CN107727619B - 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 - Google Patents

一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 Download PDF

Info

Publication number
CN107727619B
CN107727619B CN201710813898.8A CN201710813898A CN107727619B CN 107727619 B CN107727619 B CN 107727619B CN 201710813898 A CN201710813898 A CN 201710813898A CN 107727619 B CN107727619 B CN 107727619B
Authority
CN
China
Prior art keywords
taurine
solution
carbon
concentration
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710813898.8A
Other languages
English (en)
Other versions
CN107727619A (zh
Inventor
周兴平
彭娅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201710813898.8A priority Critical patent/CN107727619B/zh
Publication of CN107727619A publication Critical patent/CN107727619A/zh
Application granted granted Critical
Publication of CN107727619B publication Critical patent/CN107727619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,包括:取同体积同浓度的Fe3+及其他不同金属离子溶液,并分别加入相同体积的牛磺酸碳点和相同体积的缓冲溶液,得到一系列等体积等浓度的混合溶液,并分别进行荧光强度检测;取不同体积的Fe3+溶液,并向其中分别添加相同体积的牛磺酸碳点及不同体积的缓冲溶液,得到一系列等体积不同浓度的Fe3+标准溶液,并分别进行荧光强度检测,得到标准溶液的荧光光谱图,以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系。本发明具有操作方法简单、重复性好,反应条件易控等特点,能有效方便的检测Fe3+,具有良好的应用前景。

Description

一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法
技术领域
本发明属于碳点材料应用技术领域,特别涉及一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法。
背景技术
目前,检验Fe3+离子的方法有火焰光度计法、酶动力学法、离子选择性电极法、原子吸收光谱分析法、荧光分光光度分析法、电感耦合法、离子体分析法、质谱分析法和电分析法等方法。尽管以上方法灵敏度都很高,但是它们对设备和试剂的要求很高,而且操作复杂,所以操作简单、反应快速、成本低且高效检测Fe3+离子的方法仍是一个很重要的研究发展方向。
纳米材料特有的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,使其在光、电、磁、热、力学、机械等方面表现出独特的性能,荧光碳纳米粒子主要是依据其荧光光谱的特征变化来对离子进行定性分析,而利用荧光性能和离子浓度的关系可以进行离子的定量分析。这种方法不但方便、快捷,通常还具有较高的灵敏度和选择性,故很容易用于重金属离子的实时或原位检测。
碳量子点(Carbon dots,CDs)是碳纳米材料家族的新秀,亦具有荧光性质。它不仅具有类似于传统半导体量子点的发光性能、抗光漂白与小尺寸特性,而且还具有水溶性好、稳定性高、生物毒性低等优势,使得它成为传统半导体量子点在生物成像、生物标记等应用中很好的替代物;其在重金属离子的检测有较高的灵敏度和选择性,非常低的检测限和定量限(nm 级),为其在环境检测的实际应用提供了可靠保障。
发明内容
本发明所要解决的技术问题是提供一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,本发明研究了荧光碳点的新应用,建立了一种简单、快速且灵敏度高的Fe3+检测新方法,本方法具有操作方法简单、重复性好,反应条件易控等特点,能有效方便的检测Fe3+,具有良好的应用前景。
本发明的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,包括:
(1)取同体积同浓度的Fe3+及其他不同金属离子溶液,并分别加入相同体积的牛磺酸碳点和相同体积的缓冲溶液,得到一系列等体积等浓度的混合溶液,并分别进行荧光强度检测,实现对Fe3+的定性检测;其中Fe3+及其他不同金属离子溶液的浓度为0.05~0.15mol/L;
(2)取不同体积的步骤(1)的Fe3+溶液,并分别加入相同体积的牛磺酸碳点和不同体积的缓冲溶液,得到一系列等体积不同浓度的Fe3+标准溶液,并分别进行荧光强度检测,得到Fe3+标准溶液的荧光光谱图,以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系,实现对Fe3+的定量检测。
所述步骤(1)和步骤(2)的牛磺酸碳点是通过在室温条件下,将牛磺酸溶解于去离子水中,超声分散15~20min,得到浓度为0.3~0.8mol/L的牛磺酸溶液,移入高压反应釜180~200℃下恒温反应6~10h,然后冷却,经冷冻干燥,乙醇洗涤,过滤,旋蒸制备获得。
所述步骤(1)中金属离子为K+、Na+、Mg2+、Cu2+、Hg2+、Pb2+、Ni2+、Cd2+、Cr3+、Fe2+、 Co2+、Zn2+、NH4+、Mn2+和Ag+
所述步骤(1)中牛磺酸碳点的体积为0.4~0.6mL;金属离子溶液的体积为40~60μL;混合溶液的体积为2~4mL。
所述步骤(1)和(2)中缓冲溶液为磷酸盐缓冲溶液。
所述步骤(1)和(2)中荧光强度检测的工艺参数为:在荧光光谱仪内的检测暗室进行,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm。
所述步骤(2)中牛磺酸碳点的体积为0.4~0.6mL,牛磺酸碳点与Fe3+标准溶液的体积比为1∶6~8。
有益效果
(1)本发明将牛磺酸碳点作为探针,利用Fe3+猝灭碳点荧光的特性,对Fe3+进行定性定量检测,Fe3+的检测限可达到1.4μM及78.4ng/mL,可达到纳克数量级,检测限较低。
(2)本发明的反应条件易控,检测过程简单方便,灵敏度高,重复性好,可实现实际样品中Fe3+定性以及定量的快速灵敏检测,具有良好的应用前景。
附图说明
图1为实施例1中不同金属溶液与牛磺酸碳点反应后在激发波长为297nm下的荧光发射谱图,其中未标记的曲线为除Fe3+外其他金属离子溶液的荧光发射谱图;
图2为实施例1中不同浓度Fe3+标准溶液在激发波长为297nm下的荧光发射谱图,其中荧光发射谱线自上至下分别对应0μM、1.4μM、2.8μM、4.2μM、5.6μM、7.0μM、8.4μM、9. 8μM、11.2μM、12.6μM、14μM浓度Fe3+标准溶液的荧光发射谱图结果;
图3为实施例1中Fe3+标准溶液的荧光强度-浓度标准曲线;
图4为实施例2中浓度为6.2μM的Fe3+溶液在激发波长为297nm下的荧光发射谱图;
图5为实施例3中浓度为4.0μM的Fe3+溶液在激发波长为297nm下的荧光发射谱图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)配制体积为50μL,浓度为0.1mol/L的K+、Na+、Mg2+、Cu2+、Hg2+、Pb2+、Ni2+、 Cd2+、Cr3+、Fe3+、Fe2+、Co2+、Zn2+、NH4+、Mn2+和Ag+溶液,分别在上述金属溶液中加入 0.5mL的牛磺酸碳点及不同体积的磷酸盐缓冲溶液,稀释至3mL。并分别对溶液在荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm进行荧光强度检测,结果如图1所示,得到Fe3+溶液对牛磺酸碳点有淬灭作用,实现对Fe3+的定性检测。
(2)取不同体积的步骤(1)Fe3+溶液,并向其中分别添加0.5mL的牛磺酸碳点及不同体积的磷酸盐缓冲溶液,稀释至3mL,得到一系列等体积不同浓度的Fe3+标准溶液,并分别对Fe3+标准溶液在荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围 300~600nm,激发和发射狭缝2nm进行荧光强度检测,得到标准溶液的荧光光谱图,结果如图2所示。以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系,如图3所示,实现对Fe3+的定量检测。
实施例2
为了验证实施例1得到的线性方程的准确性,取一定体积的实施例1步骤(1)Fe3+溶液,加入0.5mL的牛磺酸碳点,用磷酸盐缓冲溶液稀释至3mL,得到浓度为6.2μM的Fe3+待检测溶液,置于荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm进行荧光强度检测,得到Fe3+溶液的强度为173654nm,结果如图4所示。参比与实施例1得到的标准曲线,当荧光强度为173654nm时,对应Fe3+溶液的浓度为6.1μM,与配置溶液浓度相符。
实施例3
为了验证实施例1得到的线性方程的准确性,取一定体积的实施例1步骤(1)Fe3+溶液,加入0.5mL的牛磺酸碳点,用磷酸盐缓冲溶液稀释至3mL,得到浓度为4.0μM的Fe3+待检测溶液,置于荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm进行荧光强度检测,得到Fe3+溶液的强度为247652nm,结果如图5所示。参比与实施例1得到的标准曲线,当荧光强度为247652nm时,对应Fe3+溶液的浓度为4.0μM,与配置溶液浓度相符。

Claims (6)

1.一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,包括以下步骤:
(1)取同体积同浓度的Fe3+及其他不同金属离子溶液,并分别加入相同体积的牛磺酸碳点和相同体积的缓冲溶液,得到一系列等体积等浓度的混合溶液,并分别进行荧光强度检测,实现对Fe3+的定性检测;其中Fe3+及其他不同金属离子溶液的浓度为0.05~0.15mol/L;
(2)取不同体积的步骤(1)的Fe3+溶液,并分别加入相同体积的牛磺酸碳点和不同体积的缓冲溶液,得到一系列等体积不同浓度的Fe3+标准溶液,并分别进行荧光强度检测,得到Fe3+标准溶液的荧光光谱图,以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系,实现对Fe3+的定量检测;
上述步骤中所述牛磺酸碳点是通过在室温条件下,将牛磺酸溶解于去离子水中,超声分散15~20min,得到浓度为0.3~0.8mol/L的牛磺酸溶液,移入高压反应釜180~200℃下恒温反应6~10h,然后冷却,经冷冻干燥,乙醇洗涤,过滤,旋蒸制备获得。
2.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)中金属离子为K+、Na+、Mg2+、Cu2+、Hg2+、Pb2+、Ni2+、Cd2+、Cr3+、Fe2+、Co2+、Zn2+、NH4+ 、Mn2+和Ag+
3.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)中牛磺酸碳点的体积为0.4~0.6mL;金属离子溶液的体积为40~60μL;混合溶液的体积为2~4mL。
4.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)和(2)中缓冲溶液为磷酸盐缓冲溶液。
5.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)和(2)中荧光强度检测的工艺参数为:在荧光光谱仪内的检测暗室进行,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm。
6.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(2)中牛磺酸碳点的体积为0.4~0.6mL,牛磺酸碳点与Fe3+标准溶液的体积比为1∶6~8。
CN201710813898.8A 2017-09-11 2017-09-11 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 Active CN107727619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710813898.8A CN107727619B (zh) 2017-09-11 2017-09-11 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710813898.8A CN107727619B (zh) 2017-09-11 2017-09-11 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法

Publications (2)

Publication Number Publication Date
CN107727619A CN107727619A (zh) 2018-02-23
CN107727619B true CN107727619B (zh) 2021-01-26

Family

ID=61206017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710813898.8A Active CN107727619B (zh) 2017-09-11 2017-09-11 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法

Country Status (1)

Country Link
CN (1) CN107727619B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109879271A (zh) * 2019-02-15 2019-06-14 河南师范大学 以蛋白胨为碳源合成的荧光碳点选择性检测溶液体系中草酸浓度的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164232A (zh) * 2013-05-15 2014-11-26 浙江师范大学 掺氮碳量子点的制备方法
CN107043623A (zh) * 2017-03-27 2017-08-15 北京工业大学 一种红色荧光碳纳米点的制备及检测三价铁离子、抗坏血酸的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914526A (zh) * 2012-09-20 2013-02-06 安徽国星生物化学有限公司 丹磺酸作为荧光探针检测汞离子浓度的方法
CN105219386A (zh) * 2015-11-06 2016-01-06 东华大学 一种无保护气的无细胞毒性的碳量子点的制备方法
CN107033884A (zh) * 2016-11-07 2017-08-11 兰州大学 一种用于可视化检测重金属离子的碳量子点的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164232A (zh) * 2013-05-15 2014-11-26 浙江师范大学 掺氮碳量子点的制备方法
CN107043623A (zh) * 2017-03-27 2017-08-15 北京工业大学 一种红色荧光碳纳米点的制备及检测三价铁离子、抗坏血酸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
碳量子点荧光淬灭法检测铁离子;刘雪萍等;《分析化学研究报告》;20160531;第44卷(第5期);第3.3节 *

Also Published As

Publication number Publication date
CN107727619A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Hu et al. Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters
Miao et al. Facile synthesis of carbon nanodots from ethanol and their application in ferric (III) ion assay
CA2713949C (en) Method and apparatus for nanoparticle electrogenerated chemiluminescence amplification
CN105038782B (zh) 耐酸性碳量子点的制备及在铀离子检测中的应用
Chen et al. Flow-injection analysis of hydrogen peroxide based on carbon nanospheres catalyzed hydrogen carbonate–hydrogen peroxide chemiluminescent reaction
CN113340860B (zh) 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法
Adinarayana et al. Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe (III) ions
TWI612288B (zh) 一種重金屬檢驗試片與其製備方法
Dong et al. Polymerizing dopamine onto Q-graphene scaffolds towards the fluorescent nanocomposites with high aqueous stability and enhanced fluorescence for the fluorescence analysis and imaging of copper ions
Hormozi-Nezhad et al. Quick speciation of iron (II) and iron (III) in natural samples using a selective fluorescent carbon dot-based probe
Ensafi et al. Label-free and turn-on fluorescent cyanide sensor based on CdTe quantum dots using silver nanoparticles
CN108250133A (zh) 一种用于检测锌离子的荧光-拉曼双探针材料及其制备方法
CN103627386A (zh) 一种荧光探针叶酸功能化的荧光金纳米簇的制备方法
Wang et al. A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore–gold nanoparticle assembly
CN109781814B (zh) 一种光增强电化学传感器及其制备方法和应用
CN113788788B (zh) 一种荧光离子液体及其合成方法与应用
CN107727619B (zh) 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法
Li Studies on the determination of trace amounts of gold by chemical vapour generation non-dispersive atomic fluorescence spectrometry
Li et al. Highly sensitive and selective SERS substrates with 3D hot spot buildings for rapid mercury ion detection
Gan et al. Mercaptopropionic acid-capped Mn-doped ZnS quantum dots as a probe for selective room-temperature phosphorescence detection of Pb 2+ in water
CN105891167A (zh) Dna修饰的光子晶体薄膜荧光传感器检测金属离子
Tan et al. Room temperature phosphorescence sensor for Hg2+ based on Mn-doped ZnS quantum dots
Mo et al. Gold nanoclusters templated by poly-cytosine DNA as fluorescent probes for selective and sensitive detection of thiocyanate
Liang et al. Concentrations of hazardous heavy metals in environmental samples collected in Xiamen, China, as determined by vapor generation non-dispersive atomic fluorescence spectrometry
Zhou et al. Surface-enhanced Raman scattering sensor for quantitative detection of trace Pb2+ in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant