CN107735357B - 氧化剂的制备 - Google Patents

氧化剂的制备 Download PDF

Info

Publication number
CN107735357B
CN107735357B CN201480084427.2A CN201480084427A CN107735357B CN 107735357 B CN107735357 B CN 107735357B CN 201480084427 A CN201480084427 A CN 201480084427A CN 107735357 B CN107735357 B CN 107735357B
Authority
CN
China
Prior art keywords
oxygen
singlet oxygen
singlet
metal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480084427.2A
Other languages
English (en)
Other versions
CN107735357A (zh
Inventor
Z·巴达什
Original Assignee
Z Badashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Z Badashi filed Critical Z Badashi
Publication of CN107735357A publication Critical patent/CN107735357A/zh
Application granted granted Critical
Publication of CN107735357B publication Critical patent/CN107735357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/22Peroxides; Oxygen; Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M35/00Devices for applying media, e.g. remedies, on the human body
    • A61M35/30Gas therapy for therapeutic treatment of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/04Skin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Birds (AREA)
  • Emergency Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

提供制备单线态氧的非辐射性方法,包括:使包含氧气的气体在穿孔的金属制品中间或上面穿过。还描述氧化处理靶标的方法,包括提供金属制品,并使包含氧气的气体在所述制品上面或中间对流朝向所述靶标。

Description

氧化剂的制备
技术领域
本发明涉及单线态氧的非辐射性制备。
背景技术
氧气占空气的约20%,对生命和各种化学反应至关重要。氧分子是双向的,因为其最低的电子状态是三线态(3g -)状态,其中两个不成对的电子分布在两个最高的被占据的退化轨道中。
在不同能量状态下氧分子轨道的占用如图所示:图1a三线态基态3g -,图1b最稳定单线态1Δg和图1c最高能量、短寿命单线态1g+[1]。
三线态(3O2)中的氧由于自旋限制而不是非常活跃的,因为大多数其他分子都处于单线态,尽管它将容易与处于双态的自由基反应。然而,分子的激发将导致电子自旋的重新排列和轨道占有率形成两个可能的单线态:1Δg和1g +(分别为图1b和c),它们具有高反应性[2]。1g +态氧非常活跃,具有相对较短的寿命,因为它倾向于快速放松到较低的能量1Δg状态。因此,1Δg单线态与基态相比仅高出23千卡[3],是涉及大多数氧反应的状态,其不涉及自由基并是在讨论单线态氧1O2(以下称为“单线态氧”)时所提及的状态。
通过吸收光子将孤立的氧分子从基态三线态直接转化为单线态是非常不可能的,因为它是自旋禁止的转变。结果,1Δg单线态相对长寿命、报告的孤立的1Δg状态氧的辐射寿命为72分钟,而分离的较高能量1g +氧[3]为11秒。在较高的氧浓度和其他分子的存在下,这些寿命显着缩短。观察到的1Δg状态氧的寿命范围从含水介质中的气相至微秒数以及其他条件[4,5]。
由于它是高度反应性的氧气,单线态氧(1O2)越来越多地用于医疗应用(如癌症治疗)和工业应用(如水处理和诱导化学反应)。
单线态氧可以用各种方法制备;其中最常见的是化学反应。图2证实两种这样的反应,(a)三氧化二氮在水中的分解;(b)过氧化氢与次氯酸钠的反应[6-9]。
单线态氧制备的另一种方法是通过在有机染料(光敏剂)的存在下辐射[3]。在氧气存在下的荧光增感剂通过无辐射路径淬火,其中能量转移到被激发到单线态的氧。
还有其他的物理方法来制备单线态氧,它们在氧气气氛中不像普通使用的那样,如微波[10]和射频放电[11]。
为了在大气中制备单线态氧,通常使用固定化的光敏剂[12]。然而,光敏剂往往随着时间的推移而降解,由于单线态氧的光漂白或其它一些过程而导致光效降低。此外,固定化光敏剂的产率低于未结合分子的产率[13]。结果,基于固定化光敏剂的装置显示降低的产量并具有有限的寿命。
一个目的是在大气和富氧空气中制备短寿命单线态氧。另一个目标是提供利用所制备的单线态氧的方法。
发明概述
在展示的第一方面,提供一种制备单线态氧的非辐射性方法,该方法包括:使包含氧气的气体在穿孔的金属制品中间或上面穿过。
根据另一方面,提供一种氧化处理靶标的方法,该方法包括:
提供金属制品;
使包含氧气的气体在所述制品上面或中间对流朝向所述靶标。
例如,金属制品是具有蜂窝图案的孔的金属板。
优选地,制品包含选自由周期表第5至7周期的金属组成的组的至少一种金属。
例如,金属选自由铜、银、金、镍、钴及其混合物组成的组。
当主要金属是铜时,其占所述制品中金属的至少80%w/w;铜的纯度可以是99.9+%w/w。
金属蜂窝可包括具有0.5至6cm尺寸的直径的孔;任选的直径为2cm。
优选地,制品和处理靶标不超过40cm间隔。
优选地,取决于气体的速度,穿过的气体的速度足以允许所述穿过的气体在0.1-1.5秒内从所述制品到达所述靶标。
根据另一方面,气体中8-12%的氧气可转化为单线态氧。
根据又一方面,提供包含金属纳米颗粒的非金属蜂窝-框架。
在一些实施方案中,纳米颗粒溅射到非金属蜂窝-框架上。
在一些实施方案中,纳米颗粒引入非金属蜂窝-框架。
非金属蜂窝-框架可由选自由橡胶、塑料、硅橡胶及其混合物组成的组的材料制成。
根据另一方面,提供受试者的皮肤处理,包括:
选择用于处理的皮肤的区域;
使金属蜂窝和所述区域保持至多50cm的距离;以及
使包含氧气的气体在所述制品中间对流朝向所述靶标。
一些实施方案是包括上述金属蜂窝的空气净化系统。
根据又一方面,提供受试者的一种或多种病症的处理:癌症和口腔病变,其中所述处理包括:
鉴定由所述病症影响的受试者中的区域;
使金属蜂窝和所述区域保持至多50cm的距离;以及
使包含氧气的气体在所述制品中间对流朝向所述区域。
在一些优选实施方案中,所述气体以至少20m/s的速度穿过。
附图简述
为了更好地理解本发明并且显示如何被利用,现在将仅作为示例参考附图。
现在具体参考附图,应当强调,所示的细节仅作为示例并且仅用于说明性地讨论本发明的优选实施例的目的,并且提供了所相信的原因是对本发明的原理和概念方面的最有用和容易理解的描述。在这方面,没有尝试比基本理解本发明所必需的更详细地显示本发明的结构细节;对于本领域技术人员来说,用附图进行的描述对于本发明的几种形式可以在实践中体现。在附图中:
图1a示意性示出在三线态基态3g -下占据氧分子轨道;
图1b示出最稳定的单线态1Δg
图1c示出最高能量、短寿命单线态1g+;
图2证实在两种化学反应中制备单线态氧;
图3是示出单线态氧的制备的示意图;
图4证实吸附的激发的氧分子由于空气流所施加的力而容易与金属表面分离;
图5示意性描述使用单线态氧控制细菌生长。
优选实施方案详述
在详细说明本发明的至少一个实施例之前,应当理解,本发明在其应用中不一定受到以下描述中阐述或由实施例举例说明的细节的限制。本发明能够以其他实施例或以各种方式实践或执行。
术语“含有”、“包含”、“包括”、“拥有”和“具有”与其共轭词一词意味着“包括但不限于”。
术语“由…构成”与“包括但不限于”意思相同。
术语“基本上由…构成”意指组合物、方法或结构可以包括另外的成分、步骤和/或部分,但是只有当附加成分、步骤和/或部分不实质地改变所要求保护的组合物、方法或结构的基本和特征时是这样。
如本文所用,单数形式“一个”、“一种”和“所述”包括复数参考,除非上下文另有明确规定。例如,术语“化合物”或“至少一种化合物”可以包括多种化合物,包括其混合物。
在本申请中,本发明的各种实施例可以通过范围形式呈现。应当理解,范围格式的描述仅仅是为了方便和简洁,并且不应被解释为对本发明的范围的不灵活的限制。因此,对范围的描述应考虑为具有具体公开所有可能的子范围以及该范围内的各个数值。
应当理解,为了清楚起见,在单独的实施例的上下文中描述的本发明的某些特征也可以在单个实施例中组合提供。相反,为了简洁起见,在单个实施例的上下文中描述的本发明的各种特征也可以单独提供或以任何合适的子组合提供或适用于本发明的任何其它描述的实施例。在各种实施例的上下文中描述的某些特征不被认为是这些实施例的基本特征,除非该实施例在没有那些元件的情况下不起作用。
在讨论下面描述的各种附图时,相同的附图标记表示相同的部分。图纸一般不按比例。为了清楚起见,在一些附图中省略了非必需元件。
在以前的研究中,单线态氧被推测为在金属氧化的反应阶段制备[14]。然而,这种氧气的激发紧随其后的是金属的氧化[14]。因此,这种单线态氧从未被分离和识别。
根据一个方面,提供非辐射性金属基方法,以从大气或富氧空气或其他含氧气体中有效地制备富含单线态富氧的气氛。
图3是描述单态氧的制备的示意图。单线态氧出人意料地从在金属板10A(优选在其中具有孔)上面或中间流过的气氛或富氧空气制备。板可以形状像蜂窝,或具有任何其他孔的形状和距离。
我们以后将金属框架形式称为蜂窝,尽管不排除其他配置和孔形状。
如图4中示意性描绘的,显然,吸附的激发单线态氧分子可由于气流所施加的力而容易地与金属表面10B分离。如果金属-氧相互作用足够弱以允许快速分离,则这种效果是可能的。
已知单线态氧可以通过其电子顺磁共振(EPR)光谱特征检测,其与三线态氧的特征明显不同[15]。事实上,随着富氧空气通过铜蜂窝并测量,通过EPR光谱法检测单线态氧。当大气被使用时,没有检测到单线态氧,大概是因为所产生的单线态氧的含量低于仪器的检测限。
所产生的游离单线态氧的收率随所使用的金属而变化,因为金属和入射氧之间的相互作用需要足够强以使其能够激发到单线态,但足够弱以在其继续反应之前使单线态氧从金属表面分离。通过使用不同比例的各种相关金属的合金,我们可以进一步微调单线态氧收率。
富氧空气流过金属蜂窝会导致氧气从三线态基态转化为激发单线态,收率为8-12%。收率取决于空气流速。
此外,非金属蜂窝-框架,金属纳米颗粒引入和/或溅射其上,显示出相同的效果。蜂窝-框架可以由橡胶、塑料或硅橡胶制成。蜂窝-框架可以是满的或空心的。金属纳米颗粒由相同的金属制成,上面的金属蜂窝可以由铜、银、金、镍等、以及它们不同的比例的合金制成。
单线态氧是高反应性的。由于这个事实,由金属蜂窝产生的富含单线态氧的气流可以在比常规空气低的温度下燃烧。此外,所引起的燃烧过程更有效,因此更清洁,从而产生较少污染的不完全燃烧副产物如一氧化碳、硫氧化物、烟灰等。如下所述,所制备的单线态氧可用于其它方法。
实施例1
铜、铜-金合金和铜-银合金蜂窝的适用性进行了实验验证。铜被认为是最有效地制备单线态氧。
测试的最有效的合金组合物由厚度为1.5mm的983g铜(99.9%纯度)、14g纯银和3g纯金(24克拉,100%纯度)组成。该合金组合物用于以下实施例。这种蜂窝将被称为“铜-银-金合金蜂窝”。
铜蜂窝也取得了良好的效果,其中铜纯度至少为99.9%,主要杂质为Ag,存在较少量的As、Zn、Pb。当铜纯度降低时,单线态氧收率有所降低;例如80%纯度蜂窝进行了测试。
由于铜、银、金等各种重金属过渡金属(从5、6和7周期)都相对较弱地结合氧[16],这些金属适合于这种方法。
实施例2
为了检验金属蜂窝对燃烧的影响,实验在大气流入的燃烧炉中进行,大气在到达燃烧室本身之前通过蜂窝。排放气体的温度及其水平用铜-银-金合金蜂窝、铝蜂窝、无任何蜂窝测量。所有试验重复三次,并在相同的条件中进行:相同的燃烧炉、燃料和空气流量。当使用铝蜂窝时,没有发现重大变化,而铜-银-金合金蜂窝显示出显着的效果。表1给出了其测试结果的总结,表明排放气体温度及其水平低于没有铜-银-金合金蜂窝的值。这表明通过含有高反应性单线态氧的铜-银-金合金蜂窝的空气来源于更有效和完整的燃烧过程。
另外,注意到火焰形状和颜色发生变化;它由没有蜂窝或铝蜂窝的弥漫的黄色火焰,转变成具有铜-银-金合金蜂窝的稳定的、狭窄的紫色-蓝色的火焰。这种类型的火焰是完全燃烧的特征,其通常由富氧燃料混合物引起[17]。如我们这样的空气组成没有变化,这种现象进一步加强了我们的结论,即铜-银-金合金蜂窝产生高反应性单线态氧,这引发了完全的燃烧过程。
表1
Figure GDA0003229848560000081
实施例3
单线态氧已被证明对细菌有害[18]和对病毒有害[19]。参照图5,将接种大肠杆菌的营养琼脂板30置于通过铜-银-金合金蜂窝10C的恒定空气流中1小时,并在37℃下孵育过夜。作为对照,将类似的大肠杆菌平板以相同的流速在天然气流下温育。
从表2可以看出,随培养皿和金属蜂窝之间的距离d,对大肠杆菌细菌生长的影响减小(图5):当处理过的空气在d=20cm处通过培养皿时,没有细菌菌落发育(100%细菌破坏),而在d=2m时有70%的细菌菌落破坏(与对照板相比)。
表2
Figure GDA0003229848560000091
在距离2.5m处,处理空气的影响较小,考虑到气流速度,我们得出结论,这些条件下气态单线态氧的寿命为
Figure GDA0003229848560000092
使用寿命根据空气流量而变化。以约20m/s的速度获得单线态氧的良好产率。
因此,单线态氧的作用主要适于在距离激发位置短距离处(30-40cm)使用激发氧。
另一方面,当使用由其他材料(铝、铁、不锈钢、铅、塑料(ABS)和硅)制成的蜂窝时,细菌菌落不受影响。
我们得出结论,该方法可能在对细菌有毒的水平下产生单线态氧。
实施例4
恒定流量的空气通过一套铜-银-金合金蜂窝,每个提供不同尺寸的孔,直径为0.5-6厘米。在所有蜂窝中吹出的空气中都检测到单线态氧。然而,令人惊讶的是,当蜂窝具有约2cm直径的孔时,达到最高的单线态氧制备产量。
实施例5
对于痤疮治疗,将铜-银-金合金蜂窝安装在强制大气通过它的装置中,面部皮肤在装置上并在35厘米处的严重痤疮处理5分钟。在第四次治疗中,已经注意到皮肤状况明显改善,而在第9次治疗中,治疗皮肤上的痤疮几乎消失。为了控制,我们使用相同治疗病症的铝蜂窝,没有显着的影响。
实施例6
对于脚部真菌治疗,用与实施例5中描述的相同的装置在35cm的距离处,治疗感染的脚7分钟。通过第四次治疗,注意到了显着的改善,而在第10次治疗中,感染几乎消失。用铁蜂窝进行类似的治疗,效果不明显。
实施例7
对于斑块性银屑病治疗,首先将白色痂软化并使用乳膏去除;随后用相同的装置在30cm的距离处,治疗受影响的皮肤4分钟处理。在第三次治疗中,注意到明显的改善,而在第10次治疗中,治疗区域完全愈合。用不锈钢蜂窝进行类似的处理,效果不明显
根据一方面,金属蜂窝提供空气净化系统,大气被迫通过蜂窝,并指向净化靶标。例如,可以将系统并入空调的进气口,使得通过它的空气将被消毒,并且另外将防止由于细菌和真菌污染导致的空调过滤器和系统的结垢。由于效应范围相对较短,不存在长距离有害氧化损伤的危险,因为高反应性,短寿命单线态氧产生的松弛回到三线态基态。该方法也可用于医疗器械(包装食品、药物、废水和水处理等)的灭菌。
由于获得的空气中的单线态氧浓度低,寿命相对较短,从蜂窝引导的空气流中的氧化病症足够轻以允许气流用于医疗、牙科和美容治疗,例如癌症[21]、口腔损伤[20]牛皮癣[22]、痤疮[23]等,如上面的例子所示。目前,用于这些应用的单线态氧的常用方法是光动力学处理(PDT),其需要施加光敏化,然后进行照射。PDT的副作用是皮肤对光高度敏感这种副作用将被避免使用上述方法,因为单线态氧的生产不需要光敏剂。
据我们所知,首次显示由于流动空气与金属的相互作用而有用地制备游离单线态氧。
参考文献
1.Foote CS;Clennan EL.(1995)Properties and reactions of singletoxygen.In:Foote CS;Valentine JS;Greenberg A;Liebman JF.Active Oxygen inChemistry.Black Academic and Professional.London,pp.105-141.
2.Barry Halliwell;John MC.(1982)Free Radical in Biology andMedicine.Second Edition.Clarwndon Press.OxFord.
3.Schweitzer,C,&Schmidt,R.(2003).Physical mechanisms of generationand deactivation of singlet oxygen.Chemical Reviews,103(5),1685-1758.
4.Long,C,&Kearns,D.R.(1973).Selection rules for the intermolecularenhancement of spin forbidden transitions in molecular oxygen.The Journal ofChemical Physics,59(10),5729-5736.
5.Ogilby,P.R.(1999).Solvent effects on the radiative transitions ofsinglet oxygen.Accounts of chemical research,32(6),512-519.
6.Noronha-Dutra,A.A.,Epperlein,M.M.,&Woolf,N.(1993).Reaction ofnitric oxide with hydrogen peroxide to produce potentially cytotoxic singletoxygen as a model for nitric oxide-mediated killing.FEBS letters,321(1),59-62.
7.Kanofsky,J.R.(1984).Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems.Journal of Biological Chemistry,259(9),5596-5600.
8.Foote,C.S.,Wexler,S.,Ando,W.,&Higgins,R.(1968).Chemistry of singletoxygen.IV.Oxygenations with hypochlorite-hydrogen peroxide.Journal of theAmerican Chemical Society,90(4),975-981.
9.Stephenson,L.M.,&McClure,D.E.(1973).Mechanisms in phosphite ozonidedecomposition to phosphate esters and singlet oxygen.Journal of the AmericanChemical Society,95(9),3074-3076.
10.Rabek,J.F.,&Ranby,B.(1976).Studies on the photooxidation mechanismof polymers.V.Oxidation of polybutadienes by singlet oxygen from microwavedischarge and in dye-photosensitized reactions.Journal of Polymer Science:Polymer Chemistry Edition,14(6),1463-1473.
11.Braginskiy,0.V.,Vasilieva,A.N.,Klopovskiy,K.S.,Kovalev,A.S.,Lopaev,D.V.,Proshina,0.V.,...&Rakhimov,A.T.(2005).Singlet oxygen generationin O2 flow excited by RF discharge:I.Homogeneous discharge mode:a-mode.Journal of Physics D:Applied Physics,38(19),3609.
12.Mosinger,J.,Jirsak,0.,Kubat,P.,Lang,K.,&Mosinger,B.(2007).Bactericidal nanofabrics based on photoproduction of singlet oxygen.Journalof Materials Chemistry,17(2),164-166.
13.DeRosa,M.C,&Crutchley,R.J.(2002).Photosensitized singlet oxygenand its applications.Coordination Chemistry Reviews,233,351-371.
14.Carbogno,C,GroS,A.,Meyer,J.,&Reuter,K.(2013).02 AdsorptionDynamics at Metal Surfaces:Non-Adiabatic Effects,Dissociation andDissipation.In Dynamics of Gas-Surface Interactions(pp.389-419).SpringerBerlin Heidelberg.
15.(a)Falick,A.M.,Mahan,B.H.,&Myers,R.J.(1965).Paramagnetic resonancespectrum of the 1Ag oxygen molecule.The Journal of Chemical Physics,42(5),1837-1838;(b]Kearns,D.R,Khan,A.U.,Duncan,C.K.,&Maki,A.H.(1969).Detection ofthe naphthalene-photosensitized generation of singlet(1Ag)oxygen byparamagnetic resonance spectroscopy.Journal of theAmerican Chemical Society,91(4),1039-1040;(c)Yagi,M.,Takemoto,S.,&Sasase,R.(2004).Measurement ofconcentration of singlet molecular oxygen in the gas phase by electronparamagnetic resonance.Chemistry Letters,33(2),152-153;(d)Ruzzi,M.,Sartori,E.,Moscatelli,A.,Khudyakov,I.V.,&Turro,N.J.(2013).Time-Resolved EPR Study ofSinglet Oxygen in the Gas Phase.The Journal of Physical Chemistry A,117(25),5232-5240.
16.Hammer,B.,&N0rskov,J.K.(2000).Theoretical surface science andcatalysis-calculations and concepts.Advances in catalysis,45,71-129.
17.Saito,K.,Williams,F.A.,&Gordon,A.S.(1986).Effects of oxygen onsoot formation in methane diffusion flames.Combustion science and technology,47(3-4),117-138.
18.Dahl,T.,RobertMiddenand,W.,&Hartman,P.(1987).Pure singlet oxygencytotoxicity for bacteria.Photochemistry and photobiology,46(3),345-352.
19.Lambrecht,B.,Mohr,H.,Knuver-Hopf,J.,&Schmitt,H.(1991).Photoinactivation of viruses in human fresh plasma by phenothiazine dyes incombination with visible light.Vox sanguinis,60(4),207-213.
20.Konopka,K.R.Y.S.T.Y.N.A.,&Goslinski,T.0.M.A.S.Z.(2007).Photodynamic therapy in dentistry.Journal of Dental Research,86(8],694-707.
21.Braathen,L.R,Szeimies,R.M.,Basset-Seguin,N.,Bissonnette,R,Foley,P.,Pariser,D.,...&Morton,C.A.(2007).Guidelines on the use of photodynamictherapy for nonmelanoma skin cancer:an international consensus.Journal of theAmerican Academy of Dermatology,56(1),125-143.
22.Boehncke,W.H.,Sterry,W.,&Kaufmann,R.(1994).Treatment of psoriasisby topical photodynamic therapy with polychromatic light.The Lancet,343(8900),801.
23.Itoh,Y.,Ninomiya,Y.,Tajima,S.,&Ishibashi,A.(2001).Photodynamictherapy of acne vulgaris with topical δ-aminolaevulinic acid and incoherentlight in Japanese patients.British Journal of Dermatology,144(3),575-579.

Claims (12)

1.一种制备单线态氧的基于金属的非辐射性方法,该方法包括:
提供具有表面的金属板;
使包含氧气的气体在金属板中穿过以产生包含单线态氧的气体;其中单线态氧是由于表面和氧之间的相互作用而产生的,并且其中氧激发成单线态后单线态氧从表面解离;
其中金属板不包含用于产生单线态氧的光敏剂;
而且其中金属选自铜、银、金、镍、钴及其混合物。
2.一种氧化靶标的基于金属的非辐射性方法,该方法包括:
提供具有表面的金属板;
使包含氧气的气体在所述金属板中穿过以产生包含单线态氧的气体;其中单线态氧是由于表面和氧之间的相互作用而产生的,并且其中氧激发成单线态后单线态氧从表面解离;
朝向所述靶标引导包含单线态氧的气体使目标氧化;
其中金属板不包含用于产生单线态氧的光敏剂;
并且其中金属选自铜、银、金、镍、钴及其混合物。
3.权利要求1或2所述的方法,其中所述金属板包括孔。
4.权利要求1或2所述的方法,其中所述金属板中的金属混合物包括至少80%w/w的铜。
5.权利要求1或2所述的方法,其中所述铜的纯度是99.9%w/w。
6.权利要求3所述的方法,其中孔具有0.5至6cm尺寸的直径。
7.权利要求3所述的方法,其中孔的直径为2cm。
8.权利要求2所述的方法,其中所述金属板和所述靶标不超过40cm间隔。
9.权利要求2所述的方法,其中所述气体的速度足以允许所述气体在0.1-1.5秒内从所述金属板到达所述靶标。
10.权利要求1或2所述的方法,其中所述气体中8-12%的所述氧气转化为单线态氧。
11.权利要求1或2所述的方法,其中所述气体以至少20m/s的速度穿过。
12.权利要求3所述的方法,其中孔具有蜂窝图案。
CN201480084427.2A 2014-11-20 2014-11-20 氧化剂的制备 Active CN107735357B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL2014/051013 WO2016079726A1 (en) 2014-11-20 2014-11-20 Oxidant production

Publications (2)

Publication Number Publication Date
CN107735357A CN107735357A (zh) 2018-02-23
CN107735357B true CN107735357B (zh) 2021-11-23

Family

ID=56013374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480084427.2A Active CN107735357B (zh) 2014-11-20 2014-11-20 氧化剂的制备

Country Status (8)

Country Link
US (1) US11007129B2 (zh)
EP (1) EP3221259A4 (zh)
JP (1) JP2018502807A (zh)
KR (2) KR20170118037A (zh)
CN (1) CN107735357B (zh)
IL (1) IL252382B (zh)
MX (1) MX2017006673A (zh)
WO (1) WO2016079726A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466543A (zh) * 2000-09-28 2004-01-07 ���ķ Լ��� 制备单线态氧的方法和装置
CN103086021A (zh) * 2011-03-28 2013-05-08 克朗斯股份公司 为包装机构消毒的方法和装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205028A (en) * 1938-02-04 1940-06-18 Bloxom Harvey Lynn Bubble blower
JPH089137Y2 (ja) * 1991-03-13 1996-03-13 共立電器産業株式会社 オゾン発生器
JP3021757U (ja) 1995-08-21 1996-03-08 フジマル工業株式会社 脱臭剤容器
JP3405284B2 (ja) 1999-10-14 2003-05-12 株式会社オプテック 一重項酸素発生装置
US6797242B2 (en) * 2002-03-15 2004-09-28 Neumann Information Systems, Inc. System for chemical and biological decontamination
FR2880036B1 (fr) * 2004-12-23 2007-09-07 Commissariat Energie Atomique Procede de preparation de nonoparticules d'argent ou d'alliage d'argent dispersees sur un substrat par depot chimique en phase vapeur
JP2007061559A (ja) 2005-04-20 2007-03-15 Hokkaido Univ 新規複合体とその製造法
JP2007289859A (ja) 2006-04-25 2007-11-08 Sharp Corp ハニカム構造体、複合ハニカム構造体およびその製造方法、ならびにそれを用いた空気清浄機、水質浄化装置
BRPI0713940A2 (pt) 2006-07-10 2012-12-04 Konink Philips Eletronics N V nanopartìcula de núcleo e casca, e , uso e processo para fabricação da mesma
JP2008207152A (ja) * 2007-02-28 2008-09-11 Tohoku Univ 反応効率を高めた多孔質金属体およびその製造方法
US9339485B2 (en) * 2007-03-02 2016-05-17 University Of Maryland, Baltimore County Plasmonic engineering of singlet oxygen and/or superoxide generation
JP3136471U (ja) * 2007-04-19 2007-11-01 有限会社公郷生命工学研究所 空気の感熱型電子化装置
US20090043065A1 (en) * 2007-08-07 2009-02-12 Olga Khabashesku Singlet oxygen oxidized materials and methods of making and using same
US8670475B2 (en) * 2008-06-26 2014-03-11 Physical Sciences, Inc. Catalytic generation of metastable singlet oxygen
JP2012026708A (ja) 2010-07-28 2012-02-09 Panasonic Corp 冷蔵庫
GB201018204D0 (en) 2010-10-28 2010-12-15 Soe Health Ltd Apparatus for producing singlet oxygen
US9829436B2 (en) 2011-03-18 2017-11-28 Chris Geddes Metal-enhanced photoluminescence from carbon nanodots
JP5398043B1 (ja) 2013-02-04 2014-01-29 学校法人同志社 抗菌性真鍮の作製法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466543A (zh) * 2000-09-28 2004-01-07 ���ķ Լ��� 制备单线态氧的方法和装置
CN103086021A (zh) * 2011-03-28 2013-05-08 克朗斯股份公司 为包装机构消毒的方法和装置

Also Published As

Publication number Publication date
CN107735357A (zh) 2018-02-23
IL252382A0 (en) 2017-07-31
KR20220166872A (ko) 2022-12-19
MX2017006673A (es) 2018-02-13
EP3221259A4 (en) 2018-08-01
US20170319445A1 (en) 2017-11-09
KR20170118037A (ko) 2017-10-24
EP3221259A1 (en) 2017-09-27
IL252382B (en) 2020-10-29
WO2016079726A1 (en) 2016-05-26
US11007129B2 (en) 2021-05-18
JP2018502807A (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
Van Viet et al. Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method
Meziani et al. Visible-light-activated bactericidal functions of carbon “Quantum” dots
Kaviyarasu et al. Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method
Thurston et al. Urea-derived graphitic carbon nitride (ug-C3N4) films with highly enhanced antimicrobial and sporicidal activity
Christensen et al. Carbon dots as antioxidants and prooxidants
Chen et al. A plasmonic Z-scheme Ag@ AgCl/PDI photocatalyst for the efficient elimination of organic pollutants, antibiotic resistant bacteria and antibiotic resistance genes
US8440849B2 (en) Use of nitroaniline derivatives for the production of nitric oxide
Benabbou et al. Water disinfection using photosensitizers supported on silica
Knoblauch et al. Antimicrobial carbon nanodots: Photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots
Yan et al. Enhanced antimicrobial activity of ZnO nanofluids in sonophotocatalysis and its mechanism
Kogelheide et al. The role of humidity and UV-C emission in the inactivation of B. subtilis spores during atmospheric-pressure dielectric barrier discharge treatment
Elsherbiny et al. Green synthesis of broccoli-derived carbon quantum dots as effective photosensitizers for the PDT effect testified in the model of mutant Caenorhabditis elegans
Wang et al. Improvement of sonocatalytic activity of TiO2 by using Yb, N and F-doped Er3+: Y3Al5O12 for degradation of organic dyes
Alam et al. Effect of light-dark conditions on inhibition of Gram positive and gram negative bacteria and dye decomposition in the presence of photocatalyst Co/ZnO nanocomposite synthesized by ammonia evaporation method
Van Viet et al. Facile ball-milling synthesis of TiO2 modified ZnO for efficient photocatalytic removal of atmospheric nitric oxide gas under solar light irradiation
Dhakal et al. Effects of spark dielectric barrier discharge plasma on water sterilization and seed germination
Shi et al. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application
CN107735357B (zh) 氧化剂的制备
Venkatesan et al. Eco-friendly, bright luminescent carbon dots and their potential applications for detecting hypochlorous acid in water and live cell imaging
Skiba et al. The plasma-chemical formation of polysorbate 80-coated silver nanoparticles and composite materials for water treatment
Choi et al. Singlet oxygen generating nanolayer coatings on NiTi alloy for photodynamic application
KR101733126B1 (ko) 수용성 풀러렌-나노다이아몬드의 나노복합체, 제조 방법 및 이를 이용한 오염물질 및 암세포를 제거하기 위한 방법
Chen Cold atmospheric plasma activated deionized water using helium, argon, and nitrogen as feeding gas for cancer therapy
CHEN et al. Active oxygen antibacterial mechanism and its research progress
Haensch et al. A systematic characterization of a novel surface dielectric barrier discharge for biomedical experiments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211018

Address after: Savian, Israel

Applicant after: Badash Zion

Address before: Sheung Wan, Hongkong, China

Applicant before: Z5 GLOBAL Group Ltd.

Applicant before: Badash Zion

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant