CN107831185A - 测定三文鱼加工贮藏过程中相转变温度的方法 - Google Patents

测定三文鱼加工贮藏过程中相转变温度的方法 Download PDF

Info

Publication number
CN107831185A
CN107831185A CN201710777431.2A CN201710777431A CN107831185A CN 107831185 A CN107831185 A CN 107831185A CN 201710777431 A CN201710777431 A CN 201710777431A CN 107831185 A CN107831185 A CN 107831185A
Authority
CN
China
Prior art keywords
temperature
measure
salmon
sample
phase transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710777431.2A
Other languages
English (en)
Inventor
谭明乾
宋玉昆
丛爽
王偲琦
来斌
赵雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Polytechnic University
Original Assignee
Dalian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Polytechnic University filed Critical Dalian Polytechnic University
Priority to CN201710777431.2A priority Critical patent/CN107831185A/zh
Publication of CN107831185A publication Critical patent/CN107831185A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明公开一种测定三文鱼加工贮藏过程中相转变温度的方法,包括以下步骤:S1,样品采集:选取新鲜的三文鱼肉,将鱼肉切成固定尺寸大小的块;S2,样品低场核磁分析:利用变温低场核磁共振对三文鱼肉在变温过程中进行CPMG序列分析,获得回波衰减曲线数据,并进行单组份反演得到样品的横向弛豫时间T2;S3,样品温度分析:在测定横向弛豫时间的同时采用光纤测温仪测定三文鱼肉内部温度;S4,绘制温度‑弛豫时间状态曲线;S5,对变温低场核磁分析方法进行评价。本发明提供一种食品加工贮藏过程中相转变方法,涉及的测定操作过程简单,测试样品容量大更具有代表性,样品无需前处理,重复性好,提高了测量效率,可以满足生产现场对样品的快速分析需求。

Description

测定三文鱼加工贮藏过程中相转变温度的方法
技术领域
本发明涉及相转变快速无损检测技术,具体为一种测定三文鱼加工贮藏过程中相转变温度的方法。
背景技术
食品在加工贮藏过程中会发生相转变的现象,相转变主要包括蛋白质的变性,淀粉的凝胶化,水结成冰(冰点)等变化,食品相转变改变了食品物理化学性质,并对食品的品质产生影响,因此,测定食品的相转变以及相转变与食品品质变化的关系尤为重要;贮藏温度是影响食品保鲜效果的关键因素,食品的贮藏温度决定了其品质劣变的速度和程度,对其货架期有直接影响,冷冻保鲜是最常见的方法,其作用主要是在低温情况下微生物的繁殖被抑制,当食品温度降至最大冰晶生成带时,细胞内的水会结冰成冰晶,生成的冰晶会刺破细胞膜,一旦解冻,细胞液就会流失,食品损失了原有的风味丧失营养,所以需要快速的通过最大冰晶带,热加工是食品加工过程最普遍的方法,热加工除了会产生风味,色泽以外主要是保证食品安全,目前由于过度热加工使产品的营养风味口感等损失严重,因此为了保证食品的新鲜度,营养度以及安全性,就需要对食品的相转变温度进行测定,最大限度的锁住食物营养,保持口感新鲜,
目前,应用最广泛的测定食品相转变温度的方法有差示扫描量热法、动力机械分析法、热机械法、动态热机械法,但是这些方法操作复杂,对样品有损坏,测量结果误差大等缺点。
发明内容
本发明的目的是提供一种基于变温低场核磁共振技术测定三文鱼肉热加工及冷冻贮藏过程中相转变温度的快速无损检测方法的测定三文鱼加工贮藏过程中相转变温度的方法。
本发明为实现上述目的所采用的技术方案是:一种测定三文鱼加工贮藏过程中相转变温度的方法,包括以下步骤:
S1,样品采集:选取新鲜的三文鱼肉,将鱼肉切成固定尺寸大小的块;
S2,样品低场核磁分析:利用变温低场核磁共振对三文鱼肉在变温过程中进行CPMG序列分析,获得回波衰减曲线数据,并进行单组份反演得到样品的横向弛豫时间T2;
S3,样品温度分析:在测定横向弛豫时间的同时采用光纤测温仪测定三文鱼肉内部温度;
S4,绘制温度-弛豫时间状态曲线:横向弛豫时间T2与温度绘制关系曲线图的曲线的交点为三文鱼肉的相转变温度;
S5,对变温低场核磁分析方法进行评价:利用示差扫描量热法测定三文鱼肉的相转变温度,将示差扫描量热法测得的结果与变温低场核磁共振技术测得的结果比对,最后确定变温低场核磁共振方法的准确性。
所述步骤S2中样品的变温过程分为温度为-20-10 ℃的冷冻贮藏和温度为30-60℃的加热变性过程。
所述步骤S2中样品变温低场核磁分析的CPMG序列参数是指,90度脉宽P1:13μs,180度脉宽P2:26μs,重复采样等待时间Tw:1000-10000ms,模拟增益RG1:10-20,均为整数,数字增益DRG1:2-5,均为整数,前置放大增益PRG:1,2,3,NS:4,8,16,NECH:1000-10000,接收机带宽SW:100,200,300KHz,开始采样时间的控制参数RFD:0.002-0.05ms,时延DL1:0.1-0.5ms。
所述步骤S3中温度的测定中,采用单通道光纤测温仪测定三文鱼肉内部的温度,将光纤插入三文鱼肉的内部,在测定横向弛豫时间T2时同时记录三文鱼肉内部的温度。
所述步骤S4绘制温度-弛豫时间状态曲线中,以横向弛豫时间T2为纵坐标,所对应温度为横坐标绘制曲线,将曲线拐点两边的数据进行线性拟合,得到线性拟合曲线,计算线性拟合曲线的交点即为三文鱼肉的相转变温度。
所述步骤S5中低场核磁分析方法的评价中,示差扫描量热法测定的温度范围为-20-10 ℃和20-60 ℃,温度变化速率为1 ℃/min。
本发明一种测定三文鱼加工贮藏过程中相转变温度的方法,提供了一种食品加工贮藏过程中相转变方法,涉及的测定操作过程简单,测试样品容量大更具有代表性,样品无需前处理,重复性好,提高了测量效率,可以满足生产现场对样品的快速分析需求。
附图说明
图1是本发明实施例一的三文鱼肉冷冻过程中横向弛豫时间随温度变化曲线。
图2是本发明实施例一的三文鱼肉冷冻过程的示差扫描量热法变化曲线。
图3是本发明实施例二的三文鱼肉热加工过程中横向弛豫时间随温度变化曲线。
图4是本发明实施例二的三文鱼肉热加工过程的示差扫描量热法变化曲线。
具体实施方式
实施例一,如图1和图2所示,测定三文鱼加工贮藏过程中相转变温度的方法,具体步骤为:S1,样品采集:选取新鲜的三文鱼肉,将鱼肉切成2*2*2 cm大小;S2,样品低场核磁分析:将三文鱼肉放入变温低场核磁共振仪样品槽内,调节样品槽温度为10℃平衡10 min使三文鱼肉温度达到10℃,然后温度从10降到零下20℃,将单通道光纤测温仪的光纤插入三文鱼肉的内部,每降低2℃记录一次温度,并且采用CPMG序列测量此时三文鱼肉的回波衰减曲线,变温低场核磁共振参数:参数设置为:90度脉宽P1:13μs,180度脉宽P2:26μs,重复采样等待时间Tw:3000ms,模拟增益RG1:30,数字增益DRG1:2,前置放大增益PRG:1,NS:4,NECH:4000,接收机带宽SW:200KHz,开始采样时间的控制参数RFD:0.002ms,时延DL1:0.5ms,获得回波衰减曲线,然后采用一维反拉普拉斯算法进行单组份反演得到横向弛豫时间T2,经质量归一化得出三文鱼肉在冷冻过程中的横向弛豫时间;S3,样品温度分析:在测定横向弛豫时间的同时采用光纤测温仪测定三文鱼肉内部温度;S4,绘制温度-弛豫时间状态曲线:将图1进行拟合得到温度-弛豫时间状态图,从不同弛豫时间与温度之间的线性关系得到三文鱼肉的冰点温度,将0、-2、-4、-6和-8℃与所对应的弛豫时间拟合得到拟合方程为:Y=5.98X+54.22 R2=0.93,将-10、-12、-14、-16、-18和-20℃与所对应的弛豫时间拟合得到拟合方程为:Y=0.21X+7.62 R2=0.89,计算线性拟合曲线的交点为(-8.08,5.92),即三文鱼肉的相转变温度为-8.08℃;S5,低场核磁分析方法的评价:利用示差扫描量热法(DSC)法测定三文鱼肉的相转变温度,DSC测定的温度范围为10℃到-20℃,温度变化速率为1℃/min,DSC测定的结果为-8.27℃,如图2,将DSC测得的结果与低场核磁共振技术测得的结果(-8.08℃)基本相同,说明变温低场核磁共振方法可以准确的测定三文鱼肉的冰点温度。
实施例二,如图3和图4所示,测定三文鱼加工贮藏过程中相转变温度的方法,具体步骤为:S1,样品采集:选取新鲜的三文鱼肉,将鱼肉切成2*2*2 cm大小;S2,样品低场核磁分析:将三文鱼肉放入变温低场核磁共振仪样品槽内,调节样品槽温度为20℃平衡10 min使三文鱼肉温度达到20℃,然后温度从20升到零下60℃,将单通道光纤测温仪的光纤插入三文鱼肉的内部,每升高2℃记录一次温度,并且采用CPMG序列测量此时三文鱼肉的回波衰减曲线,变温低场核磁共振参数:参数设置为:90度脉宽P1:13μs,180度脉宽P2:26μs,重复采样等待时间Tw:3000ms,模拟增益RG1:30,数字增益DRG1:2,前置放大增益PRG:1,NS:4,NECH:4000,接收机带宽SW:200KHz,开始采样时间的控制参数RFD:0.002ms,时延DL1:0.5ms,获得回波衰减曲线,然后采用一维反拉普拉斯算法进行单组份反演得到横向弛豫时间T2,经质量归一化得出三文鱼肉在加热过程中的横向弛豫时间,S3,样品温度分析:在测定横向弛豫时间的同时采用光纤测温仪测定三文鱼肉内部温度;S4,绘制温度-弛豫时间状态曲线:将图3进行拟合得到温度-弛豫时间状态图,从不同弛豫时间与温度之间的线性关系得到三文鱼肉的相转变温度,将36、38、40和42℃与所对应的弛豫时间拟合得到拟合方程为:Y=12.09X+14.16 R2=0.94,将,44、46、48、50、52、54、56、58和60℃与所对应的弛豫时间拟合得到拟合方程为:Y=-0.39X+76.55 R2=0.97,计算线性拟合曲线的交点为(42.16,60.11),即三文鱼肉的变性温度为42.16℃,S5,低场核磁分析方法的评价:利用示差扫描量热法(DSC)法测定三文鱼肉的变性温度,DSC测定的温度范围为20℃到60℃,温度变化速率为1℃/min,DSC测定的结果为41.53 ℃,如图4,将DSC测得的结果与低场核磁共振技术测得的结果(42.16℃)基本相同,说明变温低场核磁共振方法可以准确的测定三文鱼肉的变性温度。
变温低场核磁共振技术作为一种先进的分析测量工具,近年来,在食品和生物领域的应用也越来越广泛。低场核磁共振技术技术能通过测定氢原子核在磁场中的纵向弛豫时间T1和横向弛豫时间T2,分析研究物质的含水量、水分分布、迁移以及与之相关的其他性质,当水受到束缚时T2会降低,而食品在加工贮藏过程中主要是改变水分子的自由度,所以可以实现对食品相转变温度的检测,核磁共振技术研究食品相转变温度的突出优势是能够实现无损、实时测量,这为研究水动力学性质,研究食品相转变温度的机理,预测食品的货架期、改进食品的加工与贮藏条件提供了保证,采用变温低场核磁技术来测定三文鱼肉的相转变温度,它能够进行快速、准确、实时、全方位的测量,而且对样品不具有破坏性,在测量食品的相转变温度及其他方面具有广阔的应用前景。

Claims (6)

1.一种测定三文鱼加工贮藏过程中相转变温度的方法,其特征在于,包括以下步骤:
S1,样品采集:选取新鲜的三文鱼肉,将鱼肉切成固定尺寸大小的块;
S2,样品低场核磁分析:利用变温低场核磁共振对三文鱼肉在变温过程中进行CPMG序列分析,获得回波衰减曲线数据,并进行单组份反演得到样品的横向弛豫时间T2;
S3,样品温度分析:在测定横向弛豫时间的同时采用光纤测温仪测定三文鱼肉内部温度;
S4,绘制温度-弛豫时间状态曲线:横向弛豫时间T2与温度绘制关系曲线图的曲线的交点为三文鱼肉的相转变温度;
S5,对变温低场核磁分析方法进行评价:利用示差扫描量热法测定三文鱼肉的相转变温度,将示差扫描量热法测得的结果与变温低场核磁共振技术测得的结果比对,最后确定变温低场核磁共振方法的准确性。
2.根据权利要求1所述的一种测定三文鱼加工贮藏过程中相转变温度的方法,其特征在于:所述步骤S2中样品的变温过程分为温度为-20-10 ℃的冷冻贮藏和温度为20-60 ℃的加热变性过程。
3.根据权利要求1所述的一种测定三文鱼加工贮藏过程中相转变温度的方法,其特征在于:所述步骤S2中样品变温低场核磁分析的CPMG序列参数是指,90度脉宽P1:13μs,180度脉宽P2:26μs,重复采样等待时间Tw:1000-10000ms,模拟增益RG1:10-30,均为整数,数字增益DRG1:2-5,均为整数,前置放大增益PRG:1,2,3,NS:4,8,16,NECH:1000-10000,接收机带宽SW:100,200,300KHz,开始采样时间的控制参数RFD:0.002-0.05ms,时延DL1:0.1-0.5ms。
4.根据权利要求1所述的一种测定三文鱼加工贮藏过程中相转变温度的方法,其特征在于:所述步骤S3中温度的测定中,采用单通道光纤测温仪测定三文鱼肉内部的温度,将光纤插入三文鱼肉的内部,在测定横向弛豫时间T2时同时记录三文鱼肉内部的温度。
5.根据权利要求1所述的一种测定三文鱼加工贮藏过程中相转变温度的方法,其特征在于:所述步骤S4绘制温度-弛豫时间状态曲线中,以横向弛豫时间T2为纵坐标,所对应温度为横坐标绘制曲线,将曲线拐点两边的数据进行线性拟合,得到线性拟合曲线,计算线性拟合曲线的交点即为三文鱼肉的相转变温度。
6.根据权利要求1所述的一种测定三文鱼加工贮藏过程中相转变温度的方法,其特征在于:所述步骤S5中低场核磁分析方法的评价中,示差扫描量热法测定的温度范围为-20-10 ℃和20-60 ℃,温度变化速率为1 ℃/min。
CN201710777431.2A 2017-09-01 2017-09-01 测定三文鱼加工贮藏过程中相转变温度的方法 Pending CN107831185A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710777431.2A CN107831185A (zh) 2017-09-01 2017-09-01 测定三文鱼加工贮藏过程中相转变温度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710777431.2A CN107831185A (zh) 2017-09-01 2017-09-01 测定三文鱼加工贮藏过程中相转变温度的方法

Publications (1)

Publication Number Publication Date
CN107831185A true CN107831185A (zh) 2018-03-23

Family

ID=61643253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710777431.2A Pending CN107831185A (zh) 2017-09-01 2017-09-01 测定三文鱼加工贮藏过程中相转变温度的方法

Country Status (1)

Country Link
CN (1) CN107831185A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044551A (zh) * 2019-12-27 2020-04-21 大连工业大学 一种基于低场核磁共振判断中国蛤蜊蛋白变性的方法
CN112986308A (zh) * 2021-02-23 2021-06-18 中国科学院精密测量科学与技术创新研究院 一种利用nmr弛豫测定温敏高分子相转变温度的方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1206663A1 (ru) * 1984-06-14 1986-01-23 Всесоюзный Научно-Исследовательский Институт Ядерной Геофизики И Геохимии Способ распознавани горных пород-коллекторов
US20100156409A1 (en) * 2008-12-12 2010-06-24 Schlumberger Technology Corporation Method for determining the content of liquid and solid phase components in hydrocarbon mixture
CN102083789A (zh) * 2008-05-30 2011-06-01 帝斯曼知识产权资产管理有限公司 虾青素的晶型
CN102937601A (zh) * 2012-10-22 2013-02-20 南京农业大学 一种基于核磁共振技术的解冻猪肉快速检测指标的筛选方法
CN103529068A (zh) * 2013-10-11 2014-01-22 西北工业大学 低场核磁技术对环境响应性高分子亲疏水转变的动态监测方法
CN104957238A (zh) * 2015-06-19 2015-10-07 江南大学 一种冻猪肉的快速解冻方法
CN106324011A (zh) * 2016-08-25 2017-01-11 江南大学 一种确定调理水产品低温货架期的鲜度联合检测方法
CN106501294A (zh) * 2016-09-22 2017-03-15 大连工业大学 原位检测鹌鹑蛋加热凝固过程中温度点和时间点的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1206663A1 (ru) * 1984-06-14 1986-01-23 Всесоюзный Научно-Исследовательский Институт Ядерной Геофизики И Геохимии Способ распознавани горных пород-коллекторов
CN102083789A (zh) * 2008-05-30 2011-06-01 帝斯曼知识产权资产管理有限公司 虾青素的晶型
US20100156409A1 (en) * 2008-12-12 2010-06-24 Schlumberger Technology Corporation Method for determining the content of liquid and solid phase components in hydrocarbon mixture
CN102937601A (zh) * 2012-10-22 2013-02-20 南京农业大学 一种基于核磁共振技术的解冻猪肉快速检测指标的筛选方法
CN103529068A (zh) * 2013-10-11 2014-01-22 西北工业大学 低场核磁技术对环境响应性高分子亲疏水转变的动态监测方法
CN104957238A (zh) * 2015-06-19 2015-10-07 江南大学 一种冻猪肉的快速解冻方法
CN106324011A (zh) * 2016-08-25 2017-01-11 江南大学 一种确定调理水产品低温货架期的鲜度联合检测方法
CN106501294A (zh) * 2016-09-22 2017-03-15 大连工业大学 原位检测鹌鹑蛋加热凝固过程中温度点和时间点的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044551A (zh) * 2019-12-27 2020-04-21 大连工业大学 一种基于低场核磁共振判断中国蛤蜊蛋白变性的方法
CN112986308A (zh) * 2021-02-23 2021-06-18 中国科学院精密测量科学与技术创新研究院 一种利用nmr弛豫测定温敏高分子相转变温度的方法及应用

Similar Documents

Publication Publication Date Title
Li et al. LF-NMR online detection of water dynamics in apple cubes during microwave vacuum drying
Fan et al. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology
Li et al. Role of mid-and far-infrared for improving dehydration efficiency in beef jerky drying
Cao et al. Drying kinetics and product quality of green soybean under different microwave drying methods
Musse et al. Monitoring the postharvest ripening of tomato fruit using quantitative MRI and NMR relaxometry
Rodríguez et al. Effects of weak oscillating magnetic fields on the freezing of pork loin
Kamal et al. Effect of hot-air oven dehydration process on water dynamics and microstructure of apple (Fuji) cultivar slices assessed by LF-NMR and MRI
Wang et al. Experimental investigation and mechanism analysis on microwave freeze drying of stem lettuce cubes in a circular conduit
CN107831185A (zh) 测定三文鱼加工贮藏过程中相转变温度的方法
Yu et al. Quality of giant freshwater prawn (Macrobrachium rosenbergii) during the storage at− 18 C as affected by different methods of freezing
Yang et al. Textural properties of stinky mandarin fish (Siniperca chuatsi) during fermentation: effects of the state of moisture
Chu et al. Quality enhancement of large yellow croaker (Pseudosciaena crocea) during frozen (-18 ºC) storage by spiral freezing
US5602477A (en) Nuclear magnetic resonance freezing sensor
Goñi et al. Changes in water status of cherimoya fruit during ripening
Kuang et al. Comparison of air freezing, liquid immersion freezing and pressure shift freezing on freezing time and quality of snakehead (Channa Argus) fillets
Yang et al. Investigation on moisture migration, microstructure and quality changes of fresh‐cut apple during storage
CN106501295A (zh) 一种在线监测海参解冻过程中水分变化的方法
Jiang et al. Quantifying food drying rates from NMR/MRI experiments: Development of an online calibration system
Chen et al. Pulsed vacuum impregnated trehalose to improve the physicochemical quality of frozen‐thawed kiwifruit
CN106018453B (zh) 一种基于低场核磁共振技术的鱼子酱品质快速检测方法
Wei et al. Effect of static magnetic field-assisted freezing at different temperatures on muscle quality of pacific white shrimp (Litopenaeus vannamei)
CN105445317A (zh) 一种果蔬活组织冰点的连续测量记录装置及其测定方法
CN108050765A (zh) 以食品颜色变化判断冻结点的方法、控制器和制冷设备
Caicedo-Eraso et al. Electrical impedance spectroscopy applied to quality control in the food industry
CN105510114B (zh) 一种海参低温加热嫩化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180323