CN107824122B - 一种增殖剂陶瓷小球熔融喷雾造粒装置及方法 - Google Patents

一种增殖剂陶瓷小球熔融喷雾造粒装置及方法 Download PDF

Info

Publication number
CN107824122B
CN107824122B CN201711284441.9A CN201711284441A CN107824122B CN 107824122 B CN107824122 B CN 107824122B CN 201711284441 A CN201711284441 A CN 201711284441A CN 107824122 B CN107824122 B CN 107824122B
Authority
CN
China
Prior art keywords
proliferation agent
hearth
liquid drops
dropper
blowing pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711284441.9A
Other languages
English (en)
Other versions
CN107824122A (zh
Inventor
龚宇
陈晓军
陈平
赵林杰
王和义
岳磊
冉光明
肖成建
夏修龙
付小龙
侯京伟
陈超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Original Assignee
Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics filed Critical Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics
Priority to CN201711284441.9A priority Critical patent/CN107824122B/zh
Publication of CN107824122A publication Critical patent/CN107824122A/zh
Application granted granted Critical
Publication of CN107824122B publication Critical patent/CN107824122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glanulating (AREA)

Abstract

本发明公开了一种增殖剂陶瓷小球熔融喷雾造粒装置及方法。该装置包括炉膛、加压装置、压力管、吹气腔、滴管、收集器和反向吹气管。该方法将增殖剂粉体从压力管加入到炉膛内,利用电磁感应加热增殖剂粉体至熔融态,通过加压将增殖剂液体从滴管滴落,形成增殖剂液滴,利用吹散气将增殖剂液滴吹散成均匀的小液滴,呈锥形向外发散,反向吹气管吹出的惰性气体托举增殖剂液滴,降低增殖剂液滴的下落速度,使得增殖剂液滴充分冷却,形成增殖剂陶瓷小球。本发明的增殖剂陶瓷小球熔融喷雾造粒装置及方法可以批量生产聚变堆氚增殖剂材料,为聚变堆提供氚源。

Description

一种增殖剂陶瓷小球熔融喷雾造粒装置及方法
技术领域
本发明属于氘氚聚变燃料循环领域,具体涉及一种增殖剂陶瓷小球熔融喷雾造粒装置及方法。
背景技术
随着人类社会的快速发展,世界能源消耗将持续增长,能源危机与环境危机已成为亟待解决的全球性课题,安全、清洁、可持续的核聚变能作为解决能源危机的终极途径备受瞩目。其中D-T聚变难度最低,是最适合核聚变发电中使用的聚变反应。氚是氢的一种放射性同位素,自然界含量极低,因此聚变堆D-T燃料循环通常使用Li增殖氚。氚增殖剂一般采用含锂的材料分液态和固态两种。固态增殖剂的化学稳定性好,可在更高的温度下使用而且氚提取容易,这些含锂材料是常见的实验包层氚增殖剂的备选材料。
固体氚增殖剂可以采用柱状、环状和球状。球形增殖剂装卸容易、具有更大的表面积、小球间具有更多的孔道、透气性能好、有利于氚的扩散和释放, 所以一般固体氚增殖剂均采用球形。增殖剂陶瓷小球的成型及批量生产主要有熔融喷雾法、溶胶-凝胶法、挤出-成形-烧结工艺、团聚-烧结法、冷冻成形工艺、行星式滚动法、乳液法等。目前从循环回收6Li来看,熔融法有着先天的优势,避免了大量放射性废物的产生,因此增殖剂陶瓷小球的制备以熔融法为主。目前熔融法制备的小球存在内应力,力学强度略差,小球粒径分布很宽,符合要求的小球产率不高(50%)等问题。
目前增殖剂熔融喷雾造粒方法主要掌握在德国卡尔斯鲁厄理工学院。其主要发展了以下两种熔融喷雾造粒方法:
第一种、德国卡尔斯鲁厄理工学院(KIT)熔融喷雾造粒方法
该种方法主要是通过将增殖剂粉体在炉膛内加热至熔融态,液体顺着底部滴管滴落,滴落液滴由喷气口喷气吹散成小球,小球成弧形飞出在收集单元进行收集。滴落口到收集器之间的距离为2米-14米,由该种方法制备的增殖剂陶瓷小球退火后密度可达到90%-96%。
但是,第一种方法具有以下缺点:
1. 第一种方法最大不足在于不能有效控制小球尺寸,满足要求的小球产率低,浪费严重,利用该种方法制备的尺寸在0.25-0.63mm之间的小球只有不到50%。造成这种问题的主要原因在于该种方法熔融后液体滴落速度无法控制,且喷气口采用单方向喷气,造成分散后的小球分布不均匀,同时由于喷气单元外置,高温液滴遇到低温吹散气体造成分散后的小球内应力过大,内部缺陷过多,降低了其力学性能;
2.由于Li盐具有较强的挥发性,该种方法无法减少Li的挥发,而富6Li密度的样品成本非常高,这也造成了很大的成本消耗;
3.为了让滴落液滴充分冷却及充分成球,滴落口到收集器之间的距离为2-14米,这样高的滴落高度小球滴落过程中与空气接触时间过长,会造成高温熔融的液滴与空气反应,吸收空气中水气与CO2,造成增殖剂材料相纯度降低。同时高空滴落的小球由于成抛物线 ,收集困难而且部分小球掉落到收集器内会发生摔裂、破碎的现象。
第二种、德国卡尔斯鲁厄理工学院(KIT)改进后的熔融喷雾法制备增殖剂陶瓷小球:
第二种方法和第一种方法相比,滴落口改为0.6mm的小口滴落,取消了喷气单元,增加了顶端压力管。通过控制压力管的压力及底部滴管的孔径控制滴落小球的大小,滴落高度2-14m,该种方法制备小球密度在90%-96%。
但是,第二种方法具有以下缺点:
1.由于第二种方法取消了吹气单元,由于少了吹散单元的存在,液体尺寸完全靠滴落决定,导致分散性不佳,颗粒分布仍然未得到改善,小球粒径在0.25-1.25mm的小球仅有50%。
2.由于滴落口仅为0.6mm,尺寸过小为了让增殖剂熔融物顺利滴落,仅能通过从压力口增压使小球滴落。但是由于滴落口尺寸过小,加压过大,加之由于本身Li腐蚀性强,铂金管腐蚀现象非常严重,造成很大损失。
3.由于Li盐具有较强的挥发性,该种方法无法减少Li的挥发,而富6Li密度的样品成本非常高,这也造成了很大的成本消耗。
4.为了让滴落液滴充分冷却及充分成球,滴落口到收集器之间的距离为2-14米,这样高的滴落高度小球滴落过程中与空气接触时间过长,会造成高温熔融的液滴与空气反应,吸收空气中水气与CO2,造成了增殖剂材料相纯度降低。同时高空滴落的小球由于成抛物线,收集困难而且部分小球掉落到收集器内会发生摔裂、破碎的现象。
发明内容
本发明所要解决的一个技术问题是提供一种增殖剂陶瓷小球熔融喷雾造粒装置,本发明所要解决的另一个技术问题是提供一种增殖剂陶瓷小球熔融喷雾造粒方法。
本发明的增殖剂陶瓷小球熔融喷雾造粒装置,其特点是,炉膛的上部连接有与加压装置Ⅰ连通的压力管,炉膛的下部连接有吹气腔,炉膛的外壁包裹电磁感应加热线圈;吹气腔双层,中间是锥形的中空腔体,锥形的大端与炉膛固连;滴管从下至上经吹气腔的锥形顶点A和锥形顶点B插入炉膛,滴管与炉膛连通,滴管与锥形顶点A之间留有环缝,滴管与锥形顶点B之间密封;吹气管与炉膛平行,吹气管的上端与加压装置Ⅱ连通,吹气管的下端伸入吹气腔;收集器收集滴管中滴落的增殖剂陶瓷小球,在收集器的侧壁伸入反向吹气管,反向吹气管与加压装置Ⅲ连通。
炉膛的内径大于压力管的内径,炉膛的长度与压力管的长度之比的范围为1.5-2。
滴管的内径范围为0.5 mm -1.2mm。
吹气管的长度大于炉膛的长度。
收集器的底面与滴管出口之间的垂直距离为5m-10m。
炉膛、吹气管、吹气腔、压力管和滴管的材料为铂、钯、钛、钼金属或铂、钯、钛、钼合金中的一种。
本发明的增殖剂陶瓷小球熔融喷雾造粒方法,包括以下步骤:
a.将增殖剂粉体从压力管加入到炉膛内,在炉膛内利用电磁感应加热到1300゜C -1600゜C,增殖剂粉体变成熔融态的增殖剂液体;
b.加压装置Ⅰ加压惰性气体,压迫增殖剂液体从滴管滴落,形成增殖剂液滴,通过调节加压装置Ⅰ的压力控制增殖剂液滴的滴落速度,加压装置Ⅰ的压力范围100 kPa -200kPa;
c.加压装置Ⅱ将惰性气体通入吹气管,吹气管内的惰性气体流速为5L/min -10L/min,将增殖剂液滴吹散成均匀的小液滴,呈锥形向外发散;
d.加压装置Ⅲ将惰性气体通入反向吹气管,反向吹气管吹出的惰性气体托举增殖剂液滴,降低增殖剂液滴的下落速度,使得增殖剂液滴充分冷却,形成增殖剂陶瓷小球。
所述的惰性气体为N2、Ar或He。
本发明的增殖剂陶瓷小球熔融喷雾造粒装置及方法使得增殖剂陶瓷小球颗粒分布更具均匀性,改善了现有技术制备的增殖剂陶瓷小球颗粒尺寸分布差的问题;同时本发明可以减少制备出的增殖剂小球内应力,减少小球内部缺陷,增加小球机械强度;本发明可以有效地减少Li的挥发;本发明可以大幅度减小现有熔融法液滴的滴落高度,该种改进可以有效地减少滴落过程中高温熔融液滴与空气中水气和CO2的反应增加相纯度,同时减少增殖剂陶瓷小球高空滴落破碎的几率,降低增殖剂小球收集的难度。
附图说明
图1为本发明的增殖剂陶瓷小球熔融喷雾造粒装置的结构示意图;
图2为本发明的增殖剂陶瓷小球熔融喷雾造粒装置的局部放大图;
图中,1.炉膛 2.吹气管 3.吹气腔 4.压力管 5.滴管 6.反向吹气管 7.收集器。
具体实施方式
下面结合附图和实施例详细说明本发明。
以下实施例仅用于说明本发明,而并非对本发明的限制。有关技术领域的人员在不脱离本发明的精神和范围的情况下,还可以做出各种变化、替换和变型,因此同等的技术方案也属于本发明的范畴。
如图1所示,本发明的增殖剂陶瓷小球熔融喷雾造粒装置,炉膛1的上部连接有与加压装置Ⅰ连通的压力管4,炉膛1的下部连接有吹气腔3,炉膛1的外壁包裹电磁感应加热线圈;吹气腔3双层,中间是锥形的中空腔体,锥形的大端与炉膛1固连;滴管5从下至上经吹气腔3的锥形顶点A和锥形顶点B插入炉膛1,滴管5与炉膛1连通,滴管5与锥形顶点A之间留有环缝,滴管5与锥形顶点B之间密封;吹气管2与炉膛1平行,吹气管2的上端与加压装置Ⅱ连通,吹气管2的下端伸入吹气腔3;收集器7收集滴管5中滴落的增殖剂陶瓷小球,在收集器7的侧壁伸入反向吹气管6,反向吹气管6与加压装置Ⅲ连通。
炉膛1的内径大于压力管4的内径,炉膛1的长度与压力管4的长度之比的范围为1.5-2。
滴管5的内径范围为0.5 mm -1.2mm。
吹气管2的长度大于炉膛1的长度。
收集器7的底面与滴管5出口之间的垂直距离为5m-10m。
炉膛1、吹气管2、吹气腔3、压力管4、滴管5的材料为铂、钯、钛、钼金属或铂、钯、钛、钼合金中的一种。
本发明的增殖剂陶瓷小球熔融喷雾造粒方法,包括以下步骤:
a.将增殖剂粉体从压力管4加入到炉膛1内,在炉膛1内利用电磁感应加热到1300゜C -1600゜C,增殖剂粉体变成熔融态的增殖剂液体;
b.加压装置Ⅰ加压惰性气体,压迫增殖剂液体从滴管5滴落,形成增殖剂液滴,通过调节加压装置Ⅰ的压力控制增殖剂液滴的滴落速度,加压装置Ⅰ的压力范围100 kPa -200kPa;
c.加压装置Ⅱ将惰性气体通入吹气管3,吹气管3内的惰性气体流速为5L/min -10L/min,将增殖剂液滴吹散成均匀的小液滴,呈锥形向外发散;
d.加压装置Ⅲ将惰性气体通入反向吹气管6,反向吹气管6吹出的惰性气体托举增殖剂液滴,降低增殖剂液滴的下落速度,使得增殖剂液滴充分冷却,形成增殖剂陶瓷小球。
所述的惰性气体为N2、Ar或He。
实施例1
取炉膛的长度与压力管的长度比为1.5、滴管内径0.5 mm、收集器的底面与滴管出口之间的垂直距离为5m的增殖剂陶瓷小球熔融喷雾造粒装置。首先将增殖剂粉体从压力管加入到炉膛内,在炉膛内利用电磁感应加热到1300゜C -1600゜C,使增殖剂粉体变成熔融态的增殖剂液体;其次将加压装置Ⅰ加压100kPa的惰性气体N2,压迫增殖剂液体从滴管滴落,形成增殖剂液滴;加压装置Ⅱ将惰性气体N2通入吹气管,吹气管内的惰性气体N2流速为5L/min,将增殖剂液滴吹散成均匀的小液滴,呈锥形向外发散;加压装置Ⅲ将惰性气体N2通入反向吹气管,反向吹气管吹出的惰性气体N2托举增殖剂液滴,降低增殖剂液滴的下落速度,使得增殖剂液滴充分冷却,形成增殖剂陶瓷小球。所得增殖剂陶瓷小球有82%粒径在0.6mm-1.2mm之间。
实施例2
实施例2与实施例1 的实施步骤基本相同,主要区别在于,炉膛的长度与压力管的长度比为1.8、滴管内径0.8mm、收集器的底面与滴管出口之间的垂直距离为8m、加压装置Ⅰ加压150kPa的惰性气体Ar、吹气管内的惰性气体N2流速为8L/min。该种方法所得增殖剂陶瓷小球有85%粒径在0.6mm-1.2mm之间。
实施例3
实施例3与实施例1 的实施步骤基本相同,主要区别在于,炉膛的长度与压力管的长度比为2.0、滴管内径1.2mm、收集器的底面与滴管出口之间的垂直距离为10m、加压装置Ⅰ加压200kPa的惰性气体He、吹气管内的惰性气体N2流速为10L/min。该种方法所得增殖剂陶瓷小球有89%粒径在0.6mm-1.2mm之间。

Claims (7)

1.一种增殖剂陶瓷小球熔融喷雾造粒装置,其特征在于,炉膛(1)的上部连接有与加压装置I连通的压力管(4),炉膛(1)的下部连接有吹气腔(3),炉膛(1)的外壁包裹电磁感应加热线圈;吹气腔(3)双层,中间是锥形的中空腔体,锥形的大端与炉膛(1)固连;滴管(5)从下至上经吹气腔(3)的锥形顶点A和锥形顶点B插入炉膛(1),滴管(5)与炉膛(1)连通,滴管(5)与锥形顶点A之间留有环缝,滴管(5)与锥形顶点B之间密封;吹气管(2)与炉膛(1)平行,吹气管(2)的上端与加压装置II连通,吹气管(2)的下端伸入吹气腔(3);收集器(7)收集滴管(5)中滴落的增殖剂陶瓷小球,在收集器(7)的侧壁伸入反向吹气管(6),反向吹气管(6)与加压装置III连通,收集器(7)的底面与滴管(5)出口之间的垂直距离为5m-10m。
2.根据权利要求1所述的增殖剂陶瓷小球熔融喷雾造粒装置,其特征在于,炉膛(1)的内径大于压力管(4)的内径,炉膛(1)的长度与压力管(4)的长度之比的范围为1.5-2。
3.根据权利要求1所述的增殖剂陶瓷小球熔融喷雾造粒装置,其特征在于,滴管(5)的内径范围为0.5mm-1.2mm。
4.根据权利要求1所述的增殖剂陶瓷小球熔融喷雾造粒装置,其特征在于,吹气管(2)的长度大于炉膛(1)的长度。
5.根据权利要求1所述的增殖剂陶瓷小球熔融喷雾造粒装置,其特征在于,炉膛(1)、吹气管(2)、吹气腔(3)、压力管(4)、滴管(5)的材料为铂、钯、钛、钼金属或合金的一种。
6.一种增殖剂陶瓷小球熔融喷雾造粒方法,其特征在于,包括以下步骤:
a.将增殖剂粉体从压力管(4)加入到炉膛(1)内,在炉膛(1)内利用电磁感应加热到1300℃-1600℃,增殖剂粉体变成熔融态的增殖剂液体;
b.加压装置I加压惰性气体,压迫增殖剂液体从滴管(5)滴落,形成增殖剂液滴,通过调节加压装置I的压力控制增殖剂液滴的滴落速度,加压装置I的压力范围100kPa-200kPa;
c.加压装置II将惰性气体通入吹气管(3),吹气管(3)内的惰性气体流速为5L/min-10L/min,将增殖剂液滴吹散成均匀的小液滴,呈锥形向外发散;
d.加压装置III将惰性气体通入反向吹气管(6),反向吹气管(6)吹出的惰性气体托举增殖剂液滴,降低增殖剂液滴的下落速度,使得增殖剂液滴充分冷却,形成增殖剂陶瓷小球。
7.根据权利要求6所述的增殖剂陶瓷小球熔融喷雾造粒方法,其特征在于,所述的惰性气体为N2 、Ar、He。
CN201711284441.9A 2017-12-07 2017-12-07 一种增殖剂陶瓷小球熔融喷雾造粒装置及方法 Active CN107824122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711284441.9A CN107824122B (zh) 2017-12-07 2017-12-07 一种增殖剂陶瓷小球熔融喷雾造粒装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711284441.9A CN107824122B (zh) 2017-12-07 2017-12-07 一种增殖剂陶瓷小球熔融喷雾造粒装置及方法

Publications (2)

Publication Number Publication Date
CN107824122A CN107824122A (zh) 2018-03-23
CN107824122B true CN107824122B (zh) 2020-07-31

Family

ID=61641902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711284441.9A Active CN107824122B (zh) 2017-12-07 2017-12-07 一种增殖剂陶瓷小球熔融喷雾造粒装置及方法

Country Status (1)

Country Link
CN (1) CN107824122B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365004A (ja) * 1986-09-05 1988-03-23 Takeshi Masumoto 高圧ガス噴霧法による微粒子製造装置
CN1355152A (zh) * 2000-11-14 2002-06-26 乌里阿·卡萨勒有限公司 尿素的造粒方法
CN104209053A (zh) * 2013-05-29 2014-12-17 核工业西南物理研究院 一种硅酸锂微球的熔融雾化成型制备方法
CN104437244A (zh) * 2014-12-11 2015-03-25 东莞市汉维新材料科技有限公司 一种硬脂酸锌造粒工艺及设备
CN106862578A (zh) * 2017-02-13 2017-06-20 连云港倍特超微粉有限公司 一种组合雾化式制备球形金属合金微粉的装置和方法
CN107175337A (zh) * 2017-05-22 2017-09-19 加拿大艾浦莱斯有限公司 一种基于等离子体雾化技术的金属粉末制备方法及其装置
CN107262730A (zh) * 2017-08-01 2017-10-20 北京有色金属研究总院 一种微细球形金属粉末的气体雾化制备方法及其设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365004A (ja) * 1986-09-05 1988-03-23 Takeshi Masumoto 高圧ガス噴霧法による微粒子製造装置
CN1355152A (zh) * 2000-11-14 2002-06-26 乌里阿·卡萨勒有限公司 尿素的造粒方法
CN104209053A (zh) * 2013-05-29 2014-12-17 核工业西南物理研究院 一种硅酸锂微球的熔融雾化成型制备方法
CN104437244A (zh) * 2014-12-11 2015-03-25 东莞市汉维新材料科技有限公司 一种硬脂酸锌造粒工艺及设备
CN106862578A (zh) * 2017-02-13 2017-06-20 连云港倍特超微粉有限公司 一种组合雾化式制备球形金属合金微粉的装置和方法
CN107175337A (zh) * 2017-05-22 2017-09-19 加拿大艾浦莱斯有限公司 一种基于等离子体雾化技术的金属粉末制备方法及其装置
CN107262730A (zh) * 2017-08-01 2017-10-20 北京有色金属研究总院 一种微细球形金属粉末的气体雾化制备方法及其设备

Also Published As

Publication number Publication date
CN107824122A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107838431B (zh) 一种球形铼粉制备方法
CN103203455B (zh) 钼粉的制备方法
CN105562700A (zh) 一种用于3d打印的球形钛粉的等离子体制备方法
CN109967755B (zh) 一种球形微细金属粉体生产系统及其方法
CN112872355B (zh) 一种具有多级孔结构的金属吸液芯材料及其制备方法
CN210208648U (zh) 一种用于球化金属粉末的装置
CN102476184A (zh) 一种铜粉及其制作方法、制作装置和散热件
CN110690397A (zh) 一种熔融盐复合电解质隔膜、制备方法及应用
CN209935864U (zh) 一种球形微细金属粉体生产系统
CN105057688A (zh) 一种超细无铅焊锡粉的生产方法
CN108500280B (zh) 铜铟镓合金粉末制备装置及方法
CN107824122B (zh) 一种增殖剂陶瓷小球熔融喷雾造粒装置及方法
CN110394457B (zh) 一种高性能热导铜粉的制备方法
CN113458401A (zh) 一种铁镍钼软磁粉末的制备方法
CN103663440A (zh) 一种制备中间相炭微球的气雾化方法及装置
CN113145853B (zh) 一种球状金属粉的气雾化制备装置及方法
CN106623952A (zh) 一种表面微氢化的钛或钛合金粉末的制备方法
CN203541531U (zh) 焊料粉末制备装置
CN105906192B (zh) 空心玻璃球的锡液鼓泡生产工艺
CN109437871B (zh) 一种多孔正硅酸锂材料的制备方法
CN104209053A (zh) 一种硅酸锂微球的熔融雾化成型制备方法
CN216905416U (zh) 一种陶瓷等离子炬及组合式等离子炬制粉装置
CN114477254B (zh) 一种空心氧化铝球的制备方法
CN109079149A (zh) 一种生产Fe-Mn-Pt金属粉末的方法及设备
CN202558958U (zh) 一种新型的气体导流控制装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant