CN107779810A - 一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺 - Google Patents

一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺 Download PDF

Info

Publication number
CN107779810A
CN107779810A CN201711413212.2A CN201711413212A CN107779810A CN 107779810 A CN107779810 A CN 107779810A CN 201711413212 A CN201711413212 A CN 201711413212A CN 107779810 A CN107779810 A CN 107779810A
Authority
CN
China
Prior art keywords
heat resisting
resisting steel
temperature
nitriding
technique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711413212.2A
Other languages
English (en)
Other versions
CN107779810B (zh
Inventor
闵光忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Hangfa Guizhou Red Forest Air Power Control Technology Co Ltd
Original Assignee
China Hangfa Guizhou Red Forest Air Power Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Hangfa Guizhou Red Forest Air Power Control Technology Co Ltd filed Critical China Hangfa Guizhou Red Forest Air Power Control Technology Co Ltd
Priority to CN201711413212.2A priority Critical patent/CN107779810B/zh
Publication of CN107779810A publication Critical patent/CN107779810A/zh
Application granted granted Critical
Publication of CN107779810B publication Critical patent/CN107779810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明公开了一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,包括如下步骤:渗氮前的调质处理:a、用清洗剂将4Cr14Ni14W2Mo耐热钢清洗干净;b、将清洗好的4Cr14Ni14W2Mo耐热钢放入电炉中,进行三次固溶处理;c、将固溶处理后的4Cr14Ni14W2Mo耐热钢进行机械性能检测,选出晶粒度为8‑10级,晶内无滑移线,双晶数量≤15%的备用;离子氮化处理:将上述步骤中选出的4Cr14Ni14W2Mo耐热钢用清洗剂清洗干净表面污物并去除毛刺,然后进行离子氮化;最后充气开炉即可。本发明的工艺具有能够解决上述技术问题,制备的材料表面硬度高,耐磨性和抗腐蚀性好的特点。

Description

一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺
技术领域
本发明涉及一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,属于热处理氮化工艺技术领域。
背景技术
4Cr14Ni14W2Mo材料属于耐热钢,普遍应用气氛氮化来提高其相应的性能,在民用行业也有离子氮化的先例,但在要求高的航空行业很少或几乎没用这种方法。其合金组成为:C:0.40-0.50%,Cr:13.0-15.0%,Ni:13.0-15.0%,W:2.0%-2.75%,Mo:0.25-0.40%,Si:≤0.80%,Mn:≤0.70%,航空产品要求其深层深度≥0.1mm,气氛氮化需要50H以上才能满足,且零件变形大,耗费的成高大,时间长,还时有氮化层脱落现象。对于这种材料的热处理一般采用固溶处理,保持其综合机械性能,但试样表面常有一层防氧化膜层阻碍渗层的延伸,而常规的表面活化方法难得达到良好的效果,存在表面硬度、耐磨性和抗腐蚀性差的缺陷。
发明内容
本发明的目的在于,提供一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺。本发明的工艺具有能够解决上述技术问题,制备的材料表面硬度高,耐磨性和抗腐蚀性好的特点。
本发明的技术方案:一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,包括如下步骤:
1)渗氮前的调质处理
a、用清洗剂将4Cr14Ni14W2Mo耐热钢清洗干净;
b、将清洗好的4Cr14Ni14W2Mo耐热钢放入电炉中,进行三次固溶处理,工艺参数如下:
第一次固溶处理:温度为1040-1060℃,保温时间为50-70分钟,然后用水冷却;
第二次固溶处理:温度为1040-1060℃,保温时间为50-70分钟,然后用水冷却;
第三次固溶处理:温度为800-820℃,保温时间为120-150分钟,然后空冷;
c、将固溶处理后的4Cr14Ni14W2Mo耐热钢进行机械性能检测,选出晶粒度为8-10级,晶内无滑移线,双晶数量≤15%的备用;
2)离子氮化处理
a、将上述步骤中选出的4Cr14Ni14W2Mo耐热钢用清洗剂清洗干净表面污物并去除毛刺,得A品;
b、将A品放入离子氮化炉内的托盘上,预设温度440-460℃,预抽真空至50Pa以下,然后给定占空比45-55%进行离子轰击表面15-25min,然后再给定电压640-660V,氨气流量190-210mL/min,占空比55-65%再次进行离子轰击25-35min;
c、第一阶段:离子氮化温度490-510℃,保温5-6h,电压690-710V,氨气流量690-710mL/min,压力275-285Pa,占空比75-85%;第二阶段:离子氮化温度510-530℃,保温7-8h,电压740-760V,氨气流量740-760mL/min,压力315-325Pa;第三阶段:离子氮化温度550-560℃,保温10-11h,电压740-760V,氨气流量740-760mL/min,压力315-325Pa;第四阶段:离子氮化温度570-590℃,保温14-15h,电压740-760v,氨气流量740-760mL/min,压力315-325Pa;
d、保温结束后降温,温度小于100℃时充气开炉即可。
前述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,所述清洗剂为碳氢清洗剂。
前述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,所述A品放入离子氮化炉内的托盘上,以辅助阴极为基准点向周围由近即远进行圆周型摆放。
前述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,所述4Cr14Ni14W2Mo耐热钢在调质处理前,预先加工成φ15x20的规格。
前述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,所述4Cr14Ni14W2Mo耐热钢中包括有 C:0.40-0.50%,Cr:13.0-15.0%,Ni:13.0-15.0%,W:2.0%-2.75%,Mo:0.25-0.40%,Si:≤0.80%,Mn:≤0.70%;余量为Fe。
本发明的有益效果
本发明与现有技术相比,具有明显的有益效果,从以上技术方案可知:本发明根据氮化温度越高,氮化时间越长,硬度有下降的趋势,但渗层深度随时间延长越来越深,而氮化硬度和深度还跟电压,压力,氨气流量,占空比有密切关系。通过选择氮化温度、时间、电压、压力,氨气流量,占空比来得到氮化后所需的表面硬度和渗层深度,先将材料清洗,再用离子轰击去除表面氧化膜后,再对材料分为四个阶段进行离子氮化处理,使材料的表面硬度、渗层深度、金相组织、脆性等得到精确控制。本发明能提高4Cr14Ni14W2Mo钢件表面硬度,耐磨性和抗腐蚀性。
具体实施方式
下面结合实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
本发明的实施例
实施例1:一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,包括如下步骤:
1)渗氮前的调质处理
a、先将4Cr14Ni14W2Mo耐热钢加工成φ15x20的规格,然后用碳氢清洗剂清洗干净;
b、将清洗好的4Cr14Ni14W2Mo耐热钢放入电炉中,进行三次固溶处理,工艺参数如下:
第一次固溶处理:温度为1050℃,保温时间为60分钟,然后用水冷却;
第二次固溶处理:温度为1050℃,保温时间为60分钟,然后用水冷却;
第三次固溶处理:温度为810℃,保温时间为135分钟,然后空冷;
c、将固溶处理后的4Cr14Ni14W2Mo耐热钢进行机械性能检测,选出晶粒度为9级,晶内无滑移线,双晶数量≤15%的备用;
2)离子氮化处理
a、将上述步骤中选出的4Cr14Ni14W2Mo耐热钢用碳氢清洗剂清洗干净表面污物并去除毛刺,得A品;
b、将A品放入离子氮化炉内的托盘上,以辅助阴极为基准点向周围由近即远进行圆周型摆放,预设温度450℃,预抽真空至50Pa,然后给定占空比50%进行离子轰击表面20min,然后再给定电压650V,氨气流量200mL/min,占空比60%再次进行离子轰击30min;
c、第一阶段:离子氮化温度500℃,保温5.5h,电压700V,氨气流量700mL/min,压力280Pa,占空比80%;第二阶段:离子氮化温度520℃,保温7.5h,电压750V,氨气流量750mL/min,压力320Pa;第三阶段:离子氮化温度555℃,保温10.5h,电压750V,氨气流量750mL/min,压力320Pa;第四阶段:离子氮化温度580℃,保温14.5h,电压750v,氨气流量750mL/min,压力320Pa;
d、保温结束后降温,温度100℃时充气开炉即可。
实施例2:一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,包括如下步骤:
1)渗氮前的调质处理
a、用清洗剂将4Cr14Ni14W2Mo耐热钢清洗干净;
b、将清洗好的4Cr14Ni14W2Mo耐热钢放入电炉中,进行三次固溶处理,工艺参数如下:
第一次固溶处理:温度为1040℃,保温时间为50分钟,然后用水冷却;
第二次固溶处理:温度为1040℃,保温时间为50分钟,然后用水冷却;
第三次固溶处理:温度为800℃,保温时间为120分钟,然后空冷;
c、将固溶处理后的4Cr14Ni14W2Mo耐热钢进行机械性能检测,选出晶粒度为8级,晶内无滑移线,双晶数量≤10%的备用;
2)离子氮化处理
a、将上述步骤中选出的4Cr14Ni14W2Mo耐热钢用清洗剂清洗干净表面污物并去除毛刺,得A品;
b、将A品放入离子氮化炉内的托盘上,预设温度440℃,预抽真空至40Pa,然后给定占空比45%进行离子轰击表面15min,然后再给定电压640V,氨气流量190mL/min,占空比55%再次进行离子轰击25min;
c、第一阶段:离子氮化温度490℃,保温5h,电压690V,氨气流量690mL/min,压力275Pa,占空比75%;第二阶段:离子氮化温度510℃,保温7h,电压740V,氨气流量740mL/min,压力315Pa;第三阶段:离子氮化温度550℃,保温10h,电压740V,氨气流量740mL/min,压力315Pa;第四阶段:离子氮化温度570℃,保温14h,电压740v,氨气流量740mL/min,压力315Pa;
d、保温结束后降温,温度80℃时充气开炉即可。
实施例3:一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,包括如下步骤:
1)渗氮前的调质处理
a、用清洗剂将4Cr14Ni14W2Mo耐热钢清洗干净;
b、将清洗好的4Cr14Ni14W2Mo耐热钢放入电炉中,进行三次固溶处理,工艺参数如下:
第一次固溶处理:温度为1060℃,保温时间为70分钟,然后用水冷却;
第二次固溶处理:温度为1060℃,保温时间为70分钟,然后用水冷却;
第三次固溶处理:温度为820℃,保温时间为150分钟,然后空冷;
c、将固溶处理后的4Cr14Ni14W2Mo耐热钢进行机械性能检测,选出晶粒度为10级,晶内无滑移线,双晶数量≤15%的备用;
2)离子氮化处理
a、将上述步骤中选出的4Cr14Ni14W2Mo耐热钢用清洗剂清洗干净表面污物并去除毛刺,得A品;
b、将A品放入离子氮化炉内的托盘上,预设温度460℃,预抽真空至20Pa,然后给定占空比55%进行离子轰击表面25min,然后再给定电压660V,氨气流量210mL/min,占空比65%再次进行离子轰击35min;
c、第一阶段:离子氮化温度510℃,保温6h,电压710V,氨气流量710mL/min,压力285Pa,占空比85%;第二阶段:离子氮化温度530℃,保温8h,电压760V,氨气流量760mL/min,压力325Pa;第三阶段:离子氮化温度560℃,保温11h,电压760V,氨气流量760mL/min,压力325Pa;第四阶段:离子氮化温度590℃,保温15h,电压760v,氨气流量760mL/min,压力325Pa;
d、保温结束后降温,温度50℃时充气开炉即可。
对实施例1-3氮化处理后的4Cr14Ni14W2Mo耐热钢的性能进行检测,其检测结果为:
实施例1:表面硬度:950HV5,渗层深度:0.15mm,脆性:Ⅰ级,组织:无网状,变形:0.001mm。
实施例2:表面硬度:880HV5,渗层深度:0.09mm,脆性:Ⅰ级,组织:无网状,变形:0.01mm。
实施例3:表面硬度:700HV5,渗层深度:0.08mm,脆性:Ⅰ级,组织:无网状,变形:0.03mm。

Claims (5)

1. 一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,其特征在于,包括如下步骤:
1)渗氮前的调质处理
a、用清洗剂将4Cr14Ni14W2Mo耐热钢清洗干净;
b、将清洗好的4Cr14Ni14W2Mo耐热钢放入电炉中,进行三次固溶处理,工艺参数如下:
第一次固溶处理:温度为1040-1060℃,保温时间为50-70分钟,然后用水冷却;
第二次固溶处理:温度为1040-1060℃,保温时间为50-70分钟,然后用水冷却;
第三次固溶处理:温度为800-820℃,保温时间为120-150分钟,然后空冷;
c、将固溶处理后的4Cr14Ni14W2Mo耐热钢进行机械性能检测,选出晶粒度为8-10级,晶内无滑移线,双晶数量≤15%的备用;
2)离子氮化处理
a、将上述步骤中选出的4Cr14Ni14W2Mo耐热钢用清洗剂清洗干净表面污物并去除毛刺,得A品;
b、将A品放入离子氮化炉内的托盘上,预设温度440-460℃,预抽真空至50Pa以下,然后给定占空比45-55%进行离子轰击表面15-25min,然后再给定电压640-660V,氨气流量190-210mL/min,占空比55-65%再次进行离子轰击25-35min;
c、第一阶段:离子氮化温度490-510℃,保温5-6h,电压690-710V,氨气流量690-710mL/min,压力275-285Pa,占空比75-85%;第二阶段:离子氮化温度510-530℃,保温7-8h,电压740-760V,氨气流量740-760mL/min,压力315-325Pa;第三阶段:离子氮化温度550-560℃,保温10-11h,电压740-760V,氨气流量740-760mL/min,压力315-325Pa;第四阶段:离子氮化温度570-590℃,保温14-15h,电压740-760v,氨气流量740-760mL/min,压力315-325Pa;
d、保温结束后降温,温度小于100℃时充气开炉即可。
2.如权利要求1所述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,其特征在于:所述清洗剂为碳氢清洗剂。
3.如权利要求1所述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,其特征在于:所述A品放入离子氮化炉内的托盘上,以辅助阴极为基准点向周围由近即远进行圆周型摆放。
4.如权利要求1所述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,其特征在于:所述4Cr14Ni14W2Mo耐热钢在调质处理前,预先加工成φ15x20的规格。
5.如权利要求1所述的4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺,其特征在于:所述4Cr14Ni14W2Mo耐热钢中包括有 C:0.40-0.50%,Cr:13.0-15.0%,Ni:13.0-15.0%,W:2.0%-2.75%,Mo:0.25-0.40%,Si:≤0.80%,Mn:≤0.70%;余量为Fe。
CN201711413212.2A 2017-12-24 2017-12-24 一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺 Active CN107779810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711413212.2A CN107779810B (zh) 2017-12-24 2017-12-24 一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711413212.2A CN107779810B (zh) 2017-12-24 2017-12-24 一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺

Publications (2)

Publication Number Publication Date
CN107779810A true CN107779810A (zh) 2018-03-09
CN107779810B CN107779810B (zh) 2019-04-19

Family

ID=61437302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711413212.2A Active CN107779810B (zh) 2017-12-24 2017-12-24 一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺

Country Status (1)

Country Link
CN (1) CN107779810B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893588A (zh) * 2018-07-26 2018-11-27 青岛大学 一种提高钢中δ铁素体固溶速率的方法
CN109355617A (zh) * 2018-11-27 2019-02-19 中国航发贵州黎阳航空动力有限公司 一种30Cr2Ni2WVA渗氮方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030333A (ja) * 2000-07-14 2002-01-31 Sumitomo Metal Mining Co Ltd 窒化物層、およびこれをその表面に有するオーステナイト系鉄基金属
CN101649441A (zh) * 2008-08-12 2010-02-17 贵州红林机械有限公司 奥氏体不锈钢材料的渗氮工艺方法
CN104480424A (zh) * 2014-12-02 2015-04-01 贵州红林机械有限公司 一种氮化钢135材料的氮化方法
CN106244979A (zh) * 2016-08-30 2016-12-21 贵州红林机械有限公司 一种提高中碳铬锰钢氮化白层硬度的方法
CN106893969A (zh) * 2015-12-18 2017-06-27 沈阳透平机械股份有限公司 Fv520b材料的离子氮化热处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030333A (ja) * 2000-07-14 2002-01-31 Sumitomo Metal Mining Co Ltd 窒化物層、およびこれをその表面に有するオーステナイト系鉄基金属
CN101649441A (zh) * 2008-08-12 2010-02-17 贵州红林机械有限公司 奥氏体不锈钢材料的渗氮工艺方法
CN104480424A (zh) * 2014-12-02 2015-04-01 贵州红林机械有限公司 一种氮化钢135材料的氮化方法
CN106893969A (zh) * 2015-12-18 2017-06-27 沈阳透平机械股份有限公司 Fv520b材料的离子氮化热处理工艺
CN106244979A (zh) * 2016-08-30 2016-12-21 贵州红林机械有限公司 一种提高中碳铬锰钢氮化白层硬度的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
卢华等: "4Cr14Ni14W2Mo不锈钢气体渗氮", 《金属热处理》 *
宋伟 等: "4Cr14Ni14W2Mo钢二次固溶处理对其组织和性能的影响", 《热加工工艺》 *
胡德林: "4Cr14Ni14W2Mo钢氮化层剥落研究", 《热加工工艺》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893588A (zh) * 2018-07-26 2018-11-27 青岛大学 一种提高钢中δ铁素体固溶速率的方法
CN108893588B (zh) * 2018-07-26 2019-10-25 青岛大学 一种提高钢中δ铁素体固溶速率的方法
CN109355617A (zh) * 2018-11-27 2019-02-19 中国航发贵州黎阳航空动力有限公司 一种30Cr2Ni2WVA渗氮方法

Also Published As

Publication number Publication date
CN107779810B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Zhang et al. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy
Kalsar et al. A novel way to enhance the strength of twinning induced plasticity (TWIP) steels
JP5908194B1 (ja) 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
CN108995128B (zh) 一种表面涂覆有树脂的高稳定金属材料的制备方法
CN108943565B (zh) 一种铝或铝合金金属纳米注塑的方法
CN111636046B (zh) 一种钛合金部件深腔螺纹局部离子渗氮的方法
CN107779810A (zh) 一种4Cr14Ni14W2Mo耐热钢快速离子氮化的工艺
Talha et al. Long term and electrochemical corrosion investigation of cold worked AISI 316L and 316LVM stainless steels in simulated body fluid
CN105937018A (zh) 一种奥氏体不锈钢低温离子渗氮的方法
CN113174553B (zh) 一种电子束重熔与微弧氧化相结合提高镁合金耐蚀性的方法
CN103647053B (zh) 一种镍电极表面制备三氧化铝涂层的方法
CN108995127B (zh) 一种铝或铝合金金属表面处理方法
Sun et al. Improving the high cycle fatigue property of Ti6Al4V ELI alloy by optimizing the surface integrity through electric pulse combined with ultrasonic surface rolling process
CN113358437A (zh) 一种铜铁双相合金ebsd分析用样品的制备方法
JP5369083B2 (ja) 高耐電圧性を有する表面処理アルミニウム部材およびその製造方法
CN108819092B (zh) 一种高孔密度的铝或铝合金材料的制备方法
CN108995129B (zh) 一种高孔密度的铝或铝合金材料
JP7056653B2 (ja) ワイヤ放電加工用電極線
CN105829584A (zh) 制造涂覆有保护涂层的部件的方法
JP5245103B2 (ja) 厚膜dlc被覆部材およびその製造方法
CN114694906A (zh) 一种磁体及制备磁体的方法
CN112725714B (zh) 一种铀铌合金表层夹杂物的细化方法
JP5370984B2 (ja) 真空機器用アルミニウム合金材およびその製造方法
CN115961220B (zh) 一种Ti元素微合金化复合电化学阴极充氢处理提高Zr基非晶合金耐点蚀性能的方法
Wang et al. Studies of the Corrosion Behaviours of High-strength Alloy Steel in an Environment Containing Cl-Using a Wire Beam Electrode (WBE) and EIS Techniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant