CN105651749A - 一种碳纳米粒子检测四氢呋喃中水分含量的方法 - Google Patents

一种碳纳米粒子检测四氢呋喃中水分含量的方法 Download PDF

Info

Publication number
CN105651749A
CN105651749A CN201610036849.3A CN201610036849A CN105651749A CN 105651749 A CN105651749 A CN 105651749A CN 201610036849 A CN201610036849 A CN 201610036849A CN 105651749 A CN105651749 A CN 105651749A
Authority
CN
China
Prior art keywords
oxolane
moisture
carbon nano
particles
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610036849.3A
Other languages
English (en)
Other versions
CN105651749B (zh
Inventor
陈建
吕锟
钟维邦
李亚
王宏
张培盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN201610036849.3A priority Critical patent/CN105651749B/zh
Publication of CN105651749A publication Critical patent/CN105651749A/zh
Application granted granted Critical
Publication of CN105651749B publication Critical patent/CN105651749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种碳纳米粒子检测四氢呋喃中水分含量的方法。该碳纳米粒子是以对苯二胺和聚乙二醇(PEG)为原料制备,它能对四氢呋喃中的水分含量实现快速和高灵敏度荧光检测。在检测过程中,随着四氢呋喃中水分含量的增加,其荧光强度逐渐变弱,且对应的最大发射波长发生明显红移。与现有的溶剂中水分含量检测技术相比,本发明具有以下优点:该检测方法检测限较低,灵敏度高,检测范围宽,方法简捷快速,不需要昂贵的检测仪器;所制备的碳纳米粒子尺寸小,制备流程简单、投入成本低。藉于此,该检测方法有望在分析检测技术领域得到广泛应用。

Description

一种碳纳米粒子检测四氢呋喃中水分含量的方法
技术领域
本发明属于分析检测技术领域,特别涉及碳纳米粒子在检测四氢呋喃中水分含量的应用。
背景技术
水是一种重要的化学试剂,是很多化学反应中的良溶剂,其重要性不言而喻。但是在许多反应中,如无水无氧实验,有机溶剂中的含水量对反应结果会产生重要影响,如决定反应的产物,产率及反应的选择性。四氢呋喃是无水无氧实验的常用溶剂,因此检测四氢呋喃中的含水量是非常必要的。而且水含量的表征也是许多市场产品中的一项重要指标,如化工、食品、医药、合成纤维、塑料等产品,因此,有机溶剂中水含量的检测是一种常见的分析问题,意义重大。
目前,检测溶剂中的含水量的方法有很多种,如:卡尔-费休滴定法、色谱法、电化学方法和荧光光谱法等。卡尔-费休滴定法和电化学法等常用的化学分析方法反应速率慢、易受干扰、灵敏度差、生物毒性大等;其他方法如色谱分析法则需要较昂贵的检测仪器,适用性较差。
荧光光谱法是一种常见的重要的光谱化学分析手段,具有许多优点,如灵敏度高、选择性好、检测性低,方法简捷快速。目前,关于检测四氢呋喃中水含量的报道较少,本专利所用的检测方法原理简单、操作简便。所制备的碳纳米粒子的荧光强度随着四氢呋喃中水分含量的增加而逐渐降低,且最大荧光发射峰的波长发生明显的红移,根据荧光强度变化、红移波长变化与含水量的线性拟合方程,可以较好地检测四氢呋喃中水分含量。
总之,本专利提供了一种碳纳米粒子检测四氢呋喃中水分含量的方法,由于其各方面的优异性能,有望在分析化学和材料制备等领用得到广泛应用。
发明内容
本发明的目的在于提供一种碳纳米粒子检测四氢呋喃中水分含量的方法,该方法简单,能够实现对四氢呋喃中水分含量的高灵敏度、快速检测。
为实现上述目的,本发明采用的技术方案是:
一种碳纳米粒子检测四氢呋喃中水分含量的方法,其特征在于,包括以下步骤:
(1)线性回归方程:配置不同水分含量的四氢呋喃溶液,分别加入一定量的碳纳米粒子,搅拌3分钟;测定碳纳米粒子在500nm激发时的最大荧光发射波长与其对应的荧光发射强度,将荧光发射波长变化或荧光强度变化值与四氢呋喃中水分含量值进行线性拟合,可分别得到线性回归方程;
(2)四氢呋喃中水分含量测定:取未知水分含量的四氢呋喃溶液加入一定量的碳纳米粒子,搅拌3分钟;测定碳纳米粒子在500nm激发时的最大荧光发射波长与其对应的荧光发射强度,通过与线性回归方程对比,可得到四氢呋喃中水分含量的大小。
步骤(1)和(2)中所述碳纳米粒子在四氢呋喃溶液中的浓度为0.1mg/ml。
所述的最大荧光发射强度变化值与四氢呋喃中的水分含量值的线性回归方程ΔI/I0=0.97599+0.2889×logΦ(H2O),R2=0.993;最大荧光发射波长与四氢呋喃中的水分含量值的线性回归方程为W/nm=598.23348+17.27118×logΦ(H2O),R2=0.998。
所述碳纳米粒子的制备方法包括以下步骤:
(1)将对苯二胺和一定分子量的PEG按质量比为10:1~5,配成均匀的水溶液后,于水热反应釜中密封,置于140~180℃的烘箱中反应12~36小时;
(2)将步骤(1)反应得到的溶液浓缩至饱和,经硅胶柱对产物进行提纯,制得一种具有四氢呋喃中水分含量检测功能的碳纳米粒子。
所述PEG的分子量为400、600、800、1000、2000中任一种,优选为600或800,更优选为600;对苯二胺与PEG的质量比优选为10:2~4,更优选为10:3,烘箱温度优选为150~170℃,更优选为160℃,反应时间优选为20~28小时,更优选为24小时。
本发明采用对苯二胺和PEG作为碳源,以水作溶剂,在水热反应高温高压的条件下,得到尺寸均一的碳纳米粒子。其表面含有许多氨基,对溶剂极性有很强的依赖性,成为了一种能够检测四氢呋喃水分含量的碳纳米材料。在紫外灯照射下,该碳纳米粒子在纯四氢呋喃中产生强烈的黄绿色荧光,而当分散在纯水中时,则只显示出微弱的红色荧光。在同一激发波长下,随着四氢呋喃中水分含量的增加,碳纳米粒子的荧光强度逐渐降低,且最大发射波长也出现相应的红移。
总而言之,本发明提供了一种有效检测四氢呋喃含水量的方法,该方法检测限较低,检测范围宽,简捷快速,不需要昂贵的检测仪器,并且该方法所需的碳纳米粒子制备简单,成本较低,在化工、食品、医药、合成纤维、塑料等领域有着巨大的应用前景。
附图说明
图1为碳纳米粒子的原子力扫描电镜图及其切片图,可以看出该纳米粒子分布均匀,平均高度为3纳米左右。
图2分别在四氢呋喃和水中的紫外吸收光谱图。
图3为碳纳米粒子分别在四氢呋喃和水中的荧光发射光谱图,激发波长为500nm。
图4为碳纳米粒子(浓度:0.1mg/ml)在不同水分含量(体积分数Φ)的四氢呋喃溶液中的荧光发射光谱变化图(λex=500nm),Φ(H2O)=0(a)、0.1%(b)、0.2%(c)、1.0%(d)、2.0%(e)、10.0%(f)、30.0%(g)、50.0%(h)、70.0%(i)、90.0%(j)。
图5为荧光纳米粒子(浓度:0.1mg/ml)在不同水含量(体积分数Φ)的四氢呋喃溶液中的归一化的荧光发射光谱变化图(λex=500nm),Φ(H2O)=0(a)、0.1%(b)、0.2%(c)、1.0%(d)、2.0%(e)、10.0%(f)、30.0%(g)、50.0%(h)、70.0%(i)、90.0%(j)。
图6为荧光纳米粒子在不同水含量(体积分数Φ)的四氢呋喃溶液中的最大发射荧光强度变化值与水含量(体积分数Φ)的线性拟合曲线。
图7为荧光纳米粒子在不同水含量(体积分数Φ)的四氢呋喃溶液中的最大发射波长与水含量(体积分数Φ)的线性拟合曲线。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
实施例1:
能够检测四氢呋喃中水分含量的碳纳米粒子的制备方法,包括以下步骤:
(1)将对苯二胺和分子量为400的PEG按质量比为10:2,配成均匀的水溶液后,于水热反应釜中密封,置于140℃的烘箱中反应24小时;
(2)将步骤(1)反应得到的溶液浓缩至饱和,经硅胶柱对产物进行提纯,制得一种能够检测四氢呋喃中水分含量的碳纳米粒子。
实施例2:
能够检测四氢呋喃中水分含量的碳纳米粒子的制备方法,包括以下步骤:
(1)将对苯二胺和分子量为600的PEG按质量比为10:3,配成均匀的水溶液后,于水热反应釜中密封,置于160℃的烘箱中反应24小时;
(2)将步骤(1)反应得到的溶液浓缩至饱和,经硅胶柱对产物进行提纯,制得一种能够检测四氢呋喃中水分含量的碳纳米粒子。
实施例3:
能够检测四氢呋喃中水分含量的碳纳米粒子的制备方法,包括以下步骤:
(2)将对苯二胺和分子量为800的PEG按质量比为10:5,配成均匀的水溶液后,于水热反应釜中密封,置于180℃的烘箱中反应28小时;
(3)将步骤(1)反应得到的溶液浓缩至饱和,经硅胶柱对产物进行提纯,制得一种能够检测四氢呋喃中水分含量的碳纳米粒子。
实施例4:四氢呋喃中水分的测定。
(1)取10个5ml比色皿,分别加入3ml不同含水量的四氢呋喃液,水量(体积分数Φ)分别为0(a)、0.1%(b)、0.2%(c)、1.0%(d)、2.0%(e)、10.0%(f)、30.0%(g)、50.0%(h)、70.0%(i)、90.0%(j),然后加入实施例2所得的样品,使碳纳米粒子的最终浓度为0.1mg/ml,搅拌3分钟,以500nm为激发波长,分别测定这些样品的荧光强度,得10个样品的荧光发射光谱变化图,见图4。测试结果表明:该碳纳米粒子的荧光强度随着四氢呋喃水分含量的逐渐增加而逐步下降,且水含量(体积分数)>0.1%时碳纳米粒子的荧光强度发生明显下降。
(2)将(1)中荧光发射光谱进行强度归一化处理,如图5所示,结果表明,随着四氢呋喃水分量的逐渐增加,对应的最大发射波长逐渐发生红移。
(3)用最大荧光发射强度变化值与四氢呋喃中的水分含量(体积分数logΦ(H2O))进行线性拟合,见图6,得到线性回归方程ΔI/I0=0.97599+0.2889×logΦ(H2O)(R2=0.993),检测范围为0~90.0%。
(4)用最大荧光发射波长与四氢呋喃中的水分含量(体积分数logΦ(H2O))进行线性拟合,见图7,得到线性回归方程W/nm=598.23348+17.27118×logΦ(H2O)(R2=0.998),检测范围为0~90.0%。
上述实施例用来解释说明本发明,而非对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明所做出的任何修改和改变,都落入本发明的保护范围。

Claims (5)

1.一种碳纳米粒子检测四氢呋喃中水分含量的方法,其特征在于,包括以下步骤:
(1)线性回归方程:配置不同水分含量的四氢呋喃溶液,分别加入一定量的碳纳米粒子,搅拌3分钟;测定碳纳米粒子在500nm激发时的最大荧光发射波长与其对应的荧光发射强度,将荧光发射波长变化或荧光强度变化值与四氢呋喃中水分含量值进行线性拟合,可分别得到线性回归方程;
(2)四氢呋喃中水分含量测定:取未知水分含量的四氢呋喃溶液加入一定量的碳纳米粒子,搅拌3分钟;测定碳纳米粒子在500nm激发时的最大荧光发射波长与其对应的荧光发射强度,通过与线性回归方程对比,可得到四氢呋喃中水分含量的大小。
2.根据权利要求1所述的碳纳米粒子检测四氢呋喃中水分含量的方法,其特征在于,步骤(1)和(2)中所述碳纳米粒子在四氢呋喃溶液中的浓度为0.1mg/ml。
3.根据权利要求1所述的碳纳米粒子检测四氢呋喃中水分含量的方法,其特征在于,所述的最大荧光发射强度变化值与四氢呋喃中的水分含量值的线性回归方程ΔI/I0=0.97599+0.2889×logΦ(H2O),R2=0.993;最大荧光发射波长与四氢呋喃中的水分含量值的线性回归方程为W/nm=598.23348+17.27118×logΦ(H2O),R2=0.998。
4.根据权利要求1所述的碳纳米粒子检测四氢呋喃中水分含量的方法,其特征在于,所述碳纳米粒子的制备方法包括以下步骤:
(1)将对苯二胺和一定分子量的PEG按质量比为10:1~5,配成均匀的水溶液后,于水热反应釜中密封,置于140~180℃的烘箱中反应12~36小时;
(2)将步骤(1)反应得到的溶液浓缩至饱和,经硅胶柱对产物进行提纯,制得一种具有四氢呋喃中水分含量检测功能的碳纳米粒子。
5.根据权利要求4所述的具有四氢呋喃中水分含量检测功能的碳纳米粒子的制备方法,其特征在于:所述PEG的分子量为400、600、800、1000、2000中任一种,优选为600或800,更优选为600;对苯二胺与PEG的质量比优选为10:2~4,更优选为10:3,烘箱温度优选为150~170℃,更优选为160℃,反应时间优选为20~28小时,更优选为24小时。
CN201610036849.3A 2016-01-19 2016-01-19 一种碳纳米粒子检测四氢呋喃中水分含量的方法 Active CN105651749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610036849.3A CN105651749B (zh) 2016-01-19 2016-01-19 一种碳纳米粒子检测四氢呋喃中水分含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610036849.3A CN105651749B (zh) 2016-01-19 2016-01-19 一种碳纳米粒子检测四氢呋喃中水分含量的方法

Publications (2)

Publication Number Publication Date
CN105651749A true CN105651749A (zh) 2016-06-08
CN105651749B CN105651749B (zh) 2018-09-14

Family

ID=56484357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610036849.3A Active CN105651749B (zh) 2016-01-19 2016-01-19 一种碳纳米粒子检测四氢呋喃中水分含量的方法

Country Status (1)

Country Link
CN (1) CN105651749B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251106A (zh) * 2017-12-11 2018-07-06 温州大学 一种红色荧光碳点粉末的制备方法
CN108384537A (zh) * 2018-01-19 2018-08-10 北京服装学院 一种钡离子掺杂碳量子点的制备及得到的碳量子点与应用
CN110669518A (zh) * 2019-11-21 2020-01-10 中国林业科学研究院林产化学工业研究所 一种荧光碳点及其制备方法和应用
CN112552907A (zh) * 2021-01-19 2021-03-26 河北大学 具有多种荧光特性的碳点、制备方法及其在led中的应用
CN115287062A (zh) * 2022-08-09 2022-11-04 山西大学 一种氮掺杂碳点的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157334A1 (en) * 2002-08-12 2004-08-12 Barashkov Nikolay N. Method for determination of ethanol concentration in an aqueous solution containing an alcoholic beverage
CN1865935A (zh) * 2006-05-19 2006-11-22 湖南大学 一种检测有机溶剂中水含量的荧光化学传感器及其应用
CN1916629A (zh) * 2006-09-01 2007-02-21 湖南大学 用于制备测定有机溶剂中水含量的传感器的荧光载体
CN103512873A (zh) * 2013-09-09 2014-01-15 江苏广播电视大学 一种检测乙醇中水含量的荧光染料及其荧光检测方法
CN104327851A (zh) * 2014-09-18 2015-02-04 中国科学院长春光学精密机械与物理研究所 两亲性碳纳米点及其制备方法与应用
CN105219376A (zh) * 2015-10-15 2016-01-06 福州大学 Eu-MOFs/CDs双色荧光材料及其制备与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157334A1 (en) * 2002-08-12 2004-08-12 Barashkov Nikolay N. Method for determination of ethanol concentration in an aqueous solution containing an alcoholic beverage
CN1865935A (zh) * 2006-05-19 2006-11-22 湖南大学 一种检测有机溶剂中水含量的荧光化学传感器及其应用
CN100483112C (zh) * 2006-05-19 2009-04-29 湖南大学 一种检测有机溶剂中水含量的荧光化学传感器及其应用
CN1916629A (zh) * 2006-09-01 2007-02-21 湖南大学 用于制备测定有机溶剂中水含量的传感器的荧光载体
CN103512873A (zh) * 2013-09-09 2014-01-15 江苏广播电视大学 一种检测乙醇中水含量的荧光染料及其荧光检测方法
CN104327851A (zh) * 2014-09-18 2015-02-04 中国科学院长春光学精密机械与物理研究所 两亲性碳纳米点及其制备方法与应用
CN105219376A (zh) * 2015-10-15 2016-01-06 福州大学 Eu-MOFs/CDs双色荧光材料及其制备与应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHENGGANG NIU ET AL.: "Determination of Water Content in Organic Solvents by Naphthalimide Derivative Fluorescent Probe", 《ANALYTICAL SCIENCES》 *
HAORAN SUN ET AL.: "A Method for Detecting Water in Organic Solvents", 《ORGANIC LETTERS》 *
KAI JIANG ET AL.: "Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging", 《ANGEWANDTE COMMUNICATIONS》 *
YOUFU WANG ET AL.: "Carbon quantum dots: synthesis, properties and applications", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
张鸣语 等: "一种用于有机溶剂中含水量检测的甲基吡啶盐", 《上海师范大学学报(自然科学版)》 *
王林鹏 等: "碳点的制备与应用研究进展", 《材料工程》 *
胡胜亮 等: "荧光碳纳米颗粒:新进展和技术挑战", 《化学进展》 *
黄启同 等: "碳量子点的合成与应用", 《化学进展》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251106A (zh) * 2017-12-11 2018-07-06 温州大学 一种红色荧光碳点粉末的制备方法
CN108251106B (zh) * 2017-12-11 2020-08-28 温州大学 一种红色荧光碳点粉末的制备方法
CN108384537A (zh) * 2018-01-19 2018-08-10 北京服装学院 一种钡离子掺杂碳量子点的制备及得到的碳量子点与应用
CN108384537B (zh) * 2018-01-19 2021-02-26 北京服装学院 一种钡离子掺杂碳量子点的制备及得到的碳量子点与应用
CN110669518A (zh) * 2019-11-21 2020-01-10 中国林业科学研究院林产化学工业研究所 一种荧光碳点及其制备方法和应用
CN112552907A (zh) * 2021-01-19 2021-03-26 河北大学 具有多种荧光特性的碳点、制备方法及其在led中的应用
CN112552907B (zh) * 2021-01-19 2023-08-15 河北大学 具有多种荧光特性的碳点、制备方法及其在led中的应用
CN115287062A (zh) * 2022-08-09 2022-11-04 山西大学 一种氮掺杂碳点的制备方法及其应用

Also Published As

Publication number Publication date
CN105651749B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN105651749A (zh) 一种碳纳米粒子检测四氢呋喃中水分含量的方法
Vašková A powerful tool for material identification: Raman spectroscopy
Vikraman et al. Thioglycolic acid capped CdS quantum dots as a fluorescent probe for the nanomolar determination of dopamine
Li et al. Highly selective recognition of naphthol isomers based on the fluorescence dye-incorporated SH-β-cyclodextrin functionalized gold nanoparticles
CN109880623B (zh) 一种水敏感上转换荧光材料及其制备方法和检测方法
Litescu et al. Fourier transform infrared spectroscopy–useful analytical tool for non-destructive analysis
CN107640759A (zh) 呈弱酸模式的pH敏感型红光碳量子点及其制备方法
Tan et al. Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol
CN102998288A (zh) 测定水中As (III)的适配体-纳米金共振瑞利散射光谱法
CN109777412A (zh) 一种双发射荧光碳点及其制备方法和应用
Gholami et al. A new nano biosensor for maitotoxin with high sensitivity and selectivity based fluorescence resonance energy transfer between carbon quantum dots and gold nanoparticles
Zhang et al. Ultrasensitive detection of lead (II) ion by dark-field spectroscopy and glutathione modified gold nanoparticles
CN102435587B (zh) 纳米金共振散射光谱法快速测定水中亚硝酸盐的方法
Alghamdi et al. A sensitive procedure for the rapid electrochemical determination of eosin-Y dye using voltammetric techniques onto a mercury electrode surface
Gavrilenko et al. Transparent polymer sensor for visual and photometrical detection of thiocyanate in oilfield water
CN108827921B (zh) 一种溶菌酶的室温磷光检测方法及应用
Liu et al. A fluorescence sensing method for brilliant blue with gold nanoclusters based on the inner filter effect
Sehatnia et al. Sensitive molecular determination of polycyclic aromatic hydrocarbons based on thiolated Calix [4] arene and CdSe quantum dots (QDs)
CN108613997A (zh) 一种测定橡胶中硬脂酸钙含量的方法
CN116120918A (zh) 一种检测亚硝酸盐的双模态纳米探针及其制备方法与应用
CN109971478A (zh) 铽离子掺杂的纳米颗粒用于荧光双波长检测多巴胺的方法
Mandru et al. A Review on UV-visible spectroscopy
CN103604791A (zh) 一种测定叠氮离子的荧光光谱方法
SK500012015A3 (sk) Spôsob stanovenia obsahu hydrofóbnych látok v organických vodou miešateľných kvapalinách
Duong et al. A new look at an old classic: implementation of a SERS-based water hardness titration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant