CN107723680A - 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 - Google Patents
一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 Download PDFInfo
- Publication number
- CN107723680A CN107723680A CN201710747970.1A CN201710747970A CN107723680A CN 107723680 A CN107723680 A CN 107723680A CN 201710747970 A CN201710747970 A CN 201710747970A CN 107723680 A CN107723680 A CN 107723680A
- Authority
- CN
- China
- Prior art keywords
- nano coating
- temperature
- stage nano
- coating
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/02—Methods for coating medical devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/08—Coatings comprising two or more layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- General Chemical & Material Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法,包含以下步骤:镁合金除氢、PE‑ALD工作腔准备、多级纳米涂层的制备、PE‑ALD工作腔还原。多级纳米涂层由单级纳米涂层单次或多次叠加构成,叠加次数N即为级数;其单级纳米涂层为TiNx(X=0.5~2.0)/TiO2。本发明所制备的涂层具有在任意形状表面(二维或三维)形成化学计量比精确、覆盖性好、厚度精准涂层,涂层的耐蚀性可调控,涂层材料对人体无毒、无害,除用于镁及镁合金耐蚀性调控外,还可以用于其它骨植入物活泼金属材料表面耐蚀性调控。
Description
技术领域
本发明属于镁合金表面改性处理技术,特别涉及医用镁合金的表面涂层设计、制备、及耐蚀性调控。
背景技术
创伤、运动和人口老龄化等引起的骨骼损伤使得骨植入材料需求日益增加。中国每年仅由交通事故就造成超过1百万残疾人和50万患者,需要植入骨内固定物,费用预计超过1千亿美元。目前临床应用的骨植入物金属材料主要是不锈钢、钛合金和Co-Cr合金。上述材料弹性模量与骨组织的差异,会对愈合组织产生应力遮挡,阻碍愈合过程;同时,患者需要做第二次手术去除这些植入物,留下的空洞会增加患者再次骨折风险。为避免二次手术对患者带来的痛苦和隐患,生物可降解植入材料研究成为全球热点。材料科学家们致力开发新型的生物金属可降解材料:即能够满足初期阶段的固定作用,同时随着愈合时间的延长而在体内降解,特别是降解离子还能够促进组织愈合。近年来,镁合金由于密度与人密质骨极其相近(1.75g/cm3);高的比强度和比刚度;且镁是人体所必需的一种重要元素,作为新型可降解医用材料成为生物材料领域的研究热点。镁标准电极电位低(-2.36Vsce),而且其氧化膜疏松多孔(PBR=0.81),腐蚀速度较快,特别是含有Cl离子的人体生理环境中,植入后的腐蚀过快会使得力学性能快速下降,甚至在骨组织愈合之前发生断裂;调控镁及其合金的抗腐蚀能力,控制其在体内的降解速度,是生物可降解镁植入材料研究的关键。
德国Hannover大学的Witte将AZ31、AZ91D、WE43、LAE442等商业镁合金分别植入生物体内,发现除镁中合金成分对腐蚀性能起到了决定性作用。许多合金成分对人体有害,如Al对成骨细胞和神经元有害,与脑细胞有特别的亲和力能够杀死神经细胞,造成记忆力减退、行动迟缓、加速衰老;Pr、Ce 等稀土元素有肝毒性;Ce有细胞毒性,Li 具有潜在的致畸作用;Cd不仅导致骨质疏松或软化,对肾脏和生殖系统也有是否严重的危害。高纯镁(或合金元素仅限于Ca、Sr、Zn、Y)是目前骨植入物实际应用的趋势。在镁合金表面制备耐蚀性可调控的涂层是调控镁金属植入物性能的最为有效途径之一。传统镁合金耐蚀涂层主要有:有机涂层、耐蚀金属涂层以及化合物涂层等。有机涂层工艺有涂漆、静电喷涂、电泳等[Hu RG, Zhang S, Bu J F, et al. Progress in Organic Coatings, 2012,73:129-141],金属和化合物涂层采用的主要技术为电/化学镀[Liu J J, Wang X D, et al. Appliedsurface science, 2015, 356: 289-293]、冷喷涂[Xiong Y M, Zhang M X. Surface &Coatings Technology, 2014, 253: 89-95]、溅射[李忠厚,郭腾腾,宫学博等. 表面技术,2014, 43( 6) :121-124]、高能束流表面熔覆等技术[Zhu R D, Li Z Y, et al. AppliedSurface Science, 2015, 353: 405-413]。将这些涂层及其制备技术直接用于医用镁合金,往往存在难以形成三维性或台阶覆盖、生物融合性差、对身体有一定毒性等问题。国内外一些学者尝试开发耐蚀性可调控的镁合金表面涂层,如Ca-P涂层 [张佳,宗阳,袁广银等,中国有色金属学报,2010,20:1989-1997;Gan JJ, Tan LL, Yang K, et al. Journalof Materials Science-Materials in Medicine, 2013,24:889-901]、Mg 49Cu33Y18 at.%非晶镀膜[Ge Wu, Yong Liu, et al. Intermetallics, 62, 2015 22-26]。
氮化钛涂层密度小、熔点高、硬度大、耐磨性好、化学稳定性好、与金属的润湿性好、不与金属反应,其微米数量级的涂层广泛用于电子器件的耐腐蚀、扩散障碍层、光学反射层[龙中俊.表面技术,1991,(05):50-50]。近年来,采用溅射技术在镁合金表面制备氮化钛层以提高耐蚀性能成为研究热点。随着氮化钛层厚度降低,容易形成多孔结构,耐蚀效果降低,显示出一定的可调控性;通过水热紧缩提高致密度[Janusz Kaminski,et al.Journal of Surface Engineered Materials & Advanced Technology, 2014, 04(5):270-281]或与其他薄膜(如等离子阳极氧化PA膜和Al2O3膜)配合使用才能实现AZ31及AZ91良好耐蚀性[Hoche Holger, et al. Surface & Coatings Technology, 2003, 174(9):1002-1007; Hoche Holger, et al. Surface & Coatings Technology, 2013, 228(9):336-341]。吴国松[Guosong Wu, Xiaoqin Zeng,et al.Applied Surface Science, 2006,252:7422–7429]采用电子束蒸发技术在AZ31镁合金表面成功渡上了TiOX涂层发现镀膜前后显微硬度均在80 HV左右,若实现耐蚀效果,厚度需要达到微米及以上数量级别。
发明内容
本发明的目的是提出一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法。涂层采用原子层外延技术制备(atomic layer deposition, ALD),利用表面反应的自限性(化学吸附自限制性和顺次反应自限性),在任意形状表面(二维或三维)形成化学计量比精确、覆盖性好、薄膜厚度精准多级纳米涂层,工艺重复稳定性好。多级纳米涂层由单级纳米涂层单次或多次叠加构成,叠加次数N即为级数;其单级纳米涂层为氮化钛(TiNx,X=0.5~2.0)/二氧化钛(TiO2)。通过调节氮化钛中氮原子含量(氮原子含量越低耐蚀性越好)及级数(叠加次数N越多耐蚀性越好),实现耐蚀性可调控。涂层材料对人体无毒、无害,除用于镁及镁合金耐蚀性调控外,还可以用于其它骨植入物活泼金属材料表面耐蚀性调控。
本发明是通过以下技术方案实现。
本发明的所需装置为等离子体增强原子层沉积系统(PE-ALD)设备。
本发明所述的一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法,包含以下步骤:镁合金除氢、PE-ALD工作腔准备、多级纳米涂层的制备、PE-ALD工作腔还原。
具体地说,本发明所述的一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法,包含以下步骤。
(1)镁合金除氢:将镁合金试样置于气氛炉中,控制气氛炉炉温160~200℃,保温1~2小时。
(2)PE-ALD工作腔准备:确认供气压力,干燥氦气压力为0.45~0.55MPa,反应气源压力为0.2MPa;设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为300℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、空气流量计、加热器,随后充气至压力为760torr;打开工作腔体,放入除氢后的镁合金试样,关闭腔门。
(3)多级纳米涂层的制备。
单级纳米涂层为氮化钛(TiNx,X=0.5~2.0)/二氧化钛(TiO2)。
所述单级纳米涂层中氮化钛(TiNx,X=0.5~2.0)薄膜厚度为6~8nm。其制备过程为:以氨气(NH3)、一氧化碳(CO)、四二乙基氨钛(TDEAT, Ti [(C2H5)2N]4)为反应气源;设置加热器为230℃、吹扫温度为120℃/80℃、热阱温度为400℃、泵管温度为100℃;工艺压力为0.15torr,NH3和CO按1:7比例注气时间为0.02s、吹扫时间为60s;TDEAT注气时间为0.02~0.1s(随着TDEAT注气时间的增加,氮原子的含量下降,即X值的降低)、吹扫时间为60s;每次循环薄膜厚度增加0.05~0.2nm(随着TDEAT注气时间的增加,单次循环的薄膜厚度增加),多次循环这一过程直至氮化钛薄膜厚度达到设计标准。
所述单级纳米层中二氧化钛(TiO2)薄膜厚度为8~10nm。其制备过程为:以异氧丙醇钛、水(H2O)为反应气源;设置加热器温度为250℃、吹扫温度为120℃/80℃、热阱温度为400℃、泵管温度为100℃;工艺压力为0.15torr,异氧丙醇钛注气时间为0.02s、吹扫时间为80s;水注气时间为0.015s、吹扫时间为80s;每次循环薄膜厚度增加0.5nm,多次循环这一过程直至二氧化钛薄膜厚度达到设计标准。
将以上单级纳米涂层通过N次叠加,即得到多级纳米涂层,N≥1。
(4)PE-ALD工作腔还原:关闭反应气源,设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为300℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、流量计、加热器,充气至压力为760torr;打开工作腔体,取出镁合金试样,关闭腔门。
本发明所述的多级纳米涂层,其耐蚀性可通过以下两种方式进行调控。
(1)通过调节单级纳米涂层中氮化钛(TiNx,X=0.5~2.0)的氮原子含量(氮原子含量越低耐蚀性越好)进行调控。其中氮化钛(TiNx,X=0.5~2.0)中氮原子含量,可通过氮化钛(TiNx)薄膜制备过程中TDEAT注气时间(0.02~0.1s)控制,随着注气时间的增加,氮原子的含量下降,即X值的降低。
(2)通过多级纳米涂层中单级纳米涂层的叠加次数(次数越多耐蚀性越好)进行调控。叠加层数每增加1,级数增加1,耐蚀性提高。
本发明提出一种耐蚀性可调控的镁合金表面多级纳米涂层及其制备方法。所制备的涂层具有在任意形状表面(二维或三维)形成化学计量比精确、覆盖性好、厚度精准涂层。涂层的耐蚀性可调控。涂层材料对人体无毒、无害。除用于镁及镁合金耐蚀性调控外,还可以用于其它骨植入物活泼金属材料表面耐蚀性调控。
具体实施方式
本发明将结合以下实施例作进一步的说明。
实施例1。
镁合金样品大小为90mm×90mm×4mm,镀单级氮化钛(TiN2)/二氧化钛(TiO2)纳米涂层。依次进行镁合金除氢、PE-ALD工作腔准备、多级纳米涂层的制备、PE-ALD工作腔还原步骤。单级氮化钛(TiN2)/二氧化钛(TiO2)纳米涂层制备中,氮化钛薄膜制备时控制TDEAT注气时间为0.02s,每次循环薄膜厚度增加0.05nm,循环次数为120次;二氧化钛薄膜制备时,循环次数为160次。单级氮化钛(TiN2)/二氧化钛(TiO2)纳米涂层叠加次数N为1,完成单级纳米涂层制备。
由原子探针表征(AFM)检测,测得涂层厚度为14nm。镀涂层前、后,点滴试验变色时间(将0.05 g高锰酸钾和5 ml硝酸溶于95 ml蒸馏水中的紫色溶液滴在试样表面,看溶液由紫色变为无色的时间)由3.4s变为40.1s;显微硬度由63.42HV增加至80.38 HV;在3.5%的NaCl溶液中的自腐蚀电位由-1.621V变为-1.334V;自腐蚀电流密度由5.517×10-8A/cm2变化为3.062×1010-8A/cm2。
实施例2。
镁合金样品大小为90mm×90mm×4mm,镀双级氮化钛(TiN2)/二氧化钛(TiO2)纳米涂层。依次进行镁合金除氢、PE-ALD工作腔准备、多级纳米涂层的制备、PE-ALD工作腔还原步骤。单级氮化钛(TiN2)/二氧化钛(TiO2)纳米涂层制备中,氮化钛薄膜制备时控制TDEAT注气时间为0.02s,每次循环薄膜厚度增加0.05nm,循环次数为120次;二氧化钛薄膜制备时,循环次数为160次。单级氮化钛(TiN2)/二氧化钛(TiO2)纳米涂层叠加次数N为2,完成双级纳米涂层制备。
由原子探针表征(AFM)检测,测得涂层厚度为28nm;镀涂层前、后,点滴试验变色时间(将0.05 g高锰酸钾和5 ml硝酸溶于95 ml蒸馏水中的紫色溶液滴在试样表面,看溶液由紫色变为无色的时间)由3.4s 变为66s;显微硬度由63.42 HV增加至96HV;在3.5%的NaCl溶液中的自腐蚀电位由-1.621V变为-1.299V;自腐蚀电流密度由5.517×10-8A/cm2变化为8.062×10-9A/cm2。
实施例3。
镁合金样品大小为90mm×90mm×4mm,镀单级氮化钛(TiN0.5)/二氧化钛(TiO2)纳米涂层。依次进行镁合金除氢、PE-ALD工作腔准备、多级纳米涂层的制备、PE-ALD工作腔还原步骤。单级氮化钛(TiN0.5)/二氧化钛(TiO2)纳米涂层制备中,氮化钛薄膜制备时控制TDEAT注气时间为1 s,每次循环薄膜厚度增加0.08nm,循环次数为100次;二氧化钛薄膜制备时,循环次数为200次。单级氮化钛(TiN0.5)/二氧化钛(TiO2)纳米涂层叠加次数N为1,完成单级纳米涂层制备。
由原子探针表征(AFM)检测,测得到涂层厚度为18nm;镀涂层前、后,点滴试验变色时间(将0.05 g高锰酸钾和5 ml硝酸溶于95 ml蒸馏水中的紫色溶液滴在试样表面,看溶液由紫色变为无色的时间)由3.4s变为70s;显微硬度由63.42 HV增加至102 HV;在3.5%的NaCl溶液中的自腐蚀电位由-1.621V变为-1.294V;自腐蚀电流密度由5.517×10-8A/cm2变化为9.062×10-9A/cm2。
实施例4。
镁合金样品大小为90mm×90mm×4mm,镀四级氮化钛(TiN0.5)/二氧化钛(TiO2)纳米涂层。依次进行镁合金除氢、PE-ALD工作腔准备、多级纳米涂层的制备、PE-ALD工作腔还原步骤。单级氮化钛(TiN0.5)/二氧化钛(TiO2)纳米涂层制备中,氮化钛薄膜制备时控制TDEAT注气时间为1 s,每次循环薄膜厚度增加0.08nm,循环次数为100次;二氧化钛薄膜制备时,循环次数为200次。单级氮化钛(TiN0.5)/二氧化钛(TiO2)纳米涂层叠加次数N为4,完成四级纳米涂层制备。
由原子探针表征(AFM)检测,测得到涂层厚度为72nm;镀涂层前、后点滴试验变色时间(将0.05 g高锰酸钾和5 ml硝酸溶于95 ml蒸馏水中的紫色溶液滴在试样表面,看溶液由紫色变为无色的时间)由3.4s 变为96s;显微硬度由63.42 HV增加至126HV;在3.5%的NaCl溶液中的自腐蚀电位由-1.621V变为-1.257V;自腐蚀电流密度由5.517×10-8A/cm2变化为2.062×10-9A/cm2。
Claims (3)
1.一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法,其特征是包含以下步骤:
(1)镁合金除氢:将镁合金试样置于气氛炉中,控制气氛炉炉温160~200℃,保温1~2小时;
(2)PE-ALD工作腔准备:确认供气压力,干燥氦气压力为0.45~0.55MPa,反应气源压力为0.2MPa;设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为300℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、空气流量计、加热器,随后充气至压力为760torr;打开工作腔体,放入除氢后的镁合金试样,关闭腔门;
(3)多级纳米涂层的制备:
单级纳米涂层为TiNx/TiO2,X=0.5~2.0;
所述单级纳米涂层中TiNx,X=0.5~2.0薄膜厚度为6~8nm;其制备过程为:以氨气、一氧化碳、四二乙基氨钛为反应气源;设置加热器为230℃、吹扫温度为120℃/80℃、热阱温度为400℃、泵管温度为100℃;工艺压力为0.15torr,氨气和一氧化碳按1:7比例注气时间为0.02s、吹扫时间为60s;四二乙基氨钛注气时间为0.02~0.1s、吹扫时间为60s;每次循环薄膜厚度增加0.05~0.2nm,多次循环这一过程直至氮化钛薄膜厚度达到设计标准;
所述单级纳米层中TiO2薄膜厚度为8~10nm;其制备过程为:以异氧丙醇钛、水为反应气源;设置加热器温度为250℃、吹扫温度为120℃/80℃、热阱温度为400℃、泵管温度为100℃;工艺压力为0.15torr,异氧丙醇钛注气时间为0.02s、吹扫时间为80s;水注气时间为0.015s、吹扫时间为80s;每次循环薄膜厚度增加0.5nm,多次循环这一过程直至二氧化钛薄膜厚度达到设计标准;
将以上单级纳米涂层通过N次叠加,即得到多级纳米涂层,N≥1;
(4)PE-ALD工作腔还原:关闭反应气源,设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为300℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、流量计、加热器,充气至压力为760torr;打开工作腔体,取出镁合金试样,关闭腔门。
2.根据权利要求1所述的一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法,其特征是所述的多级纳米涂层,其耐蚀性通过调节单级纳米涂层中TiNx,X=0.5~2.0的氮原子含量进行调控; TiNx,X=0.5~2.0中氮原子含量随着四二乙基氨钛注气时间的增加而下降,氮原子的含量下降时,耐蚀性提高。
3.根据权利要求1所述的一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法,其特征是所述的多级纳米涂层,其耐蚀性通过多级纳米涂层中单级纳米涂层的叠加次数进行调控;叠加层数每增加1,级数增加1,耐蚀性提高。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747970.1A CN107723680B (zh) | 2017-08-28 | 2017-08-28 | 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747970.1A CN107723680B (zh) | 2017-08-28 | 2017-08-28 | 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107723680A true CN107723680A (zh) | 2018-02-23 |
CN107723680B CN107723680B (zh) | 2019-10-29 |
Family
ID=61205346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710747970.1A Active CN107723680B (zh) | 2017-08-28 | 2017-08-28 | 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107723680B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108823552A (zh) * | 2018-06-19 | 2018-11-16 | 南昌大学 | 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 |
EP3714911A1 (en) * | 2019-03-29 | 2020-09-30 | Picosun Oy | Coating for joint implants |
CN113440653A (zh) * | 2021-07-01 | 2021-09-28 | 山西医科大学口腔医院 | 一种促进骨结合的钛基种植体及其制备方法和应用 |
CN114807839A (zh) * | 2022-04-25 | 2022-07-29 | 南昌大学 | 一种牙科用阶梯降解镁合金屏障膜及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103276361A (zh) * | 2013-05-09 | 2013-09-04 | 中南大学 | 一种在镁基复合材料表面制备Ti/TiO2或TiN生物相容性膜层的方法 |
KR20170090905A (ko) * | 2016-01-29 | 2017-08-08 | 엘지전자 주식회사 | 마그네슘 소재 및 마그네슘 소재의 표면처리 방법 |
-
2017
- 2017-08-28 CN CN201710747970.1A patent/CN107723680B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103276361A (zh) * | 2013-05-09 | 2013-09-04 | 中南大学 | 一种在镁基复合材料表面制备Ti/TiO2或TiN生物相容性膜层的方法 |
KR20170090905A (ko) * | 2016-01-29 | 2017-08-08 | 엘지전자 주식회사 | 마그네슘 소재 및 마그네슘 소재의 표면처리 방법 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108823552A (zh) * | 2018-06-19 | 2018-11-16 | 南昌大学 | 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 |
EP3714911A1 (en) * | 2019-03-29 | 2020-09-30 | Picosun Oy | Coating for joint implants |
CN113440653A (zh) * | 2021-07-01 | 2021-09-28 | 山西医科大学口腔医院 | 一种促进骨结合的钛基种植体及其制备方法和应用 |
CN114807839A (zh) * | 2022-04-25 | 2022-07-29 | 南昌大学 | 一种牙科用阶梯降解镁合金屏障膜及其制备方法 |
CN114807839B (zh) * | 2022-04-25 | 2023-03-14 | 南昌大学 | 一种牙科用阶梯降解镁合金屏障膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107723680B (zh) | 2019-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107723680B (zh) | 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 | |
Ali et al. | Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances | |
CN107460372B (zh) | 一种Zn-Mn系锌合金及其制备方法与应用 | |
Kodama et al. | Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite | |
EP1997522B1 (en) | Method of controlling degradation time of a biodegradable device | |
CN107460371B (zh) | 一种Zn-Li系锌合金及其制备方法与应用 | |
Keim et al. | Control of magnesium corrosion and biocompatibility with biomimetic coatings | |
Wen et al. | Hydroxyapatite/titania sol–gel coatings on titanium–zirconium alloy for biomedical applications | |
Sabzi et al. | Characterization of bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on NiTi shape memory alloy | |
Mahmoudi et al. | Antibacterial Ti–Cu implants: A critical review on mechanisms of action | |
CN103260660B (zh) | 包含生物可降解的镁基合金的医学植入体及其制造方法 | |
CN109487199B (zh) | 一种表面改性涂层及其制备方法和应用 | |
CN106854724A (zh) | 一种医用含稀土元素镁合金材料及其制备方法 | |
CN111058076B (zh) | 一种Zr基高熵合金材料及Zr基高熵合金表面合成多孔球状结构的方法 | |
CN110965024B (zh) | 一种生物医用材料及其制备方法 | |
Marchenko et al. | Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol | |
Wu et al. | Catalyst-enhanced micro-galvanic effect of Cu3N/Cu-bearing NiTi alloy surface for selective bacteria killing | |
RU2508130C1 (ru) | Способ изготовления кардиоимплантата из сплава на основе никелида титана с модифицированным ионно-плазменной обработкой поверхностным слоем | |
Fatichi et al. | Self-organized TiO 2 nanotube layer on Ti–Nb–Zr alloys: Growth, characterization, and effect on corrosion behavior | |
Uchoa et al. | Optimizing surface properties of Ti13Nb13Zr alloy substrate for biomedical applications through modification with nano-alumina obtained by atomic layer deposition and hydroxyapatite coatings | |
EP2414563A1 (en) | A method of surface treatment of an implant, an implant treated by said method and an electrolyte solution for use in said method | |
CN104762645B (zh) | 医用植入体材料及其制备方法 | |
CN103120805A (zh) | 一种生物医用可降解镁合金的生物活性表面涂层及制备 | |
Gao et al. | Corrosion and bone response of magnesium implants after surface modification by heat-self-assembled monolayer | |
CN113846308B (zh) | 一种多孔铂骨架生物相容性钽金属涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |