,而且得到的磁性材料交容易聚焦成块而不易分散。气相法即化学气相沉积法,该方法需要在高于200℃的温度下进行反应,其反应条件较为苛刻,加工窗口小,不易量产。液相法则必须将所得的初始产物在高于400℃的温度喜爱进行高温烧结,才能得到纯度较高的磁性材料。
能源危机是世界各国面临的实际问题,而节能是解决能源紧张的一条重要途径,因此,大力提倡、发展节能产品不仅有重要的现实意义,而且有深远的社会意义。磁性产品是典型的节能节材产品,在传统产业的节能中有着不可替代的作用。但在现有技术中,磁性材料由于在应用过程中的温度稳定性差,磁感应强度低,在应用的各种电气设备中存在磁电转换效率低,制造成本高,耗能高的缺陷。
发明内容
本发明的目的在于:针对现有技术不足,本发明提供了一种低磁滞损耗的磁性材料制备方法,所得磁性材料具有良好的温度稳定性和较高的磁感应强度,可有效降低磁性材料功率损耗。
本发明为了实现上述目的具体采用以下技术方案:
一种低磁滞损耗的磁性材料制备方法,其特征在于,包括如下步骤:
A.混料:按质量比称取原料:硼0.65~0.75%,镨钕26.5~28.5%,铌0.08~0.11%,铝0.45~ 0.68%,铜0.26~0.45%,锌1.25~1.55%,锰2.3~2.5%,钛0.01~0.02%,钼0.01~0.02%,锂0.25~0.45%,余量为铁及不可避免杂质并充分混合均匀,得预混料;
B.熔炼:将A所得预混料置于真空熔炼炉内熔炼为锭子;
C.粉碎:将B所得锭子置于氢碎炉内进行两次粉碎,所得产品于气流磨内气磨后制成粒径3.6~ 4.0μm的粉料;
D.压制:将C所得粉料置于磁场中于770~800MPa下取向并压制坯体;
E.烧结:将坯体在820~880℃下预热90~120min,带热置于模具中加压250~285MPa以提高磁体密度,再于1150~1250℃下保温190~230min,回火,通入水蒸气气冷,降至室温。
作为优选的,所述步骤B的具体工艺为:向真空熔炼炉内边加预混料边充入惰性气体,加料完毕后继续充入惰性气体2~3min,之后进行抽真空并熔炼,抽真空度为3×10-2~5×10-2Pa,熔炼温度为1250~1350℃,时间130~170min,熔炼后冷却成型。
作为优选的,所述惰性气体为氩气。
作为优选的,步骤E中所述的回火过程为:将加热后的坯体降温至850~900℃保温190~ 230min,缓慢降温至550~600℃并保温250~280min。
本发明的有益效果如下:
本发明的磁性材料通过二次加压,有效提高磁密度,所制得的磁体具有良好的磁性能,居里温度超过280℃,具有良好的温度稳定性和较高的磁感应强度,其功率损耗通现有技术相比低得多;本发明提供的磁性材料制备方法,工艺简单,生产成本低,操作安全,适合工业化生产。
具体实施方式
为了本技术领域的人员更好的理解本发明,结合以下实施例对本发明作进一步详细描述。
实施例1:
一种低能损磁性材料,其由以下配方及方法制备:①配方:包括以下质量比的原料,硼0.8%,镨钕29%,铌0.1%,铝0.6%,铜0.3%,锌1.4%,锰2.4%,钛0.01%,钼0.02%,锂0.25%,余量为铁及不可避免杂质。②具体制备方法:按称取好的配方原料充分混合均匀,得预混料;将预混料置于真空熔炼炉内熔炼为锭子;将所得锭子置于氢碎炉内进行两次粉碎,所得产品于气流磨内气磨后制成粒径3.6~4.0μm的粉料;所得粉料置于磁场中于800MPa下取向并压制坯体;将坯体在875℃下预热90min,带热置于模具中加压280MPa以提高磁体密度,再于1150℃下保温210min,回火,通入水蒸气气冷,降至室温。
锭子熔炼的具体工艺为:向真空熔炼炉内边加预混料边充入惰性气体氩气,加料完毕后继续充入惰性气体2min,以充分驱逐熔炼炉及原料颗粒间的氧气,之后进行抽真空并熔炼,真空度为4 ×10-2Pa,熔炼温度为1350℃,时间160min,熔炼后冷却成型;回火的具体工艺过程包括:将加热后的坯体降温至950℃保温200min,缓慢降温至580℃并保温280min。
实施例2:一种低能损磁性材料,其由以下配方及方法制备:①配方:包括以下质量比的原料,硼0.7%,镨钕27.5%,铌0.09%,铝0.4%,铜0.3%,锌1.2%,锰2.3%,钛0.01%,钼0.01%,锂0.28%,余量为铁及不可避免杂质。②具体制备方法:按称取好的配方原料充分混合均匀,得预混料;将预混料置于真空熔炼炉内熔炼为锭子;将所得锭子置于氢碎炉内进行两次粉碎,所得产品于气流磨内气磨后制成粒径3.6~4.0μm的粉料;所得粉料置于磁场中于780MPa下取向并压制坯体;将坯体在850℃下预热88min,带热置于模具中加压270MPa以提高磁体密度,再于1100℃下保温180min,回火,通入水蒸气气冷,降至室温。
锭子熔炼的具体工艺为:向真空熔炼炉内边加预混料边充入惰性气体氩气,加料完毕后继续充入惰性气体1min,以充分驱逐熔炼炉及原料颗粒间的氧气,之后进行抽真空并熔炼,真空度为3 ×10-2Pa,熔炼温度为1200℃,时间120min,熔炼后冷却成型;回火的具体工艺过程包括:将加热后的坯体降温至860℃保温180min,缓慢降温至600℃并保温240min。
实施例3:一种低能损磁性材料,其由以下配方及方法制备:①配方:包括以下质量比的原料,硼0.8%,镨钕29.5%,铌0.12%,铝0.7%,铜0.4%,锌1.5%,锰2.5%,钛0.02%,钼0.02%,锂0.3%,余量为铁及不可避免杂质。②具体制备方法:按称取好的配方原料充分混合均匀,得预混料;将预混料置于真空熔炼炉内熔炼为锭子;将所得锭子置于氢碎炉内进行两次粉碎,所得产品于气流磨内气磨后制成粒径3.6~4.0μm的粉料;所得粉料置于磁场中于800MPa下取向并压制坯体;将坯体在900℃下预热100min,带热置于模具中加压280MPa以提高磁体密度,再于1200℃下保温240min,回火,通入水蒸气气冷,降至室温。
锭子熔炼的具体工艺为:向真空熔炼炉内边加预混料边充入惰性气体氩气,加料完毕后继续充入惰性气体2min,以充分驱逐熔炼炉及原料颗粒间的氧气,之后进行抽真空并熔炼,真空度为5 ×10-2Pa,熔炼温度为1350℃,时间180min,熔炼后冷却成型;回火的具体工艺过程包括:将加热后的坯体降温至920℃保温240min,缓慢降温至600℃并保温300min。
实施例4:一种低能损磁性材料,其由以下配方及方法制备:①配方:包括以下质量比的原料,硼0.7%,镨钕29.5%,铌0.09%,铝0.7%,铜0.3%,锌1.5%,锰2.3%,钛0.02%,钼0.01%,锂0.33%,余量为铁及不可避免杂质。②具体制备方法:按称取好的配方原料充分混合均匀,得预混料;将预混料置于真空熔炼炉内熔炼为锭子;将所得锭子置于氢碎炉内进行两次粉碎,所得产品于气流磨内气磨后制成粒径3.6~4.0μm的粉料;所得粉料置于磁场中于800MPa下取向并压制坯体;将坯体在850℃下预热100min,带热置于模具中加压260MPa以提高磁体密度,再于1200℃下保温180min,回火,通入水蒸气气冷,降至室温。
锭子熔炼的具体工艺为:向真空熔炼炉内边加预混料边充入惰性气体氩气,加料完毕后继续充入惰性气体1min,以充分驱逐熔炼炉及原料颗粒间的氧气,之后进行抽真空并熔炼,真空度为3 ×10-2Pa,熔炼温度为1350℃,时间120min,熔炼后冷却成型;回火的具体工艺过程包括:将加热后的坯体降温至920℃保温180min,缓慢降温至600℃并保温240min。
实施例5:一种低能损磁性材料,其由以下配方及方法制备:①配方:包括以下质量比的原料,硼0.8%,镨钕28.8%,铌0.11%,铝0.5%,铜0.3%,锌1.3%,锰2.4%,钛0.01%,钼0.01%,锂0.35%,余量为铁及不可避免杂质。②具体制备方法:按称取好的配方原料充分混合均匀,得预混料;将预混料置于真空熔炼炉内熔炼为锭子;将所得锭子置于氢碎炉内进行两次粉碎,所得产品于气流磨内气磨后制成粒径3.6~4.0μm的粉料;所得粉料置于磁场中于789MPa下取向并压制坯体;将坯体在885℃下预热95min,带热置于模具中加压270MPa以提高磁体密度,再于1160℃下保温225min,回火,通入水蒸气气冷,降至室温。
锭子熔炼的具体工艺为:向真空熔炼炉内边加预混料边充入惰性气体氩气,加料完毕后继续充入惰性气体1.5min,以充分驱逐熔炼炉及原料颗粒间的氧气,之后进行抽真空并熔炼,真空度为4 ×10-2Pa,熔炼温度为1250℃,时间188min,熔炼后冷却成型;回火的具体工艺过程包括:将加热后的坯体降温至874℃保温200min,缓慢降温至590℃并保温290min。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,本发明的专利保护范围以权利要求书为准,凡是运用本发明的说明书内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (4)

1.一种低磁滞损耗的磁性材料制备方法,其特征在于,包括如下步骤:
A.混料:按质量比称取原料:硼0.65~0.75%,镨钕26.5~28.5%,铌0.08~0.11%,铝0.45~0.68%,铜0.26~0.45%,锌1.25~1.55%,锰2.3~2.5%,钛0.01~0.02%,钼0.01~0.02%,锂0.25~0.45%,余量为铁及不可避免杂质并充分混合均匀,得预混料;
B.熔炼:将A所得预混料置于真空熔炼炉内熔炼为锭子;
C.粉碎:将B所得锭子置于氢碎炉内进行两次粉碎,所得产品于气流磨内气磨后制成粒径3.6~4.0μm的粉料;
D.压制:将C所得粉料置于磁场中于770~800MPa下取向并压制坯体;
E.烧结:将坯体在820~880℃下预热90~120min,带热置于模具中加压250~285MPa以提高磁体密度,再于1150~1250℃下保温190~230min,回火,通入水蒸气气冷,降至室温。
2.根据权利要求1所述的低磁滞损耗的磁性材料制备方法,其特征在于,所述步骤B的具体工艺为:向真空熔炼炉内边加预混料边充入惰性气体,加料完毕后继续充入惰性气体2~3min,之后进行抽真空并熔炼,抽真空度为3×10-2~5×10-2Pa,熔炼温度为1250~1350℃,时间130~170min,熔炼后冷却成型。
3.根据权利要求2所述的低磁滞损耗的磁性材料制备方法,其特征在于,所述惰性气体为氩气。
4.根据权利要求1所述的低磁滞损耗的磁性材料制备方法,其特征在于,步骤E中所述的回火过程为:将加热后的坯体降温至850~900℃保温190~230min,缓慢降温至550~600℃并保温250~280min。
CN201711004949.9A 2017-10-24 2017-10-24 一种低磁滞损耗的磁性材料制备方法 Pending CN107845462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711004949.9A CN107845462A (zh) 2017-10-24 2017-10-24 一种低磁滞损耗的磁性材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711004949.9A CN107845462A (zh) 2017-10-24 2017-10-24 一种低磁滞损耗的磁性材料制备方法

Publications (1)

Publication Number Publication Date
CN107845462A true CN107845462A (zh) 2018-03-27

Family

ID=61663073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711004949.9A Pending CN107845462A (zh) 2017-10-24 2017-10-24 一种低磁滞损耗的磁性材料制备方法

Country Status (1)

Country Link
CN (1) CN107845462A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109800A (zh) * 2017-12-13 2018-06-01 绵阳市吉富精密机械有限公司 一种低损耗的节能磁性材料的制备方法
CN110600217A (zh) * 2018-06-12 2019-12-20 安徽邦瑞新材料科技有限公司 一种低磁滞损耗的磁性材料制备方法
CN112802679A (zh) * 2020-12-31 2021-05-14 宁波松科磁材有限公司 一种无重稀土烧结钕铁硼磁体的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109800A (zh) * 2017-12-13 2018-06-01 绵阳市吉富精密机械有限公司 一种低损耗的节能磁性材料的制备方法
CN110600217A (zh) * 2018-06-12 2019-12-20 安徽邦瑞新材料科技有限公司 一种低磁滞损耗的磁性材料制备方法
CN112802679A (zh) * 2020-12-31 2021-05-14 宁波松科磁材有限公司 一种无重稀土烧结钕铁硼磁体的制备方法

Similar Documents

Publication Publication Date Title
CN100486738C (zh) Fe-6.5Si合金粉末的制造方法及磁粉芯的制造方法
CN101562068B (zh) 用钕铁硼粉末废料制作钕铁硼永磁材料的方法
CN102436895B (zh) 一种铁硅铝磁粉芯的制备方法
CN101615462B (zh) 含有微量氮RE-Fe-B系永磁材料的制备方法
CN107845462A (zh) 一种低磁滞损耗的磁性材料制备方法
CN107275024A (zh) 一种含有氮化物相的高性能钕铁硼永磁铁及制造方法
CN101826386A (zh) 一种稀土永磁材料的成分和制造工艺
CN102796912B (zh) 一种Al2O3弥散强化铜合金棒材的制备方法
CN112662881A (zh) 一种微波还原热解钴酸锂电池制备工业级钴粉的方法
CN107555998A (zh) 高纯度Fe2AlB2陶瓷粉体及致密块体的制备方法
CN103938005A (zh) 气流磨氢化钛粉制备超细晶粒钛及钛合金的方法
CN101624662B (zh) 一种微波熔渗制备W-Cu合金的方法
CN104779024B (zh) 一种低能损磁性材料及其制备方法
CN103824669B (zh) 一种μ90铁硅镍磁粉芯材料及其制备方法
CN100415910C (zh) 用放电等离子烧结技术制备储氢合金的方法
CN108172388A (zh) 一种非晶纳米晶制备磁粉芯的方法
CN108109800A (zh) 一种低损耗的节能磁性材料的制备方法
CN107904410B (zh) 一种复合脱气剂制备高温合金和靶材专用高纯金属铬的生产方法
CN103779065B (zh) 一种稀土永磁磁环的制备方法
CN109735701A (zh) 一种微波分解硫化物制备金属和硫磺的方法
CN107419186A (zh) 一种螺旋齿轮的制造方法
CN103839643B (zh) 一种μ26铁硅镍磁粉芯材料及其制备方法
CN102392149A (zh) 一种微波烧结制备纳米稀土改性钢结硬质合金的方法
CN106853533B (zh) 一种制备高纯硼铁超细粉体的方法
CN106158211B (zh) 一种高性能钕铁硼稀土永磁合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180327

WD01 Invention patent application deemed withdrawn after publication