CN107742644B - A high performance normally-off GaN field effect transistor and a method for preparing the same - Google Patents

A high performance normally-off GaN field effect transistor and a method for preparing the same Download PDF

Info

Publication number
CN107742644B
CN107742644B CN201711033409.3A CN201711033409A CN107742644B CN 107742644 B CN107742644 B CN 107742644B CN 201711033409 A CN201711033409 A CN 201711033409A CN 107742644 B CN107742644 B CN 107742644B
Authority
CN
China
Prior art keywords
layer
gan
gate
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711033409.3A
Other languages
Chinese (zh)
Other versions
CN107742644A (en
Inventor
刘扬
郑介鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201711033409.3A priority Critical patent/CN107742644B/en
Publication of CN107742644A publication Critical patent/CN107742644A/en
Application granted granted Critical
Publication of CN107742644B publication Critical patent/CN107742644B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及半导体器件制备的技术领域,更具体地,涉及一种高性能常关型的GaN场效应晶体管及其制备方法。该器件包括衬底及生长在衬底上的外延层、栅介质层、栅极、漏极、源极。所述外延层包括一次外延生长的应力缓冲层及GaN沟道层,通过掩膜图形化及刻蚀工艺,仅在栅极区域保留掩膜,利用原位刻蚀去除接入区的掩膜残留及表面玷污后,选择区域生长AlGaN/GaN异质结结构形成凹槽沟道。栅极金属覆盖于凹槽沟道处,器件两端形成源极和漏极区并覆盖金属形成源极和漏极。本发明器件结构和制备工艺简单可靠,原位刻蚀接入区能减少掩膜制备过程中在器件接入区引入的缺陷杂质,得到高质量的接入区界面,保证二次外延AlGaN/GaN异质结构质量,从而提高常关型GaN场效应晶体管的导通性能。

The present invention relates to the technical field of semiconductor device preparation, and more specifically, to a high-performance normally-off GaN field effect transistor and a preparation method thereof. The device includes a substrate and an epitaxial layer, a gate dielectric layer, a gate, a drain, and a source grown on the substrate. The epitaxial layer includes a stress buffer layer and a GaN channel layer grown by a primary epitaxial growth. Through mask patterning and etching processes, the mask is retained only in the gate area. After the mask residue and surface contamination in the access area are removed by in-situ etching, an AlGaN/GaN heterojunction structure is selectively grown in the area to form a groove channel. The gate metal is covered at the groove channel, and source and drain regions are formed at both ends of the device and covered with metal to form the source and drain. The device structure and preparation process of the present invention are simple and reliable. In-situ etching of the access area can reduce defect impurities introduced into the device access area during mask preparation, obtain a high-quality access area interface, ensure the quality of the secondary epitaxial AlGaN/GaN heterostructure, and thus improve the conduction performance of the normally-off GaN field effect transistor.

Description

一种高性能常关型的GaN场效应晶体管及其制备方法A high performance normally-off GaN field effect transistor and its preparation method

技术领域Technical Field

本发明涉及半导体器件制备的技术领域,更具体地,涉及一种高性能常关型的GaN场效应晶体管及其制备方法。具体涉及选择区域外延制备凹槽栅常关型GaN场效应晶体管的接入区二次生长界面的改进方法。The present invention relates to the technical field of semiconductor device preparation, and more specifically, to a high-performance normally-off GaN field effect transistor and a preparation method thereof, and more specifically to an improved method for selectively epitaxially preparing a secondary growth interface of an access region of a recessed gate normally-off GaN field effect transistor.

背景技术Background technique

作为第三代半导体材料的代表,GaN具有禁带宽度大、临界击穿电场强度大、功率密度大和载流子饱和速度高等特点。GaN功率开关器件可以在保持金属半导体场效应管的低噪声性能和高额定功率的同时大幅度提高其上限工作频率,并且有着更高的工作电压、更高的功率密度和耐高温等优点,这使得GaN基器件在一些功率器件和高频电路中逐步取代原有的Si基、GaAs基器件。As a representative of the third generation of semiconductor materials, GaN has the characteristics of large bandgap width, large critical breakdown electric field strength, high power density and high carrier saturation velocity. GaN power switching devices can significantly increase the upper limit operating frequency while maintaining the low noise performance and high rated power of metal semiconductor field effect tubes, and have the advantages of higher operating voltage, higher power density and high temperature resistance, which makes GaN-based devices gradually replace the original Si-based and GaAs-based devices in some power devices and high-frequency circuits.

传统的凹槽栅常关型GaN功率器件中凹槽的制备方法是一次外延生长AlGaN/GaN异质结构,然后在保持接入区二维电子气浓度不变的情况下降低栅极下区域二维电子气的浓度,一般有以下方法:等离子刻蚀凹槽结构、F等离子体注入、添加P型盖帽层等。然而这些方法都不可避免地使用了等离子体处理技术。等离子体刻蚀凹槽或注入处理对栅极下区域造成的晶格损伤,会增加器件的漏电流,降低栅控制能力;而P型盖帽层方案则会对接入区造成晶格损伤,影响二维电子气沟道的稳定性和器件的可靠性。与上述方法相比,选择区域生长(SAG)方法可以避免等离子体处理对器件有源层带来的损伤,提高栅极区域的界面质量,提高器件的稳定性和可靠性。但是在选择区域外延GaN槽栅结构场效应晶体管中,器件接入区AlGaN/GaN异质结结构通过二次外延形成,二次外延AlGaN/GaN异质结结构的质量直接决定了器件的性能。在二次生长AlGaN/GaN外延层之前,需要对覆盖有SiO2掩膜层的外延片进行深度清洗,这使得有GaN沟道层的衬底暴露在空气中,其表面存在空气氧化及C、Si杂质的玷污。同时,在使用金属有机化合物化学气相沉淀方法二次生长AlGaN/GaN外延层时,需要对Si衬底进行高温处理从而实现对Si衬底的清洁,但是在升温过程中仅使用H2作为载气,此升温条件会破坏GaN材料表面,因为GaN在H2环境下容易分解,其反应方程式为:The preparation method of the groove in the traditional groove gate normally-off GaN power device is to epitaxially grow an AlGaN/GaN heterostructure once, and then reduce the concentration of the two-dimensional electron gas in the area under the gate while keeping the concentration of the two-dimensional electron gas in the access area unchanged. Generally, there are the following methods: plasma etching groove structure, F plasma injection, adding a P-type cap layer, etc. However, these methods inevitably use plasma processing technology. The lattice damage to the area under the gate caused by plasma etching grooves or injection treatment will increase the leakage current of the device and reduce the gate control ability; while the P-type cap layer scheme will cause lattice damage to the access area, affecting the stability of the two-dimensional electron gas channel and the reliability of the device. Compared with the above methods, the selective area growth (SAG) method can avoid the damage to the active layer of the device caused by plasma treatment, improve the interface quality of the gate area, and improve the stability and reliability of the device. However, in the selective area epitaxial GaN groove gate structure field effect transistor, the AlGaN/GaN heterojunction structure in the device access area is formed by secondary epitaxy, and the quality of the secondary epitaxial AlGaN/GaN heterojunction structure directly determines the performance of the device. Before the secondary growth of AlGaN/GaN epitaxial layer, the epitaxial wafer covered with SiO2 mask layer needs to be deeply cleaned, which makes the substrate with GaN channel layer exposed to the air, and its surface is oxidized by air and contaminated by C and Si impurities. At the same time, when the AlGaN/GaN epitaxial layer is secondary grown by metal organic chemical vapor deposition method, the Si substrate needs to be treated at high temperature to clean the Si substrate, but only H2 is used as carrier gas during the heating process. This heating condition will damage the surface of GaN material, because GaN is easy to decompose in H2 environment, and its reaction equation is:

GaN与H2在高温情况下反应会产生Ga液滴和氨气。Ga液滴会导致二次外延生长界面的不平整从而劣化二次外延AlGaN/GaN异质结结构质量。更为严重的是,选择区域外延掩膜图形的制备需要在有GaN沟道层的衬底表面利用等离子增强化学气相沉积方法生长SiO2掩膜层,然后通过干/湿法腐蚀的方法去除接入区覆盖的SiO2掩膜,该工艺存在Si残留的风险。过多杂质的引入会劣化二次外延异质结构的质量,降低接入区导电沟道的二维电子气浓度,不利于器件导通性能的提升。因此有必要寻求一种常关型GaN场效应晶体管接入区界面质量优化方法,以克服由选择区域生长方法引起的对器件接入区引入缺陷杂质的缺点,从而获得高性能的常关型GaN场效应晶体管。GaN reacts with H2 at high temperatures to produce Ga droplets and ammonia. Ga droplets can cause unevenness in the secondary epitaxial growth interface, thereby deteriorating the quality of the secondary epitaxial AlGaN/GaN heterojunction structure. More seriously, the preparation of the selective area epitaxial mask pattern requires the use of plasma enhanced chemical vapor deposition to grow a SiO2 mask layer on the surface of the substrate with a GaN channel layer, and then remove the SiO2 mask covering the access area by dry/wet etching. This process has the risk of Si residue. The introduction of too many impurities will deteriorate the quality of the secondary epitaxial heterostructure, reduce the two-dimensional electron gas concentration of the conductive channel in the access area, and is not conducive to improving the conduction performance of the device. Therefore, it is necessary to seek a method for optimizing the interface quality of the access area of a normally-off GaN field effect transistor to overcome the disadvantage of introducing defect impurities into the device access area caused by the selective area growth method, so as to obtain a high-performance normally-off GaN field effect transistor.

发明内容Summary of the invention

本发明为克服上述现有技术所述的至少一种缺陷,提供一种高性能常关型的GaN场效应晶体管及其制备方法,通过原位刻蚀接入区的GaN沟道层,在生长二次外延层前,减少掩膜制备过程中在接入区界面引入的Si、C/O等杂质,并去除接入区的掩膜残留及表面玷污,提高器件的接入区二次生长界面质量,保持接入区沟道二维电子气浓度基本不变,从而制备一种高性能的常关型GaN场效应晶体管。In order to overcome at least one defect of the above-mentioned prior art, the present invention provides a high-performance normally-off GaN field effect transistor and a preparation method thereof. By in-situ etching the GaN channel layer of the access area, before growing the secondary epitaxial layer, the impurities such as Si and C/O introduced into the interface of the access area during the mask preparation process are reduced, and the mask residue and surface contamination of the access area are removed, thereby improving the secondary growth interface quality of the access area of the device, and keeping the two-dimensional electron gas concentration of the access area channel basically unchanged, thereby preparing a high-performance normally-off GaN field effect transistor.

本发明的技术方案是:一种高性能常关型的GaN场效应晶体管,其中,包括由下往上依次包括衬底,应力缓冲层,GaN沟道层,原位刻蚀接入区的GaN沟道层后生长二次外延层,去除栅极掩膜形成凹槽栅结构并在表面沉积一层栅介质层,器件两端去除栅介质层并形成源极和漏极,凹槽栅极区域的栅介质层上覆盖有栅极。The technical solution of the present invention is: a high-performance normally-off GaN field effect transistor, which includes, from bottom to top, a substrate, a stress buffer layer, a GaN channel layer, in-situ etching of the GaN channel layer in the access area and then growing a secondary epitaxial layer, removing the gate mask to form a groove gate structure and depositing a gate dielectric layer on the surface, removing the gate dielectric layer at both ends of the device and forming a source and a drain, and the gate dielectric layer in the groove gate area is covered with a gate.

进一步的,所述的衬底为蓝宝石衬底、碳化硅衬底、硅衬底、氮化镓自支撑衬底中的任一种。Furthermore, the substrate is any one of a sapphire substrate, a silicon carbide substrate, a silicon substrate, and a gallium nitride self-supporting substrate.

所述的应力缓冲层为AlGaN、GaN、AlN的任一种或组合;应力缓冲层厚度为100nm~10μm。The stress buffer layer is any one or a combination of AlGaN, GaN and AlN; the thickness of the stress buffer layer is 100nm-10μm.

所述的GaN沟道层为非故意掺杂的GaN沟道层或掺杂的高阻GaN沟道层,所述掺杂高阻层的掺杂元素为碳或铁;在凹槽区域下的GaN沟道层厚度为100nm~20μm,相比较下接入区下的GaN沟道层厚度减少10~50nm。The GaN channel layer is an unintentionally doped GaN channel layer or a doped high-resistance GaN channel layer, and the doping element of the doped high-resistance layer is carbon or iron; the thickness of the GaN channel layer under the groove area is 100nm-20μm, which is 10-50nm less than the thickness of the GaN channel layer under the lower access area.

所述的二次外延层为AlGaN/GaN异质结,AlGaN层厚度为10~50nm,其中铝组分的浓度可变化,GaN层厚度为10~500nm。The secondary epitaxial layer is an AlGaN/GaN heterojunction, the thickness of the AlGaN layer is 10-50nm, the concentration of the aluminum component can be changed, and the thickness of the GaN layer is 10-500nm.

所述的凹槽栅结构通过原位刻蚀接入区的GaN沟道层去除表面玷污并生长二次外延层来形成,呈现U型或梯形结构。原位刻蚀接入区的方法作用在于,接入区的GaN沟道层在形成栅极掩膜层时存在掩膜残留及杂质引入,原位刻蚀接入区的GaN沟道层可去除接入区表面缺陷态,同时减少环境杂质的引入,得到高质量的二次外延界面。The groove gate structure is formed by in-situ etching the GaN channel layer of the access area to remove surface contamination and grow a secondary epitaxial layer, presenting a U-shaped or trapezoidal structure. The method of in-situ etching the access area is that the GaN channel layer of the access area has mask residues and impurities introduced when forming the gate mask layer. In-situ etching the GaN channel layer of the access area can remove surface defect states of the access area, while reducing the introduction of environmental impurities, and obtain a high-quality secondary epitaxial interface.

所述的栅介质层为Al2O3或Si3N4化合物,厚度为10~100nm。The gate dielectric layer is Al 2 O 3 or Si 3 N 4 compound, and has a thickness of 10-100 nm.

所述的源极和漏极材料包括但不限于Ti/Al/Ni/Au合金、Ti/Al/Ti/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/TiN合金,其它能够实现欧姆接触的各种金属或合金均可作为源极和漏极材料;栅极材料包括但不限于Ni/Au合金、Pt/Al合金、Pd/Au合金或TiN/Ti/Al/Ti/TiN合金,其他能够实现高阈值电压的各种金属或合金均可作为栅极材料。The source and drain materials include but are not limited to Ti/Al/Ni/Au alloy, Ti/Al/Ti/Au alloy, Ti/Al/Mo/Au alloy or Ti/Al/Ti/TiN alloy, and various other metals or alloys that can achieve ohmic contact can be used as source and drain materials; the gate material includes but is not limited to Ni/Au alloy, Pt/Al alloy, Pd/Au alloy or TiN/Ti/Al/Ti/TiN alloy, and various other metals or alloys that can achieve high threshold voltage can be used as gate materials.

一种高性能常关型的GaN场效应晶体管的制备方法,其中:包括以下步骤:A method for preparing a high-performance normally-off GaN field effect transistor, comprising the following steps:

S1、在衬底上生长应力缓冲层;S1, growing a stress buffer layer on a substrate;

S2、在应力缓冲层上生长GaN沟道层;S2, growing a GaN channel layer on the stress buffer layer;

S3、在GaN沟道层上沉积一层SiO2,作为掩膜层;S3, depositing a layer of SiO 2 on the GaN channel layer as a mask layer;

S4、通过光刻并结合干法或湿法刻蚀方法,保留栅极区域之上的掩膜层;S4, retaining the mask layer above the gate region by photolithography combined with a dry or wet etching method;

S5、原位刻蚀接入区的GaN沟道层,刻蚀深度为10~50nm;S5, in-situ etching of the GaN channel layer in the access area, with an etching depth of 10 to 50 nm;

S6、选择区域生长二次外延层,形成凹槽型栅极结构;S6, growing a secondary epitaxial layer in a selected area to form a groove-type gate structure;

S7、去除栅极区域之上的掩膜层;S7, removing the mask layer above the gate region;

S8、沉积形成栅介质层;S8, depositing to form a gate dielectric layer;

S9、干法刻蚀完成器件的台面隔离,同时刻蚀出源极和漏极欧姆接触区域;S9, dry etching to complete the mesa isolation of the device, and at the same time etch out the source and drain ohmic contact areas;

S10、在源极和漏极区域蒸镀上源极和漏极金属,并通过欧姆合金退火形成欧姆接触;S10, evaporating source and drain metals on the source and drain regions, and forming ohmic contacts by annealing the ohmic alloy;

S11、在凹槽处栅介质层上的栅极区域蒸镀栅极金属。S11, evaporating a gate metal in the gate region on the gate dielectric layer at the groove.

所述步骤S1中的应力缓冲层和步骤S2中的GaN沟道层及步骤S6中的二次外延层的生长方法为金属有机化学气相沉积法、分子束外延法等高质量成膜方法;所述步骤S3中掩膜层的生长方法为等离子体增强化学气相沉积法、原子层沉积法、物理气相沉积法或磁控溅射法;所述步骤S5中的原位刻蚀方法为干法刻蚀,刻蚀气体环境为N2、NH3的任一种或组合;所述步骤S8中的栅介质层的生长方法为低压化学气相沉积法。The growth methods of the stress buffer layer in step S1, the GaN channel layer in step S2 and the secondary epitaxial layer in step S6 are high-quality film-forming methods such as metal organic chemical vapor deposition and molecular beam epitaxy; the growth method of the mask layer in step S3 is plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition or magnetron sputtering; the in-situ etching method in step S5 is dry etching, and the etching gas environment is any one or a combination of N2 and NH3 ; the growth method of the gate dielectric layer in step S8 is low pressure chemical vapor deposition.

与现有技术相比,有益效果是:本发明提高了器件接入区二次生长界面的质量,保持接入区沟道二维电子气浓度基本不变,从而提高了器件的导通性能。本发明在常规的选择区域生长方法上增加了一个步骤,在生长二次外延层AlGaN/GaN异质结结构前,对无SiO2掩膜层覆盖的GaN沟道层进行原位刻蚀,将接入区上的SiO2掩膜残留和含有较多C、Si施主杂质的界面去除,同时减少在二次生长外延层前的准备阶段引入的环境杂质,进而提高二次外延异质结结构的质量,保持接入区沟道二维电子气浓度基本不变,使器件导通性能得到提升。本发明器件结构简单,工艺重复性和可靠性高,在保持器件栅极区域下界面高质量的同时,提高了器件接入区界面的质量,从而提供了一种制备高性能常关型GaN场效应晶体管器件的技术。Compared with the prior art, the beneficial effects are: the present invention improves the quality of the secondary growth interface of the device access region, keeps the concentration of the two-dimensional electron gas in the access region channel basically unchanged, thereby improving the conduction performance of the device. The present invention adds a step to the conventional selective area growth method, before growing the secondary epitaxial layer AlGaN/GaN heterojunction structure, the GaN channel layer without SiO2 mask layer is in-situ etched to remove the SiO2 mask residue on the access region and the interface containing more C and Si donor impurities, while reducing the environmental impurities introduced in the preparation stage before the secondary growth of the epitaxial layer, thereby improving the quality of the secondary epitaxial heterojunction structure, keeping the concentration of the two-dimensional electron gas in the access region channel basically unchanged, and improving the conduction performance of the device. The device structure of the present invention is simple, the process repeatability and reliability are high, while maintaining the high quality of the lower interface of the device gate region, the quality of the interface of the device access region is improved, thereby providing a technology for preparing a high-performance normally-off GaN field effect transistor device.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1-11为本发明实施例1的器件制备方法工艺示意图。1-11 are schematic diagrams of the device manufacturing method according to Example 1 of the present invention.

图12-14为本发明实施例2的制备栅极区域上掩膜层的工艺示意图。12-14 are schematic diagrams of a process for preparing a mask layer on a gate region according to Embodiment 2 of the present invention.

具体实施方式Detailed ways

附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。The drawings are only for illustrative purposes and cannot be construed as limiting the present invention. To better illustrate the present embodiment, some parts of the drawings may be omitted, enlarged, or reduced, and do not represent the size of the actual product. For those skilled in the art, it is understandable that some well-known structures and their descriptions may be omitted in the drawings. The positional relationships described in the drawings are only for illustrative purposes and cannot be construed as limiting the present invention.

实施例1Example 1

如图11所示为本实施例的器件结构示意图,其结构由下往上依次包括衬底1,应力缓冲层2,GaN沟道层3,原位刻蚀接入区的GaN沟道层3后生长二次外延层4,去除栅极掩膜形成凹槽栅结构并在表面沉积一层栅介质层5,器件两端去除栅介质层形成源极6和漏极7,凹槽栅极区域的栅介质层上覆盖有栅极8。As shown in Figure 11, it is a schematic diagram of the device structure of this embodiment, which includes a substrate 1, a stress buffer layer 2, a GaN channel layer 3 from bottom to top, the GaN channel layer 3 in the access area is in-situ etched and then a secondary epitaxial layer 4 is grown, the gate mask is removed to form a groove gate structure and a gate dielectric layer 5 is deposited on the surface, the gate dielectric layer is removed at both ends of the device to form a source 6 and a drain 7, and the gate dielectric layer in the groove gate area is covered with a gate 8.

上述的一种高性能常关型GaN场效应晶体管的制备方法如图1-图10所示,包括以下步骤:The above-mentioned method for preparing a high-performance normally-off GaN field effect transistor is shown in Figures 1 to 10, and comprises the following steps:

S1、利用金属有机化学气相沉积方法,在Si衬底1上生长一层应力缓冲层2,如图1所示;S1, growing a stress buffer layer 2 on a Si substrate 1 by using a metal organic chemical vapor deposition method, as shown in FIG1 ;

S2、利用金属有机化学气相沉积方法,在应力缓冲层2上生长GaN沟道层3,如图2所示;S2, growing a GaN channel layer 3 on the stress buffer layer 2 by using a metal organic chemical vapor deposition method, as shown in FIG2 ;

S3、利用等离子体增强化学气相方法沉积一层SiO2,作为掩膜层9,如图3所示;S3, using a plasma enhanced chemical vapor method to deposit a layer of SiO 2 as a mask layer 9, as shown in FIG3 ;

S4、利用光刻结合反应耦合等离子体刻蚀方法,保留栅极区域之上的掩膜层9,如图4所示;S4, using photolithography combined with reactive coupled plasma etching to retain the mask layer 9 above the gate region, as shown in FIG4 ;

S5、利用干法刻蚀方法在N2气体环境中对接入区进行原位刻蚀,如图5所示;S5, in-situ etching the access area in a N2 gas environment using a dry etching method, as shown in FIG5 ;

S6、利用金属有机化学气相沉积方法,在有掩膜层9的衬底上选择区域生长二次外延AlGaN/GaN层4,形成凹槽结构,如图6所示;S6, using a metal organic chemical vapor deposition method, selectively growing a secondary epitaxial AlGaN/GaN layer 4 on the substrate having the mask layer 9 to form a groove structure, as shown in FIG6 ;

S7、采用湿法腐蚀方法,去除栅极区域之上的掩膜层9,如图7所示;S7, using a wet etching method to remove the mask layer 9 on the gate region, as shown in FIG7 ;

S8、利用低压化学气相沉积方法生长一层栅介质层5,如图8所示;S8, growing a gate dielectric layer 5 by low pressure chemical vapor deposition method, as shown in FIG8 ;

S9、利用反应耦合等离子体刻蚀完成器件的台面隔离,同时刻蚀出源极和漏极欧姆接触区域,如图9所示;S9, using reactive coupled plasma etching to complete the mesa isolation of the device, and at the same time etching out the source and drain ohmic contact regions, as shown in FIG9 ;

S10、在源极和漏极区域蒸镀上Ti/Al/Ni/Au合金作为源极6和漏极7的欧姆接触金属,并通过欧姆合金退火形成欧姆接触,如图10所示;S10, vapor-depositing Ti/Al/Ni/Au alloy on the source and drain regions as the ohmic contact metal of the source 6 and the drain 7, and forming ohmic contacts by annealing the ohmic alloy, as shown in FIG10 ;

S11、在凹槽栅极区域的栅介质层上蒸镀Ni/Au合金作为栅极9金属,如图11所示。S11 , evaporating Ni/Au alloy on the gate dielectric layer in the recessed gate region as the gate 9 metal, as shown in FIG. 11 .

至此,即完成了整个器件的制备过程。图11即为实施例1的器件结构示意图。At this point, the entire device preparation process is completed. FIG11 is a schematic diagram of the device structure of Example 1.

实施例2Example 2

图12-14为本发明实施例2的制备栅极区域上SiO2掩膜层的工艺示意图,其与实施例1中栅极区域上SiO2掩膜层的制备方法区别仅在于:实施例1中采用的是反应耦合等离子体刻蚀形成栅极区域上的掩膜图形,而实施例2采用的是剥离方法来形成栅极区域上的掩膜图形。具体的过程包括以下步骤:Figures 12-14 are schematic diagrams of the process of preparing the SiO2 mask layer on the gate region in Example 2 of the present invention, which differs from the method for preparing the SiO2 mask layer on the gate region in Example 1 only in that the mask pattern on the gate region is formed by reactive coupled plasma etching in Example 1, while the mask pattern on the gate region is formed by a stripping method in Example 2. The specific process includes the following steps:

S1、在二次外延层3上部分形成图形化结构的光刻胶保护层10,如图12所示;S1, partially forming a photoresist protection layer 10 with a patterned structure on the secondary epitaxial layer 3, as shown in FIG12;

S2、在有光刻胶保护层10的衬底上利用等离子体增强化学气相方法沉积一层SiO2,作为掩膜层9,如图13所示;S2, depositing a layer of SiO 2 as a mask layer 9 on the substrate having the photoresist protection layer 10 by using a plasma enhanced chemical vapor method, as shown in FIG. 13 ;

S3、使用光刻胶剥离液去除光刻胶保护层10,同时去除保护层上的掩膜层9,保留栅极区域上的掩膜层,使得掩膜层图形化,如图14所示。S3, using a photoresist stripping solution to remove the photoresist protective layer 10, and at the same time remove the mask layer 9 on the protective layer, retaining the mask layer on the gate region, so that the mask layer is patterned, as shown in FIG. 14 .

采用剥离工艺来制备栅极区域上的SiO2掩膜,可以很好地解决传统光刻和腐蚀工艺制作掩膜层时容易损伤生长界面的问题。但是由于在生长二次外延层4前,GaN沟道层3暴露在空气中,其表面存在空气氧化及C、Si杂质的玷污,因此采用剥离工艺仍然无法完全解决器件接入区界面的缺陷问题,而使用本专利提供的制备方法则可以得到更高质量的接入区二次外延生长界面。The use of a stripping process to prepare the SiO2 mask on the gate region can effectively solve the problem of easy damage to the growth interface when the mask layer is made by traditional photolithography and etching processes. However, since the GaN channel layer 3 is exposed to the air before the secondary epitaxial layer 4 is grown, its surface is oxidized by air and contaminated by C and Si impurities. Therefore, the stripping process still cannot completely solve the defect problem of the interface in the device access area. The preparation method provided by this patent can obtain a higher quality secondary epitaxial growth interface in the access area.

此外,需要说明的是,以上实施例的附图仅是为了示意的目的,因此没有必要按比例绘制。In addition, it should be noted that the drawings of the above embodiments are for illustrative purposes only and therefore do not necessarily need to be drawn to scale.

显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above embodiments of the present invention are merely examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. For those skilled in the art, other different forms of changes or modifications can be made based on the above description. It is not necessary and impossible to list all the embodiments here. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the claims of the present invention.

Claims (8)

1.一种高性能常关型的GaN场效应晶体管,其特征在于,包括由下往上依次包括衬底(1),应力缓冲层(2),GaN沟道层(3),原位刻蚀接入区的GaN沟道层后生长二次外延层(4),去除栅极掩膜形成凹槽栅结构并在表面沉积一层栅介质层(5),器件两端去除栅介质层(5)并形成源极(6)和漏极(7),凹槽栅极区域的栅介质层(5)上覆盖有栅极(8);所述的凹槽栅结构通过原位刻蚀接入区的GaN沟道层(3)去除表面玷污并生长二次外延层(4)来形成,呈现U型或梯形结构;接入区的GaN沟道层(3)在形成栅极掩膜层时存在掩膜残留及杂质引入,原位刻蚀接入区的GaN沟道层(3)可去除接入区表面缺陷态,同时减少环境杂质的引入,得到高质量的二次外延界面。1. A high-performance normally-off GaN field effect transistor, characterized in that it comprises, from bottom to top, a substrate (1), a stress buffer layer (2), a GaN channel layer (3), a secondary epitaxial layer (4) is grown after in-situ etching of the GaN channel layer in the access area, a gate mask is removed to form a groove gate structure and a gate dielectric layer (5) is deposited on the surface, the gate dielectric layer (5) is removed at both ends of the device and a source (6) and a drain (7) are formed, and a gate (8) is covered on the gate dielectric layer (5) in the groove gate area; the groove gate structure is formed by in-situ etching of the GaN channel layer (3) in the access area to remove surface contamination and growing the secondary epitaxial layer (4), presenting a U-shaped or trapezoidal structure; when the gate mask layer is formed, the GaN channel layer (3) in the access area has mask residues and impurities introduced, and the in-situ etching of the GaN channel layer (3) in the access area can remove surface defect states in the access area and reduce the introduction of environmental impurities, thereby obtaining a high-quality secondary epitaxial interface. 2.根据权利要求1所述的一种高性能常关型的GaN场效应晶体管,其特征在于:所述的衬底(1)为蓝宝石衬底、碳化硅衬底、硅衬底、氮化镓自支撑衬底中的任一种。2. A high-performance normally-off GaN field effect transistor according to claim 1, characterized in that: the substrate (1) is any one of a sapphire substrate, a silicon carbide substrate, a silicon substrate, and a gallium nitride self-supporting substrate. 3.根据权利要求1所述的一种高性能常关型的GaN场效应晶体管,其特征在于:所述的应力缓冲层(2)为AlGaN、GaN、AlN的任一种或组合;应力缓冲层厚度为100nm~10μm。3. A high-performance normally-off GaN field effect transistor according to claim 1, characterized in that: the stress buffer layer (2) is any one or a combination of AlGaN, GaN, and AlN; and the thickness of the stress buffer layer is 100nm to 10μm. 4.根据权利要求1所述的一种高性能常关型的GaN场效应晶体管,其特征在于:所述的GaN沟道层(3)为非故意掺杂的GaN沟道层或掺杂的高阻GaN沟道层,所述掺杂高阻层的掺杂元素为碳或铁;在凹槽区域下的GaN沟道层厚度为100nm~20μm,相比较下接入区下的GaN沟道层厚度减少10~50nm。4. A high-performance normally-off GaN field effect transistor according to claim 1, characterized in that: the GaN channel layer (3) is an unintentionally doped GaN channel layer or a doped high-resistance GaN channel layer, and the doping element of the doped high-resistance layer is carbon or iron; the thickness of the GaN channel layer under the groove area is 100nm~20μm, which is 10~50nm less than the thickness of the GaN channel layer under the lower access area. 5.根据权利要求1所述的一种高性能常关型的GaN场效应晶体管,其特征在于:所述的二次外延层(4)为AlGaN/GaN异质结,AlGaN层厚度为10~50nm,其中铝组分的浓度可变化,GaN层厚度为10~500nm。5. A high-performance normally-off GaN field effect transistor according to claim 1, characterized in that: the secondary epitaxial layer (4) is an AlGaN/GaN heterojunction, the thickness of the AlGaN layer is 10 to 50 nm, the concentration of the aluminum component can be changed, and the thickness of the GaN layer is 10 to 500 nm. 6.根据权利要求1所述的一种高性能常关型的GaN场效应晶体管,其特征在于:所述的栅介质层(5)为Al2O3或Si3N4化合物,厚度为10~100nm;所述的源极(6)和漏极(7)材料为Ti/Al/Ni/Au合金、Ti/Al/Ti/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/TiN合金;栅极(8)材料为Ni/Au合金、Pt/Al合金、Pd/Au合金或TiN/Ti/Al/Ti/TiN合金。6. A high-performance normally-off GaN field effect transistor according to claim 1, characterized in that: the gate dielectric layer (5) is Al2O3 or Si3N4 compound, with a thickness of 10 to 100 nm; the source (6) and drain (7) materials are Ti/Al/Ni/Au alloy, Ti/Al/Ti/Au alloy, Ti/Al/Mo/Au alloy or Ti/Al/Ti/TiN alloy; the gate (8) material is Ni/Au alloy, Pt/Al alloy, Pd/Au alloy or TiN/Ti/Al/Ti/TiN alloy. 7.权利要求1所述的一种高性能常关型的GaN场效应晶体管的制备方法,其特征在于:包括以下步骤:7. The method for preparing a high-performance normally-off GaN field effect transistor according to claim 1, characterized in that it comprises the following steps: S1、在衬底(1)上生长应力缓冲层(2);S1, growing a stress buffer layer (2) on a substrate (1); S2、在应力缓冲层(2)上生长GaN沟道层(3);S2, growing a GaN channel layer (3) on the stress buffer layer (2); S3、在GaN沟道层(3)上沉积一层SiO2,作为掩膜层(9);S3, depositing a layer of SiO2 on the GaN channel layer (3) as a mask layer (9); S4、通过光刻并结合干法或湿法刻蚀方法,保留栅极区域之上的掩膜层(9);S4, retaining the mask layer (9) above the gate region by photolithography combined with a dry or wet etching method; S5、原位刻蚀接入区的GaN沟道层(3),刻蚀深度为10~50nm;S5, in-situ etching the GaN channel layer (3) in the access area, with an etching depth of 10 to 50 nm; S6、选择区域生长二次外延层(4),形成凹槽型栅极结构;S6, growing a secondary epitaxial layer (4) in a selected area to form a groove-type gate structure; S7、去除栅极区域之上的掩膜层(9);S7, removing the mask layer (9) above the gate region; S8、沉积形成栅介质层(5);S8, depositing to form a gate dielectric layer (5); S9、干法刻蚀完成器件的台面隔离,同时刻蚀出源极和漏极欧姆接触区域;S9, dry etching to complete the mesa isolation of the device, and at the same time etch out the source and drain ohmic contact areas; S10、在源极和漏极区域蒸镀上源极(6)和漏极(7)金属,并通过欧姆合金退火形成欧姆接触;S10, evaporating source (6) and drain (7) metals in the source and drain regions, and forming ohmic contacts by annealing the ohmic alloy; S11、在凹槽处栅介质层上的栅极区域蒸镀栅极(8)金属。S11, evaporating a gate (8) metal in the gate region on the gate dielectric layer at the groove. 8.根据权利要求7所述的一种高性能常关型的GaN场效应晶体管的制备方法,其特征在于:所述步骤S1中的应力缓冲层(2)和步骤S2中的GaN沟道层(3)及步骤S6中的二次外延层(4)的生长方法为金属有机化学气相沉积法、分子束外延法等高质量成膜方法;所述步骤S3中掩膜层(9)的生长方法为等离子体增强化学气相沉积法、原子层沉积法、物理气相沉积法或磁控溅射法;所述步骤S5中的原位刻蚀方法为干法刻蚀,刻蚀气体环境为N2、NH3的任一种或组合;所述步骤S8中的栅介质层的生长方法为低压化学气相沉积法。8. A method for preparing a high-performance normally-off GaN field effect transistor according to claim 7, characterized in that: the growth method of the stress buffer layer (2) in step S1, the GaN channel layer (3) in step S2 and the secondary epitaxial layer (4) in step S6 is a high-quality film-forming method such as metal organic chemical vapor deposition and molecular beam epitaxy; the growth method of the mask layer (9) in step S3 is plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition or magnetron sputtering; the in-situ etching method in step S5 is dry etching, and the etching gas environment is any one or a combination of N2 and NH3; the growth method of the gate dielectric layer in step S8 is low pressure chemical vapor deposition.
CN201711033409.3A 2017-10-30 2017-10-30 A high performance normally-off GaN field effect transistor and a method for preparing the same Active CN107742644B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711033409.3A CN107742644B (en) 2017-10-30 2017-10-30 A high performance normally-off GaN field effect transistor and a method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711033409.3A CN107742644B (en) 2017-10-30 2017-10-30 A high performance normally-off GaN field effect transistor and a method for preparing the same

Publications (2)

Publication Number Publication Date
CN107742644A CN107742644A (en) 2018-02-27
CN107742644B true CN107742644B (en) 2024-05-28

Family

ID=61233170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711033409.3A Active CN107742644B (en) 2017-10-30 2017-10-30 A high performance normally-off GaN field effect transistor and a method for preparing the same

Country Status (1)

Country Link
CN (1) CN107742644B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797152B2 (en) * 2018-06-04 2020-10-06 Semiconductor Components Industries, Llc Process of forming an electronic device including an access region
CN108922890B (en) * 2018-07-10 2020-11-06 深圳大学 A kind of preparation method of the combined power device of semiconductor and two-dimensional material
CN109103243A (en) * 2018-07-24 2018-12-28 厦门市三安集成电路有限公司 A kind of PHEMT device of high value resistor
CN111081764A (en) * 2019-12-30 2020-04-28 深圳第三代半导体研究院 Transistor with embedded source and drain and preparation method thereof
CN116391259A (en) * 2020-11-13 2023-07-04 苏州晶湛半导体有限公司 Fabrication method of semiconductor structure
CN114577882B (en) * 2020-11-30 2024-04-12 联合微电子中心有限责任公司 Method for manufacturing gas sensor and gas sensor
CN113675297A (en) * 2021-08-10 2021-11-19 东北师范大学 Gallium oxide/gallium nitride heterojunction photoelectric detector and preparation method thereof
CN113745107B (en) * 2021-09-07 2022-05-17 洪启集成电路(珠海)有限公司 Manufacturing method of GaN device
CN114220738B (en) * 2021-12-22 2024-04-30 江苏第三代半导体研究院有限公司 A GaN-based semiconductor device and a method for preparing the same
CN117497585B (en) * 2023-12-29 2024-03-05 英诺赛科(苏州)半导体有限公司 Semiconductor device and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1334345A (en) * 1971-06-17 1973-10-17 Ibm Etching
JPS58207676A (en) * 1982-05-28 1983-12-03 Toshiba Corp Manufacturing method of semiconductor device
US4826784A (en) * 1987-11-13 1989-05-02 Kopin Corporation Selective OMCVD growth of compound semiconductor materials on silicon substrates
JP2011044647A (en) * 2009-08-24 2011-03-03 Sharp Corp Group-iii nitride-based field-effect transistor and method of manufacturing the same
CN102856374A (en) * 2012-10-10 2013-01-02 中山大学 GaN enhanced MIS-HFET device and preparation method of same
CN105336789A (en) * 2015-10-29 2016-02-17 中山大学 GaN-based field effect transistor with high quality MIS structure and preparation method of GaN-based field effect transistor
CN105712289A (en) * 2014-12-04 2016-06-29 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN106024914A (en) * 2016-06-30 2016-10-12 广东省半导体产业技术研究院 GaN-based schottky diode having hybrid anode electrode structure and preparation method thereof
CN106783866A (en) * 2017-01-05 2017-05-31 上海华虹宏力半导体制造有限公司 The manufacture method of flush memory device
CN207664047U (en) * 2017-10-30 2018-07-27 中山大学 A kind of GaN field-effect transistors of high-performance normally-off

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021588A1 (en) * 2010-07-23 2012-01-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate and semiconductor device
FR3018629B1 (en) * 2014-03-14 2022-10-28 Ommic SEMICONDUCTOR STRUCTURE FORMING TRANSISTOR HEMT

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1334345A (en) * 1971-06-17 1973-10-17 Ibm Etching
US3767493A (en) * 1971-06-17 1973-10-23 Ibm Two-step photo-etching method for semiconductors
JPS58207676A (en) * 1982-05-28 1983-12-03 Toshiba Corp Manufacturing method of semiconductor device
US4826784A (en) * 1987-11-13 1989-05-02 Kopin Corporation Selective OMCVD growth of compound semiconductor materials on silicon substrates
JP2011044647A (en) * 2009-08-24 2011-03-03 Sharp Corp Group-iii nitride-based field-effect transistor and method of manufacturing the same
CN102856374A (en) * 2012-10-10 2013-01-02 中山大学 GaN enhanced MIS-HFET device and preparation method of same
CN105712289A (en) * 2014-12-04 2016-06-29 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN105336789A (en) * 2015-10-29 2016-02-17 中山大学 GaN-based field effect transistor with high quality MIS structure and preparation method of GaN-based field effect transistor
CN106024914A (en) * 2016-06-30 2016-10-12 广东省半导体产业技术研究院 GaN-based schottky diode having hybrid anode electrode structure and preparation method thereof
CN106783866A (en) * 2017-01-05 2017-05-31 上海华虹宏力半导体制造有限公司 The manufacture method of flush memory device
CN207664047U (en) * 2017-10-30 2018-07-27 中山大学 A kind of GaN field-effect transistors of high-performance normally-off

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
选择区域外延槽栅结构GaN常关型MOSFET的研究;杨帆 等;《电源学报》;20160731;第4卷(第7期);第14至20页 *

Also Published As

Publication number Publication date
CN107742644A (en) 2018-02-27

Similar Documents

Publication Publication Date Title
CN107742644B (en) A high performance normally-off GaN field effect transistor and a method for preparing the same
CN110190116B (en) High-threshold-voltage normally-off high-electron-mobility transistor and preparation method thereof
CN107946358B (en) An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and a manufacturing method thereof
CN101752389A (en) Al2O3/AlN/GaN/AlN MOS-HEMT device and manufacturing method thereof
CN110459595B (en) An enhanced AlN/AlGaN/GaN HEMT device and a method for preparing the same
CN107240604A (en) Fluorine injection enhanced AlGaN/GaN HEMTs and preparation method thereof
CN112289858A (en) Group III nitride enhanced HEMT device and preparation method thereof
JP5520432B2 (en) Manufacturing method of semiconductor transistor
CN107785435A (en) A kind of low on-resistance MIS notched gates GaN base transistors and preparation method
CN210429824U (en) Enhanced AlN/AlGaN/GaN HEMT device
CN107706232A (en) A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method
CN109950324A (en) Group III nitride diode device with p-type anode and method of making the same
CN207664047U (en) A kind of GaN field-effect transistors of high-performance normally-off
CN112542384B (en) Manufacturing method of gallium nitride enhanced device
CN110164976A (en) Strain type gallium oxide MOSFET element structure and preparation method
CN112951911A (en) Enhanced GaN-based high electron mobility transistor and preparation method thereof
CN113140630A (en) Preparation method of p-type nitride gate of enhanced HEMT (high Electron mobility transistor) and method for preparing enhanced nitride HEMT by using p-type nitride gate
CN117497414A (en) Preparation method of gallium oxide field effect transistor with high electron mobility and transistor
CN207664049U (en) A kind of normally-off GaNMOSFET structures at the interfaces high quality MOS
CN108807509A (en) A kind of high conduction property P-type grid electrode normally-off HEMT device of high voltage and preparation method thereof
CN108695156B (en) Method for improving III-nitride MIS-HEMT ohmic contact and MIS-HEMT device
CN113725297A (en) Normally-open gallium oxide-based HFET device with cap layer and preparation method thereof
CN114334650A (en) Novel structure in p-GaN HEMT
JP2006100455A (en) Nitride semiconductor device and its manufacturing method
CN205810820U (en) A kind of AlNGaN base field-effect transistor of high-quality MIS structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant