CN107727619A - 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 - Google Patents
一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 Download PDFInfo
- Publication number
- CN107727619A CN107727619A CN201710813898.8A CN201710813898A CN107727619A CN 107727619 A CN107727619 A CN 107727619A CN 201710813898 A CN201710813898 A CN 201710813898A CN 107727619 A CN107727619 A CN 107727619A
- Authority
- CN
- China
- Prior art keywords
- taurine
- carbon point
- carried out
- solution
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 title claims abstract description 66
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 36
- 229960003080 taurine Drugs 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000000523 sample Substances 0.000 title claims abstract description 14
- 239000000243 solution Substances 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 239000007788 liquid Substances 0.000 claims abstract description 27
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 10
- 239000011259 mixed solution Substances 0.000 claims abstract description 5
- 238000002189 fluorescence spectrum Methods 0.000 claims abstract description 4
- 230000005284 excitation Effects 0.000 claims description 10
- 239000008055 phosphate buffer solution Substances 0.000 claims description 6
- 238000007689 inspection Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000011017 operating method Methods 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6402—Atomic fluorescence; Laser induced fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明涉及一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,包括:取同体积同浓度的Fe3+及其他不同金属离子溶液,并分别加入相同体积的牛磺酸碳点和相同体积的缓冲溶液,得到一系列等体积等浓度的混合溶液,并分别进行荧光强度检测;取不同体积的Fe3+溶液,并向其中分别添加相同体积的牛磺酸碳点及不同体积的缓冲溶液,得到一系列等体积不同浓度的Fe3+标准溶液,并分别进行荧光强度检测,得到标准溶液的荧光光谱图,以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系。本发明具有操作方法简单、重复性好,反应条件易控等特点,能有效方便的检测Fe3+,具有良好的应用前景。
Description
技术领域
本发明属于碳点材料应用技术领域,特别涉及一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法。
背景技术
目前,检验Fe3+离子的方法有火焰光度计法、酶动力学法、离子选择性电极法、原子吸收光谱分析法、荧光分光光度分析法、电感耦合法、离子体分析法、质谱分析法和电分析法等方法。尽管以上方法灵敏度都很高,但是它们对设备和试剂的要求很高,而且操作复杂,所以操作简单、反应快速、成本低且高效检测Fe3+离子的方法仍是一个很重要的研究发展方向。
纳米材料特有的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,使其在光、电、磁、热、力学、机械等方面表现出独特的性能,荧光碳纳米粒子主要是依据其荧光光谱的特征变化来对离子进行定性分析,而利用荧光性能和离子浓度的关系可以进行离子的定量分析。这种方法不但方便、快捷,通常还具有较高的灵敏度和选择性,故很容易用于重金属离子的实时或原位检测。
碳量子点(Carbon dots,CDs)是碳纳米材料家族的新秀,亦具有荧光性质。它不仅具有类似于传统半导体量子点的发光性能、抗光漂白与小尺寸特性,而且还具有水溶性好、稳定性高、生物毒性低等优势,使得它成为传统半导体量子点在生物成像、生物标记等应用中很好的替代物;其在重金属离子的检测有较高的灵敏度和选择性,非常低的检测限和定量限(nm级),为其在环境检测的实际应用提供了可靠保障。
发明内容
本发明所要解决的技术问题是提供一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,本发明研究了荧光碳点的新应用,建立了一种简单、快速且灵敏度高的Fe3+检测新方法,本方法具有操作方法简单、重复性好,反应条件易控等特点,能有效方便的检测Fe3+,具有良好的应用前景。
本发明的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,包括:
(1)取同体积同浓度的Fe3+及其他不同金属离子溶液,并分别加入相同体积的牛磺酸碳点和相同体积的缓冲溶液,得到一系列等体积等浓度的混合溶液,并分别进行荧光强度检测,实现对Fe3+的定性检测;其中Fe3+及其他不同金属离子溶液的浓度为0.05~0.15mol/L;
(2)取不同体积的步骤(1)的Fe3+溶液,并分别加入相同体积的牛磺酸碳点和不同体积的缓冲溶液,得到一系列等体积不同浓度的Fe3+标准溶液,并分别进行荧光强度检测,得到Fe3+标准溶液的荧光光谱图,以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系,实现对Fe3+的定量检测。
所述步骤(1)和步骤(2)的牛磺酸碳点是通过在室温条件下,将牛磺酸溶解于去离子水中,超声分散15~20min,得到浓度为0.3~0.8mol/L的牛磺酸溶液,移入高压反应釜180~200℃下恒温反应6~10h,然后冷却,经冷冻干燥,乙醇洗涤,过滤,旋蒸制备获得。
所述步骤(1)中金属离子为K+、Na+、Mg2+、Cu2+、Hg2+、Pb2+、Ni2+、Cd2+、Cr3+、Fe2+、Co2+、Zn2+、NH4+、Mn2+和Ag+。
所述步骤(1)中牛磺酸碳点的体积为0.4~0.6mL;金属离子溶液的体积为40~60μL;混合溶液的体积为2~4mL。
所述步骤(1)和(2)中缓冲溶液为磷酸盐缓冲溶液。
所述步骤(1)和(2)中荧光强度检测的工艺参数为:在荧光光谱仪内的检测暗室进行,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm。
所述步骤(2)中牛磺酸碳点的体积为0.4~0.6mL,牛磺酸碳点与Fe3+标准溶液的体积比为1∶6~8。
有益效果
(1)本发明将牛磺酸碳点作为探针,利用Fe3+猝灭碳点荧光的特性,对Fe3+进行定性定量检测,Fe3+的检测限可达到1.4μM及78.4ng/mL,可达到纳克数量级,检测限较低。
(2)本发明的反应条件易控,检测过程简单方便,灵敏度高,重复性好,可实现实际样品中Fe3+定性以及定量的快速灵敏检测,具有良好的应用前景。
附图说明
图1为实施例1中不同金属溶液与牛磺酸碳点反应后在激发波长为297nm下的荧光发射谱图,其中未标记的曲线为除Fe3+外其他金属离子溶液的荧光发射谱图;
图2为实施例1中不同浓度Fe3+标准溶液在激发波长为297nm下的荧光发射谱图,其中荧光发射谱线自上至下分别对应0μM、1.4μM、2.8μM、4.2μM、5.6μM、7.0μM、8.4μM、9.8μM、11.2μM、12.6μM、14μM浓度Fe3+标准溶液的荧光发射谱图结果;
图3为实施例1中Fe3+标准溶液的荧光强度-浓度标准曲线;
图4为实施例2中浓度为6.2μM的Fe3+溶液在激发波长为297nm下的荧光发射谱图;
图5为实施例3中浓度为4.0μM的Fe3+溶液在激发波长为297nm下的荧光发射谱图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)配制体积为50μL,浓度为0.1mol/L的K+、Na+、Mg2+、Cu2+、Hg2+、Pb2+、Ni2+、Cd2+、Cr3 +、Fe3+、Fe2+、Co2+、Zn2+、NH4+、Mn2+和Ag+溶液,分别在上述金属溶液中加入0.5mL的牛磺酸碳点及不同体积的磷酸盐缓冲溶液,稀释至3mL。并分别对溶液在荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm进行荧光强度检测,结果如图1所示,得到Fe3+溶液对牛磺酸碳点有淬灭作用,实现对Fe3+的定性检测。
(2)取不同体积的步骤(1)Fe3+溶液,并向其中分别添加0.5mL的牛磺酸碳点及不同体积的磷酸盐缓冲溶液,稀释至3mL,得到一系列等体积不同浓度的Fe3+标准溶液,并分别对Fe3+标准溶液在荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm进行荧光强度检测,得到标准溶液的荧光光谱图,结果如图2所示。以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系,如图3所示,实现对Fe3+的定量检测。
实施例2
为了验证实施例1得到的线性方程的准确性,取一定体积的实施例1步骤(1)Fe3+溶液,加入0.5mL的牛磺酸碳点,用磷酸盐缓冲溶液稀释至3mL,得到浓度为6.2μM的Fe3+待检测溶液,置于荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm进行荧光强度检测,得到Fe3+溶液的强度为173654nm,结果如图4所示。参比与实施例1得到的标准曲线,当荧光强度为173654nm时,对应Fe3+溶液的浓度为6.1μM,与配置溶液浓度相符。
实施例3
为了验证实施例1得到的线性方程的准确性,取一定体积的实施例1步骤(1)Fe3+溶液,加入0.5mL的牛磺酸碳点,用磷酸盐缓冲溶液稀释至3mL,得到浓度为4.0μM的Fe3+待检测溶液,置于荧光光谱仪内的检测暗室,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm进行荧光强度检测,得到Fe3+溶液的强度为247652nm,结果如图5所示。参比与实施例1得到的标准曲线,当荧光强度为247652nm时,对应Fe3+溶液的浓度为4.0μM,与配置溶液浓度相符。
Claims (6)
1.一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,包括:
(1)取同体积同浓度的Fe3+及其他不同金属离子溶液,并分别加入相同体积的牛磺酸碳点和相同体积的缓冲溶液,得到一系列等体积等浓度的混合溶液,并分别进行荧光强度检测,实现对Fe3+的定性检测;其中Fe3+及其他不同金属离子溶液的浓度为0.05~0.15mol/L;
(2)取不同体积的步骤(1)的Fe3+溶液,并分别加入相同体积的牛磺酸碳点和不同体积的缓冲溶液,得到一系列等体积不同浓度的Fe3+标准溶液,并分别进行荧光强度检测,得到Fe3+标准溶液的荧光光谱图,以每份标准溶液的荧光强度为纵坐标,浓度为横坐标,绘制标准曲线并计算线性关系,实现对Fe3+的定量检测。
2.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)中金属离子为K+、Na+、Mg2+、Cu2+、Hg2+、Pb2+、Ni2+、Cd2+、Cr3+、Fe2+、Co2+、Zn2+、NH4+、Mn2+和Ag+。
3.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)中牛磺酸碳点的体积为0.4~0.6mL;金属离子溶液的体积为40~60μL;混合溶液的体积为2~4mL。
4.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)和(2)中缓冲溶液为磷酸盐缓冲溶液。
5.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(1)和(2)中荧光强度检测的工艺参数为:在荧光光谱仪内的检测暗室进行,以297nm为激发波长,发射波长范围300~600nm,激发和发射狭缝2nm。
6.根据权利要求1所述的一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法,其特征在于:所述步骤(2)中牛磺酸碳点的体积为0.4~0.6mL,牛磺酸碳点与Fe3+标准溶液的体积比为1∶6~8。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710813898.8A CN107727619B (zh) | 2017-09-11 | 2017-09-11 | 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710813898.8A CN107727619B (zh) | 2017-09-11 | 2017-09-11 | 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107727619A true CN107727619A (zh) | 2018-02-23 |
CN107727619B CN107727619B (zh) | 2021-01-26 |
Family
ID=61206017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710813898.8A Expired - Fee Related CN107727619B (zh) | 2017-09-11 | 2017-09-11 | 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107727619B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109879271A (zh) * | 2019-02-15 | 2019-06-14 | 河南师范大学 | 以蛋白胨为碳源合成的荧光碳点选择性检测溶液体系中草酸浓度的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914526A (zh) * | 2012-09-20 | 2013-02-06 | 安徽国星生物化学有限公司 | 丹磺酸作为荧光探针检测汞离子浓度的方法 |
CN104164232A (zh) * | 2013-05-15 | 2014-11-26 | 浙江师范大学 | 掺氮碳量子点的制备方法 |
CN105219386A (zh) * | 2015-11-06 | 2016-01-06 | 东华大学 | 一种无保护气的无细胞毒性的碳量子点的制备方法 |
CN107033884A (zh) * | 2016-11-07 | 2017-08-11 | 兰州大学 | 一种用于可视化检测重金属离子的碳量子点的制备方法 |
CN107043623A (zh) * | 2017-03-27 | 2017-08-15 | 北京工业大学 | 一种红色荧光碳纳米点的制备及检测三价铁离子、抗坏血酸的方法 |
-
2017
- 2017-09-11 CN CN201710813898.8A patent/CN107727619B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914526A (zh) * | 2012-09-20 | 2013-02-06 | 安徽国星生物化学有限公司 | 丹磺酸作为荧光探针检测汞离子浓度的方法 |
CN104164232A (zh) * | 2013-05-15 | 2014-11-26 | 浙江师范大学 | 掺氮碳量子点的制备方法 |
CN105219386A (zh) * | 2015-11-06 | 2016-01-06 | 东华大学 | 一种无保护气的无细胞毒性的碳量子点的制备方法 |
CN107033884A (zh) * | 2016-11-07 | 2017-08-11 | 兰州大学 | 一种用于可视化检测重金属离子的碳量子点的制备方法 |
CN107043623A (zh) * | 2017-03-27 | 2017-08-15 | 北京工业大学 | 一种红色荧光碳纳米点的制备及检测三价铁离子、抗坏血酸的方法 |
Non-Patent Citations (2)
Title |
---|
KONGGANG QU ET AL.: "Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label-Free Detection of IronACHTUNGTRENUNG(III) Ions and Dopamine", 《CHEM.EUR.J.》 * |
刘雪萍等: "碳量子点荧光淬灭法检测铁离子", 《分析化学研究报告》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109879271A (zh) * | 2019-02-15 | 2019-06-14 | 河南师范大学 | 以蛋白胨为碳源合成的荧光碳点选择性检测溶液体系中草酸浓度的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107727619B (zh) | 2021-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Dually emitting carbon dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury (II), chloride and Cr (VI) via different mechanisms | |
Hu et al. | Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters | |
Vikraman et al. | Thioglycolic acid capped CdS quantum dots as a fluorescent probe for the nanomolar determination of dopamine | |
Miao et al. | Facile synthesis of carbon nanodots from ethanol and their application in ferric (III) ion assay | |
Zhou et al. | Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles | |
Chen et al. | Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb2+ ions | |
CN108329904B (zh) | 一种半胱胺修饰铜纳米团簇溶液荧光探针及制备与应用 | |
Shen et al. | Graphene oxide-assisted synthesis of N, S Co-doped carbon quantum dots for fluorescence detection of multiple heavy metal ions | |
CN103499479B (zh) | 一种检测聚合材料中重金属含量的方法 | |
Wang et al. | Simple spectrophotometric determination of sulfate free radicals | |
CN107290313A (zh) | 一种双色荧光金铜复合纳米簇的制备方法及应用 | |
Adinarayana et al. | Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe (III) ions | |
Chen et al. | Ultrasensitive mercury (II) ion detection by europium (III)-doped cadmium sulfide composite nanoparticles | |
Hormozi-Nezhad et al. | Quick speciation of iron (II) and iron (III) in natural samples using a selective fluorescent carbon dot-based probe | |
Liu et al. | Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn (vii) and Cr (vi) | |
Hallaj et al. | Synthesis and characterization of novel bithiazolidine derivatives-capped CdTe/CdS quantum dots used as a novel Hg2+ fluorescence sensor | |
Guo et al. | A novel fluorescent Si/CDs for highly sensitive Hg2+ sensing in water environment | |
Liu et al. | A ratiometric fluorescence sensor based on carbon quantum dots realized the quantitative and visual detection of Hg2+ | |
CN105651749A (zh) | 一种碳纳米粒子检测四氢呋喃中水分含量的方法 | |
Liu et al. | Ratiometric fluorescence determination of hydrogen peroxide using carbon dot-embedded Ag@ EuWO 4 (OH) nanocomposites | |
Bhatt et al. | Microwave-assisted synthesis of nitrogen-doped carbon dots using prickly pear as the carbon source and its application as a highly selective sensor for Cr (VI) and as a patterning agent | |
CN107727619A (zh) | 一种利用牛磺酸碳点为探针对Fe3+进行定性和定量检测方法 | |
Kondekar et al. | Ultrasensitive, highly specific, colorimetric recognition of sulfide ions [S 2−] in aqueous media: applications to environmental analysis | |
Wang et al. | Ratiometric fluorescence nanoprobe based on carbon dots and terephthalic acid for determining Fe2+ in environmental samples | |
Liu et al. | A fluorescence sensing method for brilliant blue with gold nanoclusters based on the inner filter effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210126 |
|
CF01 | Termination of patent right due to non-payment of annual fee |