CN107824785B - 一种低激光反射率粉末颗粒及制备方法 - Google Patents

一种低激光反射率粉末颗粒及制备方法 Download PDF

Info

Publication number
CN107824785B
CN107824785B CN201710909364.5A CN201710909364A CN107824785B CN 107824785 B CN107824785 B CN 107824785B CN 201710909364 A CN201710909364 A CN 201710909364A CN 107824785 B CN107824785 B CN 107824785B
Authority
CN
China
Prior art keywords
inner core
powder particle
spherical inner
graphite flake
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710909364.5A
Other languages
English (en)
Other versions
CN107824785A (zh
Inventor
周海涛
刘大博
罗飞
罗炳威
田野
陈冬生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201710909364.5A priority Critical patent/CN107824785B/zh
Publication of CN107824785A publication Critical patent/CN107824785A/zh
Application granted granted Critical
Publication of CN107824785B publication Critical patent/CN107824785B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Abstract

本发明属于表面处理技术,涉及一种高球形度、低反射率的粉末颗粒及制备方法。本发明的粉末颗粒它具有球形内核和覆盖于球形内核表面的石墨片包覆层,所述球形内核为铝粉颗粒、铜粉颗粒或镍基高温合金粉末颗粒;石墨片包覆层厚度为100nm~5um。本发明粉末颗粒的制备步骤是:粉末洗涤;制备纳米催化剂颗粒;石墨片沉积。本发明提出了一种高球形度、低反射率的粉末颗粒及制备方法,能在降低激光反射率的前提下,保持颗粒内核的高球形度,从而保证了3D打印等粉末冶金成型后块体的性能。

Description

一种低激光反射率粉末颗粒及制备方法
技术领域
本发明属于表面处理技术,涉及一种高球形度、低反射率的粉末颗粒及制备方法。
背景技术
复合材料由于具备优异的力学、热学及电学等性能,被广泛应用于航空航天、机械、交通、电子、医学等领域。随着材料应用的广度和深度不断发展,对其制备工艺和性能便提出了更高的要求。粉末冶金是制备复合材料最常用的技术之一,该技术以单一或复合粉末作为原料,经成型和烧结过程制得块体。传统的成型方法有热压烧结和放电等离子体烧结,近年来,3D打印和激光技术日趋成熟,发展出激光增材制造这种新的成型方法。与传统成型方法相比,新方法具有快速、高效生成任意形状产品的能力,并且可以通过最优化的结构设计来显著减轻金属结构件的重量,或者通过合理的应力分布来设计复杂精细的结构,满足不同的技术性能需求,极大的提高了加工效率,在武器装备复杂件制造及再制造修复领域,展现出巨大的应用潜力。然而,新方法对粉末的品质也提出了更高的要求,为了确保成型后的块体具备最优异的力学性能,要求粉末原料具有高的球形度,再者,为了减少激光能量输出,提高激光器使用寿命,要求粉末具有低的激光反射率。常用的降低粉末反射率的方法是添加有助于激光吸收的其他金属或聚合物粉末。为了使基体粉末与添加剂粉末混合均匀,通常采用机械球磨法,通过球磨机的高速转动使硬球对粉末进行研磨和搅拌,这一过程伴随的剧烈碰撞会严重破坏基体粉末的球形度,进而降低成型后块体的性能。
发明内容
本发明的目的是:提出一种高球形度、低反射率的粉末颗粒及制备方法,以便在降低激光反射率的前提下,保持颗粒内核的高球形度,从而保证3D打印等粉末冶金成型后块体的性能。
本发明的技术方案是:一种低激光反射率粉末颗粒,其特征在于:它具有球形内核和覆盖于球形内核表面的石墨片包覆层,所述球形内核为铝粉颗粒、铜粉颗粒或镍基高温合金粉末颗粒;石墨片包覆层厚度为100nm~5um。
一种低激光反射率粉末颗粒的制备方法,制备如上面所述的低反射率粉末颗粒,其特征在于,制备的步骤如下:
1、粉末洗涤:按1g球形内核加入至少10ml无水酒精的比例称取原料,将球形内核和无水酒精放入烧杯中混合,超声混合至少20min,静置至少30min,倒掉酒精溶液,放入真空烘箱烘干,烘箱真空度至少为10Pa,温度为60℃~120℃,烘干至少1h;
2、制备纳米催化剂颗粒:
2.1、待烘箱温度降至室温后,取出烧杯,按1g球形内核加入50ml~100ml蒸馏水的比例加入蒸馏水,按1g球形内核加入0.03g~0.09g催化剂前躯体的比例加入催化剂前躯体,催化剂前躯体为六水硝酸镍、三水硝酸铜或九水硝酸铝,加入催化剂前躯体后,搅拌至少20min;
2.2、然后缓慢滴入浓度为20%~40%的氨水溶液,直至溶液pH值达到中性,静置至少2h,形成悬浊液;
2.3、将悬浊液放入离心机中进行离心分离至少2min,然后用蒸馏水洗涤;再次进行离心分离和洗涤至少2次;
2.4、取出沉淀物放入真空烘箱中,烘箱真空度至少为10Pa,温度为150℃~250℃,时间至少2h;即得到纳米催化剂颗粒;
3、石墨片沉积:将纳米催化剂颗粒从烧杯转移至石英坩埚,将石英坩埚放入石英管中,并使坩埚正好位于等离子射频线圈正下方;将石英管内部抽真空至6x10-2Pa,通入甲烷气体,流量为20sccm~35sccm,保持真空度为140Pa~400Pa;打开射频源开始沉积石墨片,射频源功率为250W~400W,沉积时间为15min~30min;然后关闭射频源和甲烷气体,通入100sccm氩气,保持真空度为200Pa;至少1h后关闭氩气,停止抽真空,取出石英坩埚,即得到低激光反射率粉末颗粒。
本发明的有益效果是:提出了一种高球形度、低反射率的粉末颗粒及制备方法,能在降低激光反射率的前提下,保持颗粒内核的高球形度,从而保证了3D打印等粉末冶金成型后块体的性能。具体表现在:
1)无需管式炉加热,射频线圈工作时产生的温度即可达到石墨片生长所需温度,这要归功于球形内核表面预先附着的金属氧化物纳米颗粒,为石墨片的生长提供了成核中心,可显著降低制备温度,对比实验显示,不经负载金属氧化物纳米颗粒这一步骤,不能得到石墨片;
2)石墨片均匀生长在球形内核表面,与机械球磨法相比,石墨片与球形内核的结合力更强,并且解决了石墨片易团聚的问题;
3)避免了球磨法对球形内核高球形度的破坏,沉积石墨片后,复合颗粒仍具有高球形度,高球形度粉末对于得到力学性能优异的成型块体至关重要;
4)可以根据需要,通过调整石墨片的生长时间,改变石墨片与球形内核的体积比,达到调节复合粉末反射率的效果,工艺简单。
附图说明
图1是本发明实施例1的扫描电镜照片。左图为铝粉颗粒,右图为沉积石墨片后的粉末颗粒,可见沉积石墨片后,粉末仍然保持高球形度。
图2是本发明实施例1的反射率曲线。谱线1对应铝粉颗粒,谱线2对应沉积石墨片后的粉末颗粒。
图3是本发明实施例2的反射率曲线。谱线1对应镍基高温合金粉末颗粒,谱线2对应沉积石墨片后的粉末颗粒。
具体实施方式
下面对本发明做进一步详细说明。一种低激光反射率粉末颗粒,其特征在于:它具有球形内核和覆盖于球形内核表面的石墨片包覆层,所述球形内核为铝粉颗粒、铜粉颗粒或镍基高温合金粉末颗粒;石墨片包覆层厚度为100nm~5um。
一种低激光反射率粉末颗粒的制备方法,制备如上面所述的低反射率粉末颗粒,其特征在于,制备的步骤如下:
1、粉末洗涤:按1g球形内核加入至少10ml无水酒精的比例称取原料,将球形内核和无水酒精放入烧杯中混合,超声混合至少20min,静置至少30min,倒掉酒精溶液,放入真空烘箱烘干,烘箱真空度至少为10Pa,温度为60℃~120℃,烘干至少1h;
2、制备纳米催化剂颗粒:
2.1、待烘箱温度降至室温后,取出烧杯,按1g球形内核加入50ml~100ml蒸馏水的比例加入蒸馏水,按1g球形内核加入0.03g~0.09g催化剂前躯体的比例加入催化剂前躯体,催化剂前躯体为六水硝酸镍、三水硝酸铜或九水硝酸铝,加入催化剂前躯体后,搅拌至少20min;
2.2、然后缓慢滴入浓度为20%~40%的氨水溶液,直至溶液pH值达到中性,静置至少2h,形成悬浊液;
2.3、将悬浊液放入离心机中进行离心分离至少2min,然后用蒸馏水洗涤;再次进行离心分离和洗涤至少2次;
2.4、取出沉淀物放入真空烘箱中,烘箱真空度至少为10Pa,温度为150℃~250℃,时间至少2h;即得到纳米催化剂颗粒;
3、石墨片沉积:将纳米催化剂颗粒从烧杯转移至石英坩埚,将石英坩埚放入石英管中,并使坩埚正好位于等离子射频线圈正下方;将石英管内部抽真空至6x10-2Pa,通入甲烷气体,流量为20sccm~35sccm,保持真空度为140Pa~400Pa;打开射频源开始沉积石墨片,射频源功率为250W~400W,沉积时间为15min~30min;然后关闭射频源和甲烷气体,通入100sccm氩气,保持真空度为200Pa;至少1h后关闭氩气,停止抽真空,取出石英坩埚,即得到低激光反射率粉末颗粒。
所述的球形内核的粒度为50目~500目。
本发明的工作原理是:石墨片通过化学气相沉积方法均匀生长在球形内核表面,省略了球磨机混合步骤,保留了原球形内核的高球形度特征;石墨表面的激光反射率远低于金属表面,因此,金属球形内核表面沉积石墨片后,可显著降低激光反射率。
实施例1
1、粉末洗涤:将10g300目铝粉加入到盛有100ml无水酒精的烧杯中,超声混合20min,静置30min,倒掉酒精溶液,放入真空烘箱烘干,烘箱真空度为10Pa,温度为60℃,烘干2h;
2、制备纳米催化剂颗粒:
2.1、待烘箱温度降至室温后,取出烧杯,加入500ml蒸馏水和0.09g九水硝酸铝,搅拌30min;
2.2、然后缓慢滴入浓度为20%的氨水溶液,直至溶液pH值达到中性,静置2h,形成悬浊液;
2.3、将悬浊液放入离心机中进行离心分离2min,然后用蒸馏水洗涤;再次进行离心分离和洗涤2次;
2.4、取出沉淀物放入真空烘箱中,烘箱真空度为10Pa,温度为250℃,时间2h;即得到纳米催化剂颗粒;
3、石墨片沉积:将纳米催化剂颗粒从烧杯转移至石英坩埚,将石英坩埚放入石英管中,并使坩埚正好位于等离子射频线圈正下方;将石英管内部抽真空至6x10-2Pa,通入甲烷气体,流量为20sccm,保持真空度为140Pa;打开射频源开始沉积石墨片,射频源功率为250W,沉积时间为30min;然后关闭射频源和甲烷气体,通入100sccm氩气,保持真空度为200Pa;1h后关闭氩气,停止抽真空,取出石英坩埚,即得到低激光反射率粉末颗粒。
图1为粉末颗粒的扫描电镜(SEM)图片,左图为铝粉颗粒,表面光滑,右图为沉积石墨片后的粉末颗粒,图中可清晰分辨出大量片状结构,这些片状结构均匀覆盖在铝粉表面,并且可见生长石墨片后,粉末仍然保持高球形度。图2为粉末的反射率谱线,测试光源的波长范围为500nm~2500nm,其中谱线1对应铝粉,谱线2对应沉积石墨片后的粉末颗粒,以1500nm波长时的测量值做比较,生长石墨片后的粉末颗粒的反射率比生长前降低3%。
实施例2
1、粉末洗涤:将20g100目镍基高温合金粉加入到盛有200ml无水酒精的烧杯中,超声混合20min,静置30min,倒掉酒精溶液,放入真空烘箱烘干,烘箱真空度为10Pa,温度为120℃,烘干1h;
2、制备纳米催化剂颗粒:
2.1、待烘箱温度降至室温后,取出烧杯,加入1000ml蒸馏水和0.06g六水硝酸镍,搅拌30min;
2.2、然后缓慢滴入浓度为30%的氨水溶液,直至溶液pH值达到中性,静置2h,形成悬浊液;
2.3、将悬浊液放入离心机中进行离心分离2min,然后用蒸馏水洗涤;再次进行离心分离和洗涤3次;
2.4、取出沉淀物放入真空烘箱中,烘箱真空度为10Pa,温度为200℃,时间2h;即得到纳米催化剂颗粒;
3、石墨片沉积:将纳米催化剂颗粒从烧杯转移至石英坩埚,将石英坩埚放入石英管中,并使坩埚正好位于等离子射频线圈正下方;将石英管内部抽真空至6x10-2Pa,通入甲烷气体,流量为35sccm,保持真空度为400Pa;打开射频源开始沉积石墨片,射频源功率为400W,沉积时间为15min;然后关闭射频源和甲烷气体,通入100sccm氩气,保持真空度为200Pa;1h后关闭氩气,停止抽真空,取出石英坩埚,即得到低激光反射率粉末颗粒。
图3为粉末颗粒的反射率谱线,测试光源的波长范围为500nm~2500nm,其中谱线1对应镍基高温合金粉,谱线2对应沉积石墨片后的粉末颗粒,以1500nm波长时的测量值做比较,生长石墨片后的粉末颗粒的反射率比生长前降低8%。
实施例3
1、粉末洗涤:将15g500目铜粉加入到盛有150ml无水酒精的烧杯中,超声混合20min,静置30min,倒掉酒精溶液,放入真空烘箱烘干,烘箱真空度至少为10Pa,温度为90℃,烘干1h;
2、制备纳米催化剂颗粒:
2.1、待烘箱温度降至室温后,取出烧杯,加入1000ml蒸馏水和0.03g三水硝酸铜,搅拌20min;
2.2、然后缓慢滴入浓度为40%的氨水溶液,直至溶液pH值达到中性,静置2h,形成悬浊液;
2.3、将悬浊液放入离心机中进行离心分离2min,然后用蒸馏水洗涤;再次进行离心分离和洗涤2次;
2.4、取出沉淀物放入真空烘箱中,烘箱真空度为10Pa,温度为150℃,时间2h;即得到纳米催化剂颗粒;
3、石墨片沉积:将纳米催化剂颗粒从烧杯转移至石英坩埚,将石英坩埚放入石英管中,并使坩埚正好位于等离子射频线圈正下方;将石英管内部抽真空至6x10-2Pa,通入甲烷气体,流量为30sccm,保持真空度为300Pa;打开射频源开始沉积石墨片,射频源功率为300W,沉积时间为20min;然后关闭射频源和甲烷气体,通入100sccm氩气,保持真空度为200Pa;1h后关闭氩气,停止抽真空,取出石英坩埚,即得到低激光反射率粉末颗粒。

Claims (3)

1.一种低激光反射率粉末颗粒的制备方法,其特征在于,制备的步骤如下:
1.1、粉末洗涤:按1g球形内核加入至少10ml无水酒精的比例称取原料,将球形内核和无水酒精放入烧杯中混合,超声混合至少20min,静置至少30min,倒掉酒精溶液,放入真空烘箱烘干,烘箱真空度至少为10Pa,温度为60℃~120℃,烘干至少1h;
1.2、制备纳米催化剂颗粒:
1.2.1、待烘箱温度降至室温后,取出烧杯,按1g球形内核加入50ml~100ml蒸馏水的比例加入蒸馏水,按1g球形内核加入0.002g~0.009g催化剂前躯体的比例加入催化剂前躯体,催化剂前躯体为六水硝酸镍、三水硝酸铜或九水硝酸铝,加入催化剂前躯体后,搅拌至少20min;
1.2.2、然后缓慢滴入浓度为20%~40%的氨水溶液,直至溶液pH值达到中性,静置至少2h,形成悬浊液;
1.2.3、将悬浊液放入离心机中进行离心分离至少2min,然后用蒸馏水洗涤;再次进行离心分离和洗涤至少2次;
1.2.4、取出沉淀物放入真空烘箱中,烘箱真空度至少为10Pa,温度为150℃~250℃,时间至少2h;即得到纳米催化剂颗粒;
1.3、石墨片沉积:将纳米催化剂颗粒从烧杯转移至石英坩埚,将石英坩埚放入石英管中,并使坩埚正好位于等离子射频线圈正下方;将石英管内部抽真空至6x10-2Pa,通入甲烷气体,流量为20sccm~35sccm,保持真空度为140Pa~400Pa;打开射频源开始沉积石墨片,射频源功率为250W~400W,沉积时间为15min~30min;然后关闭射频源和甲烷气体,通入100sccm氩气,保持真空度为200Pa;至少1h后关闭氩气,停止抽真空,取出石英坩埚,即得到低激光反射率粉末颗粒。
2.使用如权利要求1所述的制备方法制备的一种低激光反射率粉末颗粒,其特征在于:它具有球形内核和覆盖于球形内核表面的石墨片包覆层,所述球形内核为铝粉颗粒、铜粉颗粒或镍基高温合金粉末颗粒;石墨片包覆层厚度为100nm~5um。
3.根据权利要求2所述的低激光反射率粉末颗粒,其特征在于:所述的球形内核的粒度为50目~500目。
CN201710909364.5A 2017-09-29 2017-09-29 一种低激光反射率粉末颗粒及制备方法 Active CN107824785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710909364.5A CN107824785B (zh) 2017-09-29 2017-09-29 一种低激光反射率粉末颗粒及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710909364.5A CN107824785B (zh) 2017-09-29 2017-09-29 一种低激光反射率粉末颗粒及制备方法

Publications (2)

Publication Number Publication Date
CN107824785A CN107824785A (zh) 2018-03-23
CN107824785B true CN107824785B (zh) 2019-06-04

Family

ID=61647570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710909364.5A Active CN107824785B (zh) 2017-09-29 2017-09-29 一种低激光反射率粉末颗粒及制备方法

Country Status (1)

Country Link
CN (1) CN107824785B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108555284B (zh) * 2018-06-26 2019-07-12 西安欧中材料科技有限公司 一种激光选区熔化用金属球形粉末的后处理方法
CN109112334A (zh) * 2018-09-06 2019-01-01 中国航发北京航空材料研究院 一种在金属中添加介观尺度三维强化相的方法
CN109626968A (zh) * 2019-01-25 2019-04-16 中国航发北京航空材料研究院 一种陶瓷基复合材料的制备方法
CN110548866B (zh) * 2019-10-18 2022-02-15 广东工业大学 一种表面粗糙的金属粉末、制备方法及在sls/slm技术中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730688A (zh) * 2005-08-29 2006-02-08 天津大学 气相沉积原位反应制备碳纳米管增强铝基复合材料的方法
CN101104924A (zh) * 2007-08-08 2008-01-16 天津大学 以钴/铝催化化学气相沉积制备碳包覆钴纳米颗粒的方法
CN101403105A (zh) * 2008-11-19 2009-04-08 河北工业大学 碳包覆镍纳米颗粒增强银基复合材料的制备方法
EP2254830A2 (fr) * 2008-02-20 2010-12-01 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Croissance de nanotubes de carbone sur substrats de carbone ou metalliques
CN103695864A (zh) * 2014-01-06 2014-04-02 河北工业大学 碳包覆钴金属纳米颗粒的制备方法
CN103789744A (zh) * 2014-03-03 2014-05-14 哈尔滨工业大学 一种原位生长碳纳米管增强银基电接触材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730688A (zh) * 2005-08-29 2006-02-08 天津大学 气相沉积原位反应制备碳纳米管增强铝基复合材料的方法
CN101104924A (zh) * 2007-08-08 2008-01-16 天津大学 以钴/铝催化化学气相沉积制备碳包覆钴纳米颗粒的方法
EP2254830A2 (fr) * 2008-02-20 2010-12-01 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Croissance de nanotubes de carbone sur substrats de carbone ou metalliques
CN101403105A (zh) * 2008-11-19 2009-04-08 河北工业大学 碳包覆镍纳米颗粒增强银基复合材料的制备方法
CN103695864A (zh) * 2014-01-06 2014-04-02 河北工业大学 碳包覆钴金属纳米颗粒的制备方法
CN103789744A (zh) * 2014-03-03 2014-05-14 哈尔滨工业大学 一种原位生长碳纳米管增强银基电接触材料的制备方法

Also Published As

Publication number Publication date
CN107824785A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107824785B (zh) 一种低激光反射率粉末颗粒及制备方法
CN109705808A (zh) 一种具有mof结构的钴镍合金-多孔碳复合吸波材料及其制备方法
CN113289693B (zh) 一种氨分解催化剂及其制备方法和应用
CN103223488B (zh) 银包覆二氧化硅复合微球粒子的制备方法
CN107322002B (zh) 一种稀土氧化物掺杂钨基复合粉体及其制备方法
CN103924111B (zh) 一种硬质合金纳米粒径粉末与高性能烧结块体材料的制备方法
Zou et al. A nanoscale core-shell of β-SiCP–Ni prepared by electroless plating at lower temperature
CN112675865B (zh) 一种高活性、高稳定性担载镍催化剂及其制备方法和应用
CN111905796A (zh) 一种超细金属纳米颗粒/氮化碳纳米片复合材料的制备方法
CN111099650A (zh) CeO2纳米球形颗粒的熔盐法合成方法
CN106944629A (zh) 一种单分散超细/纳米钨粉的制备方法
CN101864547A (zh) 均匀分散的碳纳米管增强铝基复合材料的制备方法
CN107325787A (zh) 一种中空碳纳米颗粒及由其制备得到的吸波材料
CN105859272B (zh) 低温烧结制备纳米负膨胀陶瓷LiAlSiO4的方法
CN102350508A (zh) 一种掺杂钨基复合粉体的制备方法
CN107699848B (zh) Mo/Si/SiO2太阳能选择性吸收涂层的制备方法
CN108380223B (zh) 一种基于TiO2/SiO2骨架的四元光子晶体材料及其制备方法
Xu et al. Hollow porous Ni@ SiC nanospheres for enhancing electromagnetic wave absorption
Liu et al. Largely enhanced photocatalytic hydrogen production rate of CdS/(Au–ReS 2) nanospheres by the dielectric–plasmon hybrid antenna effect
CN109569625B (zh) 一种制备负载型金属镍基催化剂的方法
CN106745311B (zh) 一种α‑Fe2O3纳米棒的制备方法
CN108658038A (zh) 一种基于LiAlH4的储氢材料及其制备方法
Zhang et al. Low-temperature synthesis of ribbon-like orthorhombic NaNbO 3 fibers and their photocatalytic activities for H 2 evolution
Wang et al. Preparation of porous carbon spheres from porous starch
CN107188216B (zh) 一种纳米球形铈组轻稀土氧化物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant