CN107843429A - 轴承状态监测控制方法及控制装置、监测设备、监测方法 - Google Patents

轴承状态监测控制方法及控制装置、监测设备、监测方法 Download PDF

Info

Publication number
CN107843429A
CN107843429A CN201610833879.7A CN201610833879A CN107843429A CN 107843429 A CN107843429 A CN 107843429A CN 201610833879 A CN201610833879 A CN 201610833879A CN 107843429 A CN107843429 A CN 107843429A
Authority
CN
China
Prior art keywords
bearing
rolling element
monitoring point
autorotation speed
retainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610833879.7A
Other languages
English (en)
Other versions
CN107843429B (zh
Inventor
张恺
郭磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to CN201610833879.7A priority Critical patent/CN107843429B/zh
Priority to PCT/CN2017/100861 priority patent/WO2018050017A1/zh
Publication of CN107843429A publication Critical patent/CN107843429A/zh
Application granted granted Critical
Publication of CN107843429B publication Critical patent/CN107843429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种轴承状态监测控制方法及控制装置、监测设备、监测方法,其中控制方法包括:在所述轴承运转过程中,获取所述轴承的滚动体在经过各个监测点时的自转速率,所述监测点围绕所述轴承的圆周方向设置;根据自转速率,判定所述轴承的滚动体、保持架、转动圈和非转动圈的状态。本发明能够对轴承的各零件,特别是滚动体及保持架的故障进行有效监测。

Description

轴承状态监测控制方法及控制装置、监测设备、监测方法
技术领域
本发明涉及轴承领域,具体涉及一种轴承状态监测控制方法及控制装置、监测设备、监测方法。
背景技术
轴承一般包括内圈、外圈、设于内圈、外圈之间的滚动体以及用于支撑滚动体的保持架。内圈、外圈、滚动体和保持架中的任意一个发生故障,例如表面发生剥落等,都将导致轴承的状态发生异常,因此,需要对轴承的状态进行监测以及时排查故障。
因此亟需对提供一种方案,以对轴承零件的状态进行监测。
发明内容
本发明提出一种新的方案,以对轴承零件的状态进行监测。
为解决上述问题,本发明提供一种轴承状态监测控制方法,包括:在所述轴承运转过程中,获取所述轴承的滚动体在经过各个监测点时的自转速率,所述监测点围绕所述轴承的周向设置;根据自转速率,判定所述轴承的滚动体、保持架、转动圈或非转动圈的状态。
可选的,根据自转速率,判定所述轴承的滚动体或保持架的状态,包括:确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差,根据统计值的大小判定所述轴承的滚动体或保持架的状态。
可选的,在所述统计值大于设定值时,判定所述轴承的所述滚动体或保持架出现故障。
可选的,根据自转速率,判定所述轴承的滚动体或保持架的状态,包括:确定所述滚动体的所述自转速率的统计值;获取所述滚动体的自转速率波动程度的基准值;比较所述统计值与所述基准值,得到第一差值;在所述第一差值大于第一阈值时,判定所述轴承的所述滚动体或保持架出现故障。
可选的,所述基准值为:所述轴承在正常运转情况下,所述滚动体经过各个所述监测点时的自转速率的方差或者标准差。
可选的,根据自转速率,判定所述轴承的转动圈、非转动圈或保持架的状态,包括:比较所述滚动体经过其中一个监测点时的自转速率与经过其余监测点时各个自转速率的均值,得到第二差值;当所述第二差值大于第二阈值时,判定所述轴承的转动圈、非转动圈或者保持架出现故障。
可选的,根据自转速率,判定所述轴承的滚动体或保持架的状态,包括:比较经过所述监测点的其中一个滚动体的自转速率与经过该监测点的其余滚动体的自转速率的均值,得到第三差值;在所述第三差值大于所述第三阈值时,判定该滚动体出现故障,或者保持架在该滚动体的位置出现故障。
可选的,各个所述监测点沿所述轴承的周向均匀分布。
可选的,所述监测点的数目不小于所述滚动体的数目。
本发明还提供一种轴承状态监测控制装置,包括:获取单元,用于获取在所述轴承运转过程中,所述轴承的滚动体在经过各个监测点时的自转速率,所述监测点围绕所述轴承的周向设置;判定单元,用于根据获取单元获取的所述自转速率,判定所述轴承的滚动体、保持架、转动圈或非转动圈的状态。
可选的,所述判定单元包括:确定模块,用于确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差;第一判定模块,用于根据所述确定模块确定的所述统计值的大小判定所述轴承的滚动体或保持架的状态。
可选的,所述第一判定模块用于:在所述确定模块确定的所述统计值大于设定值时,判定所述轴承的所述滚动体或保持架出现故障。
可选的,所述判定单元包括:确定模块,用于确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差;获取模块,用于获取所述滚动体的自转速率波动程度的基准值;第一比较模块,用于比较所述确定模块得到的统计值与所述获取模块获得的所述基准值,得到第一差值;第二判定模块,用于在所述第一比较模块得到的所述第一差值大于第一阈值时,判定所述轴承的所述滚动体或保持架出现故障。
可选的,所述基准值为:所述轴承在正常运转情况下,所述滚动体经过各个所述监测点时的自转速率的方差或者标准差。
可选的,所述判定单元还包括:第二比较模块,用于比较所述滚动体经过其中一个所述监测点时的自转速率与经过其余所述监测点时各个自转速率的均值,得到第二差值;第三判定模块,用于在所述第二比较模块得到的所述第二差值大于第二阈值时,判定所述轴承的转动圈、非转动圈或者保持架出现故障。
可选的,还包括:第三比较模块,用于比较经过该监测点的其中一个滚动体的自转速率与经过该监测点的其余滚动体的自转速率的均值,得到第三差值;第四判定模块,用于在所述第三比较模块得到的所述第三差值大于所述第三阈值时,判定该滚动体出现故障,或者所述保持架在该滚动体的位置出现故障。
可选的,各个所述监测点沿所述轴承的周向均匀分布。
可选的,所述监测点的数目不小于所述滚动体的数目。
本发明还提供一种轴承状态监测设备,包括:上述任一项所述的轴承状态监测控制装置;转速检测部,用于检测所述轴承的滚动体经过各个所述监测点时的自转速率。
可选的,所述转速检测部包括:磁性件,用于安装在所述轴承的滚动体上;磁感应件,用于安装在各个所述监测点;所述磁性件用于产生磁信号,所述磁感应件用于接收所述轴承的滚动体在经过各个监测点时所述磁信号、将接收到的所述磁信号转化为电信号,并将所述电信号发送给所述轴承状态监测控制装置;所述轴承状态监测控制装置根据接收到的所述电信号得到所述滚动体的自转速率。
可选的,各个所述监测点沿所述轴承的周向均匀分布。
可选的,所述监测点的数目不小于所述滚动体的数目。
可选的,所述轴承的每个所述滚动体上均设有所述磁性件。
本发明还提供一种轴承状态监测方法,包括:确定若干监测点,所述监测点围绕所述轴承的周向设置;在各个所述监测点设置转速检测部,以得到所述轴承的滚动体经过各个所述监测点时的自转速率上述任一项所述的轴承状态监测控制方法。
可选的,所述在各个所述监测点设置转速检测部,以得到所述轴承的滚动体经过各个所述监测点时的自转速率包括:在各个所述监测点设置磁感应件;在所述轴承的一个或多个滚动体上设置磁性件;所述磁性件用于产生磁信号,所述磁感应件用于接收所述轴承的滚动体在经过各个监测点时所述磁信号、将接收到的所述磁信号转化为电信号;根据所述电信号得到所述滚动体的自转速率。
可选的,在各个所述滚动体上分别设置所述磁性件。
与现有技术相比,本发明的技术方案具有以下优点:
通过在轴承运转过程中,获取轴承的滚动体在经过各个监测点时的自转速率,其中各个监测点围绕轴承的周向设置,然后根据滚动体的自转速率的大小判定轴承的滚动体、保持架、转动圈或非转动圈的状态,相比于现有技术,能够更加准确有效地对轴承零件,特别是滚动体、保持架的故障进行监测。
附图说明
图1是本发明第一实施例的轴承状态监测控制方法的原理图;
图2至图5分别示出了本发明第一实施例中根据自转速率判定轴承不同零件的状态的实施方式的原理图;
图6是本发明第一实施例中一种轴承状态监测控制装置的结构原理图;
图7是本发明第一实施例中另一种轴承状态监测控制装置的结构原理图;
图8是本发明轴承状态监测设备的结构示意图。
具体实施方式
现有技术一般采用振动监测的方式对轴承的状态进行监测,利用振动信号来进行故障诊断。具体地,一般在轴承外圈上安装振动位移传感器或振动加速度传感器,用于采集轴承的振动信号,并根据振动信号获得轴承内各零件的振动频率和振幅,如果某零件的振动频率在设定范围内且振幅超出设定值,则判定该零件出现故障。
但是对于滚动体和保持架来说,其在发生故障时的旋转较为复杂,尤其是发生故障的部位有多个时,故障频率非常复杂,往往导致实际振动频率和理论计算值不符,因此对滚动体和保持架的故障监测较为困难,甚至无法监测。
基于该问题,发明人经过研究发现,轴承故障主要发生在:滚动体、保持架、内圈的滚道或外圈的滚道等几个零件上,故障发生的原因多为上述零件的接触表面发生剥落。而上述零件中,任一零件的接触表面的剥落都会影响滚动体的自转速率,从而使得滚动体的自转速率发生变化。
因此,本申请提出一种轴承状态监测控制方法及控制装置、监测设备以及监测方法,根据滚动体的自转速率判断故障发生的具体零件,从而完成对大部分的轴承故障的监测。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
第一实施例
本实施例提供一种轴承状态监测控制方法,参照图1所示,该方法包括以下步骤:
S11:在所述轴承运转过程中,获取所述轴承的滚动体在经过各个监测点时的自转速率,所述监测点围绕所述轴承的周向设置;
S12:根据自转速率,判定轴承的滚动体、保持架、转动圈或非转动圈的状态。
相比于现有技术,本方案根据滚动体的自转速率的大小判定轴承的滚动体、保持架、转动圈或非转动圈的状态,能够更加准确有效地对轴承的各个零件,特别是滚动体、保持架的故障进行监测。
下面继续参照图1,对各个步骤作详细说明。
(1)步骤S11:在所述轴承运转过程中,获取所述轴承的滚动体在经过各个监测点时的自转速率,各个监测点围绕所述轴承的周向(即圆周方向)设置。
该步骤的目的在于得到滚动体经过各个监测点时的自转速率。
其中,监测点为固定点,当轴承运转时,监测点固定不动。如果轴承中包含非转动圈,则监测点可以设置于非转动圈上;如果轴承中包含用于支撑转动圈或者非转动圈的轴承座,则监测点可以设置于轴承座上。其中轴承可以包括转动圈和非转动圈,或者只包括转动圈。
其中,对监测点沿周向的分布方式不作限定。一般而言,监测点围绕轴承的周向尽可能地均匀分布。
需要注意,本实施例所指的轴承的种类不限,可以是用于承受径向载荷的轴承,例如向心轴承,也可以是用于承受轴向载荷的轴承,例如止推轴承等,还可以是同时用于承受径向载荷和轴向载荷的轴承,例如向心推力轴承等。
(2)步骤S12:根据自转速率,判定轴承的滚动体、保持架、转动圈或非转动圈的状态。
在步骤12中,根据各个滚动体的自转速率,通过对自转速率作不同的分析,可以对轴承不同零件的状态进行监测。具体地,本申请给出以下四种执行步骤S12的实施方式,以对自转速率进行分析并得到轴承零件的状态。
实施方式一,实施方式的目的在于:对滚动体或保持架的状态进行监测。
参照图2所示,实施方式一主要在于通过对获得的各个自转速率进行概率统计,根据统计值的大小作为判定依据。换言之,实施方式一的目的在于,对获取到的各个自转速率进行概率统计,得到统计值,然后根据统计值的大小来判断轴承的滚子或保持架的状态。
如图2,在该实施方式一中,步骤S12包括步骤S121~S122。
步骤S121:确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差。在得到统计值后,根据统计值的大小判定所述轴承的滚动体或保持架的状态。
具体的,在获得滚动体的各个自转速率后,建立样本,以监测到该滚动体的各个自转速率作为样本中的数据,对样本中的数据进行概率统计,以得到样本方法,即各个自转速率的方差;或者得到样本标准差,即各个自转速率的标准差。
如果得到的统计值越小,即方差或者标准差越小,则说明样本中数据的波动越小,即滚动体在经过各个监测点时的自转速率的波动越小,滚动体的运转速率越稳定。反之,则滚动体在经过各个监测点时的自转速率的波动越大,滚动体的运转速率越不稳定。
由此可见,本实施例通过在轴承运转过程中,获取轴承的滚动体在经过各个监测点时的自转速率,其中各个监测点围绕轴承的周向设置,然后根据滚动体的自转速率的统计值的大小判定轴承的滚动体或保持架的状态,相比于现有技术,能够更加准确有效地对滚动体和保持架的故障进行监测。
如图2,在得到统计值后,执行步骤S122:在统计值大于设定值时,判定所述轴承的所述滚动体或保持架出现故障。该设定值为具体数值或数值范围。
理想状态下,如果轴承处于正常运转状态,滚动体在任一位置的自转速率应当是恒定的。但是在实际中,受轴承各零件自身的精度(例如圆度、表面粗糙度等)以及轴承工作时所处的润滑环境的影响,即使当轴承处于正常运转状态时,滚动体在不同位置自转速率会有一定的波动。
一般而言,如果要保证滚动体的运转稳定性满足要求,则统计值需要处于一个合理范围内。该合理范围可以根据轴承的运转环境、运转要求以及轴承的自身结构等因素来设定。
在实际中,如果轴承处于正常运转状态,即运转状态无任何异常时,滚动体在经过各个监测点时的自转速率的波动应当在一个合理的波动区间内。如果滚动体在经过各个监测点时的自转速率的波动超出了该合理的波动区间,则表示轴承的运转出现了异常,即偏离了正常运转状态。此时,轴承的各零件有可能发生故障。
因此,如果统计值大于设定值,超出了合理范围,则说明滚动体的运转的稳定性不再满足要求,表示轴承的运转出现了异常。
此时有两种情况:第一是滚动体自身出现了故障,例如滚动体的表面发生剥落,导致其运转异常;第二是保持架出现了故障,例如保持架的接触表面发生剥落,导致支撑在保持架上的滚动体无法正常运转而产生异常。
在监测时,可以对其中一个滚动体进行监测,也可以对多个或者全部滚动体分别进行监测。如果需要对其中一个滚动体进行监测,则对该一个滚动体的各个自转速率进行概率统计并判断其统计值是否大于设定值,从而判断该滚动体是否出现故障。如果需要对多个滚动体进行监测,则分别对各个滚动体的各个自转速率进行概率统计并分别判断其统计值是都大于设定值,从而分别判断每个滚动体是否出现故障。
需要注意的是,不管是对一个还是多个滚动体的统计值大于设定值时,都不能排出保持架出现故障的可能。
实施方式二,实施方式二的目的也在于对滚动体或保持架的状态进行监测。
在实施方式二中,如图3所示,步骤S12包括如上所述的步骤S121以及步骤S123~S125,以判定滚动体或保持架的状态。以下对步骤S123~S125进行说明:
步骤S123:确定所述滚动体的自转速率波动程度的基准值。基准值为:轴承在正常运转情况下,对滚动体经过各个监测点时的自转速率进行概率统计得到的方差或者标准差。其中,滚动体的基准值以轴承在正常运转状态下得到的统计值为准。一般可以将轴承最初投入使用时的运转状态作为正常运转状态。其中,步骤S123中的基准值可以是设定值,因此步骤S123与步骤S11、S121之间可以没有时序关系。
步骤S124:比较统计值与基准值,得到第一差值。
步骤S125:在第一差值大于第一阈值时,判定所述轴承的所述滚动体或保持架出现故障。
其中,第一阈值可以是一个具体的数值,直接通过数值大小的判断来得到第一差值是否大于第一阈值。或者,也可以以统计值与基准值的倍数关系来判断第一差值是否大于阈值,例如,在统计值大于基准值的两倍或者两倍以上时,判定所述轴承的所述滚动体或保持架出现故障。
实施方式三,实施方式三的目的在于:对转动圈、非转动圈和保持架的状态进行监测。
参照图4所示,实施方式三主要对滚动体在经过各个监测点的自转速率进行比较,如果滚动体在经过某一监测点时,自转速率发生异常,则判定轴承的转动圈、非转动圈或者保持架出现故障在该监测点的位置发生故障。
具体地,继续参照图4所示,在实施方式三中,步骤S12包括步骤S126~S127。
步骤S126:比较滚动体经过其中一个监测点时的自转速率与经过其余监测点时各个自转速率的均值,得到第二差值;
步骤S127:当第二差值大于第二阈值时,判定所述轴承的转动圈、非转动圈或者保持架出现故障。并且,此时,故障发生的点通常在该监测点的位置。
如前所述,当轴承处于正常运转状态时,滚动体经过各个监测点时的自转速率应当在一个合理波动区间内。滚动体经过其中一个监测点时的自转速率与经过其余监测点时各个自转速率的均值应当基本相同,或者说两者的差值位于合理区间内,即第二差值不大于第二阈值。
如果第二差值大于第二阈值,则说明滚动体在经过所述其中一个监测点时的自转速率发生异常,轴承的转动圈、非转动圈发生故障,并且故障发生点很有可能是在该监测点所处的位置。或者轴承的保持架发生故障。
实施方式四,实施方式四的目的在于:对单个滚动体的状态,或者保持架发生故障的位置的状态进行监测。
参照图5所示,实施方式四主要通过对经过同一监测点的滚动体的自转速率进行比较,如果某一滚动体的自转速率发生异常,则该滚动体出现故障,或者保持架在该滚动体的位置出现故障。
具体地,继续参照图5所示,在实施方式四中,步骤S12包括步骤S128~S129。
步骤S128:比较经过监测点的其中一个滚动体的自转速率与经过该监测点的其余滚动体的自转速率的均值,得到第三差值;
步骤S129:在第三差值大于第三阈值时,判定该滚动体出现故障,或者保持架在该滚动体的位置出现故障。
当轴承处于正常运转状态时,各个滚动体在任一位置、任一时间的自转速率应当在一个合理波动区间内。对于同一监测点而言,各个滚动体经过该监测点时的自转速率应当基本相同。换言之,对于其中任何一个滚动体来说,其经过该监测点的自转速率与经过该监测点的其余滚动体的自转速率的均值应当基本相同,或者说两者的差值位于合理区间内,即第三差值不大于第三阈值。
如果第三差值大于第三阈值,则说明该滚动体在经过该监测点时的自转速率发生异常,此时的故障可能是该滚动体发生故障,或者保持架在该滚动体的位置发生故障。
需要注意的是,具体实现步骤S12时,可以同时包括上述四种实施方式以实现对多个轴承零件的监测,并综合参考监测结果,或者根据需要选择四个实施方式中的一个或多个。
在本实施例中,监测点的数目越多,则对滚动体在不同位置下的自转速率的变化的监测越精确。一般而言,为了对所有的滚动体的故障都能进行准确的监测,监测点的数目不小于滚动体的数目,这样,一个监测点只需要对经过该监测点的一个滚动体进行监测。
在其他实施例中,监测点的数目也可以少于滚动体的数目,那么,对于其中一个或多个监测点而言,该监测点需要对经过该监测点的两个或两个以上的滚动体进行监测。
为了实现上述轴承状态监测控制方法,本申请还提供一种轴承状态监测控制装置20,参照图6,该控制装置包括:
获取单元21,用于获取在所述轴承运转过程中,轴承的滚动体在经过各个监测点时的自转速率,所述监测点围绕所述轴承的周向设置,其中监测点的设置方式与上述轴承状态监测控制方法中监测点的设置方式相同;
判定单元22,用于根据获取单元21获取的自转速率,判定轴承的滚动体或保持架的状态。
判定单元22包括:
确定模块221,用于确定获取单元21获取的滚动体的自转速率的统计值,统计值为各个自转速率的方差或标准差;
第一判定模块222,用于根据确定模块221确定的统计值的大小判定轴承的滚动体或保持架的状态。
本实施例中,第一判定模块222在判定所述轴承的滚动体或保持架的状态是否正常时,根据统计值与设定值的比较来进行判定。
如图6,对应于上述监测控制方法中的实施方式一,具体地,第一判定模块222用于:用于在所述确定模块221确定的所述统计值大于设定值时,判定所述轴承的所述滚动体或保持架出现故障。
对应于前述监测控制方法中的实施方式二,参照图7,为了实现依据统计值对轴承的滚动体或保持架的状态进行判定,判定单元22包括:
确定模块221,用于确定获取单元21获取的滚动体的自转速率的统计值,统计值为各个自转速率的方差或标准差;
获取模块223,用于确定滚动体的自转速率波动程度的基准值;
第一比较模块224,用于比较确定模块221得到的统计值与获取模块223获得的基准值,得到第一差值;
第二判定模块222',用于在第一比较模块224得到的第一差值大于第一阈值时,判定轴承的滚动体或保持架出现故障。
其中,基准值为:轴承在正常运转情况下,滚动体经过各个监测点时的自转速率的方差或者标准差。
对应于前述监测控制方法中的实施方式三,判定单元22也可以同时结合设定值以及第一差值的大小来判定滚动体或保持架的状态是否正常。
继续参照图6、图7,为了实现对轴承的转动圈、非转动圈以及保持架进行故障监测,轴承状态监测控制装置20的判定单元22还包括:
第二比较模块225,用于比较滚动体经过其中一个监测点时的自转速率与经过其余监测点时各个自转速率的均值,得到第二差值;
第三判定模块226,用于在第二比较模块225得到的第二差值大于第二阈值时,判定轴承的转动圈、非转动圈或者保持架出现故障。
第二比较模块225、第三判定模块226组合的方式所起到的功能在于:根据对滚动体在经过各个监测点的自转速率进行比较的结果,在滚动体经过某一监测点的自转速率发生异常,判定轴承的转动圈、非转动圈或者保持架出现故障。
继续参照图6、图7,对应于上述监测控制方法中的实施方式四,为了实现对轴承的单个滚动体以及保持架发生故障的位置进行监测,轴承状态监测控制装置20的判定单元22还包括:
第三比较模块227,用于比较经过该监测点的其中一个滚动体的自转速率与经过该监测点的其余滚动体的自转速率的均值,得到第三差值;
第四判定模块228,用于在第三比较模块227得到的第三差值大于第三阈值时,判定该滚动体出现故障,或者保持架在该滚动体的位置出现故障。
第三比较模块227、第四判定模块228组合的方式所起到的功能在于:根据对经过同一监测点的滚动体的自转速率进行比较的结果,在其中某一滚动体的自转速率发生异常时,判定该滚动体出现故障,或者保持架在该滚动体的位置出现故障。
在具体实施例中,监测装置可以只选择采用上述其中一种或者几种方式来实现对轴承各零件的状态的监测。
第二实施例
本实施例提供一种轴承状态监测设备,其中轴承的种类不限。
参照图8所示,以用于承受径向载荷的向心轴承为例,轴承包括内圈41、外圈42、设于内圈41和外圈42之间的滚动体43,以及用于支撑滚动体43的保持架(图中未示出)。
本实施例的轴承状态监测设备包括:第一实施例的轴承状态监测控制装置20,以及转速检测部。其中转速检测部用于检测一个或多个滚动体在经过各个监测点时的自转速率。其中各个监测点的设置方式与第一实施例相同。
其中,转速检测部可以是任何形式的转速传感器,例如旋转变压器,转速传感器等。
本实施例中,转速检测部包括:磁性件44和磁感应件45。磁性件44用于安装在轴承的滚动体上,磁感应件45用于安装在各个监测点。
其中,磁性件44用于产生磁信号,磁感应件45用于接收轴承的滚动体在经过各个监测点时的磁信号、将接收到的磁信号转化为电信号,并将电信号发送给轴承状态监测控制装置20,轴承状态监测控制装置20则根据接收到的电信号得到滚动体43的自转速率。
磁感应件45与轴承状态监测控制装置30之间可以通过有线或者无线的方式连接,以实现信号传输。本实施例中采用有线的方式,如图8所示。
磁性件44可以是磁铁条。磁性件44在滚动体43上的设置位置应当以不影响滚动体43的转动为宜。以向心轴承为例,如果滚动体43为圆柱滚子,则磁性件44可以设于圆柱滚子沿轴向的端面上。如果滚动体43为圆锥滚子时,则磁性件44优选地设于直径较小一端的轴向端面上,由于直径较小一端的径向尺寸较小,则该端在滚动体自转时发生的位置变化相对于另一端要小一些,因此转动波动小一些,能够更加准确地反应滚动体的自转速率。并且,将磁性件44安装在直径较小一端的轴向端面上,能够更好地避免对滚动体转动的影响。
磁感应件45安装在静止的零件上,例如轴承的非转动圈或者轴承座上,安装方式可以是焊接、粘接或者螺纹连接等。
其中,磁性件44的数目与需要进行故障监测的滚动体的数目43一致。如果只需要对某个或某几个滚动体43进行故障监测,则只需要在对应的滚动体上设置磁性件44即可;如果需要对所有的滚动体进行故障监测,则在所有的滚动体43上分别设有磁性件44。只要在一个滚动体43设置磁性件44,如果该滚动体43的在经过各个监测点时的各个自转速率的统计值超出设定值,则不能排出保持架发生故障。
本实施例中,磁性件44与轴承的滚动体43一一对应,每个滚动体43上都设有磁性件44。
第三实施例
本实施例提供一种轴承状态监测方法,该方法包括以下步骤:
S51:确定若干监测点,监测点围绕轴承的周向设置;
S52:在各个所述监测点设置转速检测部,以得到所述轴承的滚动体经过各个所述监测点时的自转速率;
S53:根据步骤S52得到的自转速率,执行第一实施例所述的轴承状态监测控制方法。
其中,监测点的设置方式与第一实施例、第二实施例相同。转速检测部可以是任意一种能够获得滚动体的自转速率的装置。本实施例中采用磁性件-磁感应件配合的方式来形成转速检测部,以获得滚动体的自转速率。
具体地,步骤S52包括:
S521:在各个监测点设置磁感应件,在轴承的一个或多个滚动体上设置磁性件。其中,磁性件用于产生磁信号,磁感应件用于接收轴承的滚动体在经过各个监测点时磁信号、将接收到的磁信号转化为电信号;
S522:根据电信号得到滚动体的自转速率。
其中,磁性件的设置方式与第二实施例相同,例如可以在各个滚动体上分别设置磁性件。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (26)

1.一种轴承状态监测控制方法,其特征在于,包括:
在所述轴承运转过程中,获取所述轴承的滚动体在经过各个监测点时的自转速率,所述监测点围绕所述轴承的周向设置;
根据自转速率,判定所述轴承的滚动体、保持架、转动圈或非转动圈的状态。
2.如权利要求1所述的轴承状态监测控制方法,其特征在于,根据自转速率,
判定所述轴承的滚动体或保持架的状态,包括:
确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差,根据统计值的大小判定所述轴承的滚动体或保持架的状态。
3.如权利要求2所述的轴承状态监测控制方法,其特征在于,
在所述统计值大于设定值时,判定所述轴承的所述滚动体或保持架出现故障。
4.如权利要求1所述的轴承状态监测控制方法,其特征在于,根据自转速率,
判定所述轴承的滚动体或保持架的状态,包括:
确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差;
获取所述滚动体的自转速率波动程度的基准值;
比较所述统计值与所述基准值,得到第一差值;
在所述第一差值大于第一阈值时,判定所述轴承的所述滚动体或保持架出现故障。
5.如权利要求4所述的轴承状态监测控制方法,其特征在于,所述基准值为:
所述轴承在正常运转情况下,所述滚动体经过各个所述监测点时的自转速率的方差或者标准差。
6.如权利要求1所述的轴承状态监测控制方法,其特征在于,根据自转速率,
判定所述轴承的转动圈、非转动圈或保持架的状态,包括:
比较所述滚动体经过其中一个监测点时的自转速率与经过其余监测点时各个自转速率的均值,得到第二差值;
当所述第二差值大于第二阈值时,判定所述轴承的转动圈、非转动圈或者保持架出现故障。
7.如权利要求1所述的轴承状态监测控制方法,其特征在于,根据自转速率,
判定所述轴承的滚动体或保持架的状态,包括:
比较经过所述监测点的其中一个滚动体的自转速率与经过该监测点的其余滚动体的自转速率的均值,得到第三差值;
在所述第三差值大于第三阈值时,判定该滚动体出现故障,或者保持架在该滚动体的位置出现故障。
8.如权利要求1所述的轴承状态监测控制方法,其特征在于,各个所述监测点沿所述轴承的周向均匀分布。
9.如权利要求1所述的轴承状态监测控制方法,其特征在于,所述监测点的数目不小于所述滚动体的数目。
10.一种轴承状态监测控制装置,其特征在于,包括:
获取单元,用于获取在所述轴承运转过程中,所述轴承的滚动体在经过各个监测点时的自转速率,所述监测点围绕所述轴承的周向设置;
判定单元,用于根据获取单元获取的所述自转速率,判定所述轴承的滚动体、保持架、转动圈或非转动圈的状态。
11.如权利要求10所述的轴承状态监测控制装置,其特征在于,所述判定单元包括:
确定模块,用于确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差;
第一判定模块,用于根据所述确定模块确定的所述统计值的大小判定所述轴承的滚动体或保持架的状态。
12.如权利要求11所述的轴承状态监测控制装置,其特征在于,所述第一判定模块用于:在所述确定模块确定的所述统计值大于设定值时,判定所述轴承的所述滚动体或保持架出现故障。
13.如权利要求10所述的轴承状态监测控制装置,其特征在于,所述判定单元包括:
确定模块,用于确定所述滚动体的所述自转速率的统计值,所述统计值为方差或标准差;
获取模块,用于获取所述滚动体的自转速率波动程度的基准值;
第一比较模块,用于比较所述确定模块得到的统计值与所述获取模块获得的所述基准值,得到第一差值;
第二判定模块,用于在所述第一比较模块得到的所述第一差值大于第一阈值时,判定所述轴承的所述滚动体或保持架出现故障。
14.如权利要求13所述的轴承状态监测控制装置,其特征在于,所述基准值为:
所述轴承在正常运转情况下,所述滚动体经过各个所述监测点时的自转速率的方差或者标准差。
15.如权利要求10所述的轴承状态监测控制装置,其特征在于,所述判定单元还包括:
第二比较模块,用于比较所述滚动体经过其中一个所述监测点时的自转速率与经过其余所述监测点时各个自转速率的均值,得到第二差值;
第三判定模块,用于在所述第二比较模块得到的所述第二差值大于第二阈值时,判定所述轴承的转动圈、非转动圈或者保持架出现故障。
16.如权利要求10所述的轴承状态监测控制装置,其特征在于,还包括:
第三比较模块,用于比较经过该监测点的其中一个滚动体的自转速率与经过该监测点的其余滚动体的自转速率的均值,得到第三差值;
第四判定模块,用于在所述第三比较模块得到的所述第三差值大于第三阈值时,判定该滚动体出现故障,或者所述保持架在该滚动体的位置出现故障。
17.如权利要求10所述的轴承状态监测控制装置,其特征在于,各个所述监测点沿所述轴承的周向均匀分布。
18.如权利要求10所述的轴承状态监测控制装置,其特征在于,所述监测点的数目不小于所述滚动体的数目。
19.一种轴承状态监测设备,其特征在于,包括:
权利要求10-18中任一项所述的轴承状态监测控制装置;
转速检测部,用于检测所述轴承的滚动体经过各个所述监测点时的自转速率。
20.如权利要求19所述的轴承状态监测设备,其特征在于,所述转速检测部包括:
磁性件,用于安装在所述轴承的滚动体上;
磁感应件,用于安装在各个所述监测点;
所述磁性件用于产生磁信号,所述磁感应件用于接收所述轴承的滚动体在经过各个监测点时所述磁信号、将接收到的所述磁信号转化为电信号,并将所述电信号发送给所述轴承状态监测控制装置;
所述轴承状态监测控制装置根据接收到的所述电信号得到所述滚动体的自转速率。
21.如权利要求19所述的轴承状态监测设备,其特征在于,各个所述监测点沿所述轴承的周向均匀分布。
22.如权利要求19所述的轴承状态监测设备,其特征在于,所述监测点的数目不小于所述滚动体的数目。
23.如权利要求20所述的轴承状态监测设备,其特征在于,所述轴承的每个所述滚动体上均设有所述磁性件。
24.一种轴承状态监测方法,其特征在于,包括:
确定若干监测点,所述监测点围绕所述轴承的周向设置;
在各个所述监测点设置转速检测部,以得到所述轴承的滚动体经过各个所述监测点时的自转速率;
权利要求1-9中任一项所述的轴承状态监测控制方法。
25.如权利要求24所述的轴承状态监测方法,其特征在于,所述在各个所述监测点设置转速检测部,以得到所述轴承的滚动体经过各个所述监测点时的自转速率包括:
在各个所述监测点设置磁感应件;
在所述轴承的一个或多个滚动体上设置磁性件;
所述磁性件用于产生磁信号,所述磁感应件用于接收所述轴承的滚动体在经过各个监测点时所述磁信号、将接收到的所述磁信号转化为电信号;
根据所述电信号得到所述滚动体的自转速率。
26.如权利要求25所述的轴承状态监测方法,其特征在于,在各个所述滚动体上分别设置所述磁性件。
CN201610833879.7A 2016-09-19 2016-09-19 轴承状态监测控制方法及控制装置、监测设备、监测方法 Active CN107843429B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610833879.7A CN107843429B (zh) 2016-09-19 2016-09-19 轴承状态监测控制方法及控制装置、监测设备、监测方法
PCT/CN2017/100861 WO2018050017A1 (zh) 2016-09-19 2017-09-07 轴承状态监测控制方法及控制装置、监测设备、监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610833879.7A CN107843429B (zh) 2016-09-19 2016-09-19 轴承状态监测控制方法及控制装置、监测设备、监测方法

Publications (2)

Publication Number Publication Date
CN107843429A true CN107843429A (zh) 2018-03-27
CN107843429B CN107843429B (zh) 2021-08-31

Family

ID=61618996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610833879.7A Active CN107843429B (zh) 2016-09-19 2016-09-19 轴承状态监测控制方法及控制装置、监测设备、监测方法

Country Status (2)

Country Link
CN (1) CN107843429B (zh)
WO (1) WO2018050017A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431454A (zh) * 2020-04-28 2020-07-17 中山大洋电机股份有限公司 无位置传感器矢量控制永磁电机估算转速可靠性判断方法
CN113109051A (zh) * 2021-04-14 2021-07-13 中国人民解放军海军航空大学岸防兵学院 基于振动数据极差序列的故障预警方法和系统
CN113847981A (zh) * 2021-09-16 2021-12-28 国家电网有限公司 一种基于机械特性的水电机组保护性振动监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1717575A (zh) * 2003-09-12 2006-01-04 日本精工株式会社 利用特殊转速测量来测量滚动轴承上的载荷
JP2009216689A (ja) * 2008-03-11 2009-09-24 Ribekkusu:Kk 転がり軸受回転異常検出器
CN101836120A (zh) * 2007-10-20 2010-09-15 谢夫勒两合公司 用于显示轴承组件的位置或者运动的编码元件
CN103867565A (zh) * 2012-12-12 2014-06-18 株式会社捷太格特 轴承用滚子的状态检测装置、带传感器的滚子轴承装置以及风力发电机
CN204099407U (zh) * 2014-08-06 2015-01-14 中国航空动力机械研究所 滚动轴承及具有该滚动轴承的测量装置
CN104884925A (zh) * 2012-12-12 2015-09-02 Skf公司 检测滚子轴承中的滚子体旋转的不规则性
CN105547699A (zh) * 2016-01-27 2016-05-04 国电联合动力技术有限公司 一种轴承内部载荷分布的测量方法及测量装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322047B2 (ja) * 1995-01-13 2002-09-09 日本精工株式会社 球の動的不釣り合いの測定方法と測定装置
US7631498B2 (en) * 2005-10-11 2009-12-15 Honeywell International Inc. Bearing health monitor
CN102928224A (zh) * 2012-10-24 2013-02-13 西北工业大学 一种检测风力发电机组轴承故障的方法
JP6413642B2 (ja) * 2013-11-05 2018-10-31 日本精工株式会社 軸受状態検知装置及び軸受状態検知方法
CN104236796B (zh) * 2014-09-01 2017-04-05 武汉广远经济发展股份有限公司 轴系状态信息采集智能转速传感器
CN104459182B (zh) * 2014-11-18 2017-11-03 哈尔滨工业大学 内外圈同时转动的高速滚动轴承保持架光纤测速装置及测速方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1717575A (zh) * 2003-09-12 2006-01-04 日本精工株式会社 利用特殊转速测量来测量滚动轴承上的载荷
CN101836120A (zh) * 2007-10-20 2010-09-15 谢夫勒两合公司 用于显示轴承组件的位置或者运动的编码元件
JP2009216689A (ja) * 2008-03-11 2009-09-24 Ribekkusu:Kk 転がり軸受回転異常検出器
CN103867565A (zh) * 2012-12-12 2014-06-18 株式会社捷太格特 轴承用滚子的状态检测装置、带传感器的滚子轴承装置以及风力发电机
CN104884925A (zh) * 2012-12-12 2015-09-02 Skf公司 检测滚子轴承中的滚子体旋转的不规则性
CN204099407U (zh) * 2014-08-06 2015-01-14 中国航空动力机械研究所 滚动轴承及具有该滚动轴承的测量装置
CN105547699A (zh) * 2016-01-27 2016-05-04 国电联合动力技术有限公司 一种轴承内部载荷分布的测量方法及测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRANO F.: "Motion of a ball in angular contact ball bearing", 《ASLE TRANSANCTIONS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431454A (zh) * 2020-04-28 2020-07-17 中山大洋电机股份有限公司 无位置传感器矢量控制永磁电机估算转速可靠性判断方法
CN111431454B (zh) * 2020-04-28 2021-09-21 中山大洋电机股份有限公司 无位置传感器矢量控制永磁电机估算转速可靠性判断方法
CN113109051A (zh) * 2021-04-14 2021-07-13 中国人民解放军海军航空大学岸防兵学院 基于振动数据极差序列的故障预警方法和系统
CN113847981A (zh) * 2021-09-16 2021-12-28 国家电网有限公司 一种基于机械特性的水电机组保护性振动监测方法
CN113847981B (zh) * 2021-09-16 2024-05-24 国家电网有限公司 一种基于机械特性的水电机组保护性振动监测方法

Also Published As

Publication number Publication date
WO2018050017A1 (zh) 2018-03-22
CN107843429B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US10024758B2 (en) Abnormality detecting device having function for detecting abnormality of machine tool, and abnormality detecting method
EP2746610B1 (en) State detection device for bearing roller, roller bearing device with sensor, and wind turbine generator
EP1358453B1 (en) Bearing assembly with sensors for monitoring loads
US10260557B2 (en) Rotary machine, bearing and method for manufacturing a rotary machine
CN107843426B (zh) 轴承剩余寿命的监测方法及监测装置
CN107843429A (zh) 轴承状态监测控制方法及控制装置、监测设备、监测方法
CN107250586A (zh) 用于滚动轴承的传感器装置和具有这种传感器装置的滚动轴承装置
US9989097B2 (en) Bearing cage with antenna and method for detecting failure of a bearing cage
KR102624536B1 (ko) 고장 진단 장치 및 이러한 고장 진단 장치를 구비하는 차량용 휠베어링
EP3290895A1 (en) Abnormality diagnosis system
US20010039835A1 (en) Method and device for monitoring a bearing arrangement
US11181443B2 (en) Anti-friction bearing
JP2007298080A (ja) 変位センサ付複列ころ軸受と複列ころ軸受の異常診断方法
CN108425941A (zh) 滚子轴承用的状态检测装置及滚子轴承装置
EP3260838B1 (en) Abnormality diagnosis system
JP2006078203A (ja) 転がり軸受及び転がり軸受の監視方法
US11092194B2 (en) Prestress measurement with load pin
WO2020183797A1 (ja) 転がり軸受の状態監視システムおよび状態監視方法
KR101482511B1 (ko) 위상 지연과 데이터 분포 형상지수를 이용한 베어링 결함 진단 시스템 및 그 진단 방법
CN111609032B (zh) 气体轴承心轴
JP2003097554A (ja) 磁気軸受制御装置
CN111537229A (zh) 一种可测量轴承不同位置运行参数的轴承座装置
CN209745436U (zh) 一种安装在轮毂轴承单元上的传感器及其轮毂轴承单元
JP2018136863A (ja) 異常検知システム
AU2019378368A1 (en) Abnormality detection device and abnormality detection method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant