CN114807839B - 一种牙科用阶梯降解镁合金屏障膜及其制备方法 - Google Patents

一种牙科用阶梯降解镁合金屏障膜及其制备方法 Download PDF

Info

Publication number
CN114807839B
CN114807839B CN202210440458.3A CN202210440458A CN114807839B CN 114807839 B CN114807839 B CN 114807839B CN 202210440458 A CN202210440458 A CN 202210440458A CN 114807839 B CN114807839 B CN 114807839B
Authority
CN
China
Prior art keywords
magnesium alloy
barrier film
degradation
alloy barrier
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210440458.3A
Other languages
English (en)
Other versions
CN114807839A (zh
Inventor
罗岚
赵嘉成
刘勇
王绳
黄昱旲
吴相钢
安浩瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202210440458.3A priority Critical patent/CN114807839B/zh
Publication of CN114807839A publication Critical patent/CN114807839A/zh
Application granted granted Critical
Publication of CN114807839B publication Critical patent/CN114807839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明所提出的一种牙科用阶梯降解镁合金屏障膜及其制备方法。其制备方法为:(1)镁合金屏障膜的粗糙度控制;(2)TiN/TiO2纳米复合膜沉积。步骤(1)使得镁合金屏障膜整体呈现均匀降解,步骤(2)使得限制了体内植入4周(或体外1周Hank’s37℃溶液)的降解速度。所得到的牙科用阶梯降解镁合金屏障膜,粗糙度控制后屏障膜呈现均匀降解;镀膜后体内植入4周(或体外1周Hank’s37℃溶液)的降解速度明显降低;粗糙度+镀膜调控后呈现先慢后快的阶梯降解。本发明提出一种牙科用阶梯降解镁合金屏障膜,除用于牙科牙槽骨修复,还可用于颌骨、颅骨等骨修复临床。

Description

一种牙科用阶梯降解镁合金屏障膜及其制备方法
技术领域
本发明属于生物材料领域,涉及牙科用引导骨再生屏障膜。
背景技术
种植牙是医学界公认的理想牙齿修复方法,既能完美重现牙齿咀嚼功能,又能保持美观,被越来越多患者所采用。实施牙种植时,须有一定牙槽骨量。若牙槽骨量不足,则需要进行引导骨再生(GBR,guided bone regeneration)。此时,需要植入屏障膜引导骨膜细胞再生并阻止纤维细胞与上皮细胞进入缺损区。目前牙科临床屏障膜主要有两类[中国口腔种植学杂志,2019,24(1):44]。一类是不可降解屏障膜,如钛、不锈钢、钴铬合金等金属屏障膜,其特点是:机械支撑性能好;但钛模量~110GPa、钢为~200Gpa、钴铬合金~240GP,与牙骨模量~18GPa[Journal of Prosthodontics,1999,8:41]差异大,易产生应力屏蔽效应,导致骨骼变厚、慢性炎症等问题;且需二次手术取出,增加了患者的治疗费用和痛苦。第二类是可降解屏障膜,如:聚乳酸PLA、聚己内酯PCL、聚乙醇酸PGA、胶原膜、壳聚糖等,其特点是:免去二次手术;但机械支撑性较差、降解过程机械强度损失过快,修复期内骨空间不稳定、易坍塌。镁合金具有良好生物可降解性、生物相容性、生物力学相容性,生物活性,已被用作骨钉、血管支架[nature medicine,2016,4162;金属学报,2017,53(3):257;Journalof Magnesium and Alloys,2018,6:23;Journal of orthopaedic translation,2021,27:96]。镁合金直接用作屏障膜[现代口腔医学杂志,2019,33(1):46],降解速度过快,难以保持牙槽骨修复期(4周)内的完整形态,同时降解时产生气囊引发炎症。
近年来,尝试通过表面镀膜,降低镁合金降解速度取得了一定成效[Materials,2018,11,2561;Journal of Magnesium and Alloys 2020,8:42]。王勤涛等人采用微弧氧化以NaOH、(NaPO3)6,KF为电解质在AZ31镁合金GBR屏障膜进行微弧氧化膜改性[王勤涛,等.镁合金作为GBR屏障膜材料的应用CN201510575728.1],体内完全降解周期为8周、促牙牙槽骨再生都达到临床胶原膜水平,同时具有良好的抗菌能力;但比特犬体内植入4周、8周时CT照片显示植入区存在较大气囊,同时AZ31镁合金所含铝元素成分是一种毒性元素。上海交大和上海第九医院在Mg-Zn-Gd屏障膜上镀Ca-P层,用于兔颅骨修复;降解速度降低了许多,但降解速度仍较快,植入时有气囊产生[Journal of Magnesium and Alloys,2021,9,281]。
发明内容
本发明提出一种牙科用阶梯降解镁合金屏障膜及其制备方法。通过粗糙度控制和TiN/TiO2纳米复合膜防护实现屏障膜先慢后快的阶梯降解,满足牙科牙槽骨修复手术临床需求。即体内植入4周后仍保持形态完整,支撑强度大于皮质骨骨模量(12~18GPa);植入12~16周完全降解。
本发明是以下技术方案实现:一种牙科用阶梯降解镁合金屏障膜的制备方法,包括以下步骤:(1)镁合金屏障膜的粗糙度控制;(2)TiN/TiO2纳米复合膜沉积。步骤(1)使得镁合金屏障膜整体呈现均匀降解,步骤(2)使得限制了体内植入4周(或体外1周Hank’s37℃溶液)的降解速度。
所述的镁合金屏障膜的粗糙度控制包括:①镁合金棒电火花打孔(孔内公差<±0.008mm,孔内粗糙度Ra≦0.8μm);②金刚线切割;③表面抛光(Ra<0.4μm)。
所述的TiN/TiO2纳米复合膜沉积包括:①镁合金屏障膜除氢:用丙酮溶液进行超声波清洗>30min;真空炉内氧浓度<0.01Pa,250℃烘烤3h以上除氢;②TiN/TiO2纳米复合膜双面沉积:采用四(二甲胺基)钛作为钛源,氨气和一氧化碳按1:7混合为氮源;氮气作为载气;样品台沉积温度250℃,工艺压力0.1Torr,氮气载气流量50sccm,氮气等离子体流量50sccm,射频功率250W;循环TiN沉积步骤多次至厚度为20nm(cycle:Dose钛源/2s→Purge/10-50s→Plasma/3s→Purge/10-20s,0.5nm/cycle),通入氧气20sccm为20min氧化温度为250℃,完成单面沉积;将屏障膜翻面,进行背面的TiN/TiO2纳米复合膜沉积。
本发明还提供了一种牙科用阶梯降解镁合金屏障膜,采用如上述方法制备得到。
与现有技术相比,本发明有益效果是:
本发明所提出的一种牙科用阶梯降解镁合金屏障膜,粗糙度控制后屏障膜呈现均匀降解;镀膜后体内植入4周(或体外1周Hank’s37℃溶液)的降解速度明显降低;粗糙度+镀膜调控后呈现先慢后快的阶梯降解。
本发明提出一种牙科用阶梯降解镁合金屏障膜。除用于牙科牙槽骨修复,还可用于颌骨、颅骨等骨修复临床。
附图说明
图1为本发明实施例GBR屏障膜尺寸(单位:mm);
图2为实施例1、2、3、4、5、6表面金相图;
图3为实施例1、2、3、4、5、6孔内景深显微镜图;
图4为实施例1、2、3、4、5、6 Hank’s 37℃溶液浸泡析氢量~时间曲线;
图5为实施例1、2、3、4、5、6 NaCl 3.5wt%溶液浸泡析氢量~时间曲线;
图6为实施例1、2、3、4、5、6 Hank’s 37℃溶液浸泡1周样品观察图;
图7为实施例1、2、3、4、5、6 NaCl 3.5wt%溶液1周样品观察图;
图8为实施例3和实施例6为Hank’s 37℃溶液浸泡析气速率;
图9为实施例3失重-力学损失图;
图10为实施例3和实施例6在小鼠植入的28天的形貌;
图11为实施例3和实施例6在小鼠植入的7,10,14,21,28天屏障膜CT扫描的3D重建;
图12为实施例3和实施例6在体内植入小鼠植入的7,10,14,21,28天气囊CT扫描的3D重建的;
图13为实施例3和实施例6体内气囊发展预测图。
具体实施方式
下面结合附图,对本发明作进一步地说明。
实施例1
选用φ7mm长20mm的纯镁棒材为原材料。
粗糙度控制:①电火花打孔:依据图1屏障膜孔设计,钼丝直径为0.1mm、走丝速度≤2m/s,打孔至孔径达到d=0.3mm,孔径公差<±0.008mm、孔内粗糙度=0.80μm,打孔后采用基恩士VHX-6000超景深三维显微系统测试孔内粗糙,其形貌如图3;②金刚石线切割:采用金刚石线切割机,线直径为0.3mm,切割速度≤0.25mm/min,切割步进精度为0.01mm,无水乙醇为冷却液,切割厚度为0.8mm;③抛光:用3000#的砂纸打磨表面,随后用10000#的砂纸打磨表面至光滑且游标卡尺测量厚度为0.5±0.05mm;最后进行抛光至表面粗糙度Ra=0.39μm,其金相照片如图2所示。
TiN/TiO2纳米复合膜沉积包括:①镁合金屏障膜除氢:用丙酮溶液进行超声波清洗>30min;真空炉内氧浓度<0.01Pa,250℃烘烤3h以上除氢;②TiN/TiO2纳米复合膜双面沉积:采用四(二甲胺基)钛作为钛源,氨气和一氧化碳按1:7混合为氮源;氮气作为载气;样品台沉积温度250℃,工艺压力0.1Torr,氮气载气流量50sccm,氮气等离子体流量50sccm,射频功率250W;循环TiN沉积步骤多次至厚度为20nm(cycle:Dose钛源/2s→Purge/10-50s→Plasma/3s→Purge/10-20s,0.5nm/cycle),通入氧气20sccm为20min氧化温度为250℃,完成单面沉积;将屏障膜翻面,进行背面的TiN/TiO2纳米复合膜沉积。
将样品分别浸泡与Hank’s 37℃溶液和3.5wt%NaCl溶液进行析氢实验其24小时析氢量为0.5198mL/cm2和0.6794mL/cm2,如图4、5所示;样品依据GB/T 1974-2018标准浸泡于Hanks’溶液、3.5wt%NaCl溶液7天,其形貌如图6、7所示,降解速率分别为0.254mm/year,0.303mm/year。
实施例2
选用φ7mm长20mm的Mg-3Zn-0.2Ca棒材为原材料。
粗糙度控制:①电火花打孔:依据图1屏障膜孔设计,钼丝直径为0.1mm、走丝速度≤2m/s,打孔至孔径达到d=0.3mm,孔径公差<±0.007mm、孔内粗糙度=0.57μm,打孔后采用基恩士VHX-6000超景深三维显微系统测试孔内粗糙,其形貌如图3;②金刚石线切割:采用金刚石线切割机,切割线为金刚石线,线直径为0.3mm,切割速度≤0.25mm/min,切割步进精度为0.01mm,无水乙醇为冷却液。切割厚度为0.8mm;③抛光:用3000#的砂纸打磨表面,随后用10000#的砂纸打磨表面至光滑且游标卡尺测量厚度为0.5±0.05mm;最后进行抛光至表面粗糙度Ra=0.26μm,其金相照片如图2所示。
TiN/TiO2纳米复合膜沉积包括:①镁合金屏障膜除氢:用丙酮溶液进行超声波清洗>30min;真空炉内氧浓度<0.01Pa,250℃烘烤3h以上除氢;②TiN/TiO2纳米复合膜双面沉积:采用四(二甲胺基)钛作为钛源,氨气和一氧化碳按1:7混合为氮源;氮气作为载气;样品台沉积温度250℃,工艺压力0.1Torr,氮气载气流量50sccm,氮气等离子体流量50sccm,射频功率250W;循环TiN沉积步骤多次至厚度为20nm(cycle:Dose钛源/2s→Purge/10-50s→Plasma/3s→Purge/10-20s,0.5nm/cycle),通入氧气20sccm为20min氧化温度为250℃,完成单面沉积;将屏障膜翻面,进行背面的TiN/TiO2纳米复合膜沉积。
将样品分别浸泡于Hank’s 37℃溶液和3.5wt%NaCl溶液进行析氢实验其24小时析氢量为0.4806mL/cm2和0.5766mL/cm2,如图4、5所示;样品依据GB/T 1974-2018标准浸泡于Hanks’溶液、3.5wt%NaCl溶液7天,其形貌如图6、7所示,腐蚀速率分别为0.247mm/year,0.288mm/year。
实施例3
选用φ7mm长20mm的纯镁棒材为原材料。
粗糙度控制:①电火花打孔:依据图1屏障膜孔设计,钼丝直径为0.1mm、走丝速度≤2m/s,打孔至孔径达到d=0.3mm,孔径公差<±0.007mm、孔内粗糙度=0.45μm,打孔后采用基恩士VHX-6000超景深三维显微系统测试孔内粗糙,其形貌如图3;②金刚石线切割:采用金刚石线切割机,切割线为金刚石线,线直径为0.3mm,切割速度≤0.25mm/min,切割步进精度为0.01mm,无水乙醇为冷却液。切割厚度为0.8mm;③抛光:用3000#的砂纸打磨表面,随后用10000#的砂纸打磨表面至光滑且游标卡尺测量厚度为0.5±0.05mm;最后进行抛光至表面粗糙度Ra=0.20μm,其金相照片如图2所示。
TiN/TiO2纳米复合膜沉积包括:①镁合金屏障膜除氢:用丙酮溶液进行超声波清洗>30min;真空炉内氧浓度<0.01Pa,250℃烘烤3h以上除氢;②TiN/TiO2纳米复合膜双面沉积:采用四(二甲胺基)钛作为钛源,氨气和一氧化碳按1:7混合为氮源;氮气作为载气;样品台沉积温度250℃,工艺压力0.1Torr,氮气载气流量50sccm,氮气等离子体流量50sccm,射频功率250W;循环TiN沉积步骤多次至厚度为20nm(cycle:Dose钛源/2s→Purge/10-50s→Plasma/3s→Purge/10-20s,0.5nm/cycle),通入氧气20sccm为20min氧化温度为250℃,完成单面沉积;将屏障膜翻面,进行背面的TiN/TiO2纳米复合膜沉积。
将样品分别浸泡与Hank’s 37℃溶液和3.5wt%NaCl溶液进行析氢实验其24小时析氢量为0.4243mL/cm2和0.5389mL/cm2,如图4、5所示;Hank’s 37℃溶液1~28天析氢速度如图8所示;样品依据GB/T 1974-2018标准浸泡于Hanks’溶液、3.5wt%NaCl溶液7天,其形貌如图6、7所示,腐蚀速率分别为0.236mm/year,0.274mm/year。其力学随失重变化如图9所示。
将样品植入10周龄雄性Sprague-Dawley大鼠前肢末端。用戊巴比妥钠(Pelltobarbitalum Natricum,C11H17O3N2Na,50mg/kg)对大鼠进行麻醉后,在SD大鼠右前肢末端皮肤上做一个1cm大小的矢状切口并分离皮下层,小心地把样品植入到皮下层后缝合切口。手术完成后,将大鼠圈养在单独的笼子中,对其进行为期三天的抗感染处理,注射抗生素(华北制药,中国)8万单位/天,以防术后抗感染。对大鼠体内7、10、14、21、28天样品采用中科恺盛医疗科技有限公司的ZKKS-MCT-Sharp型活体CT观察如图11所示,由于拍摄角度未能反映样品真实形貌。植入28天,处死大鼠取出样品形貌如图10所示,样品保持形态完整。体内气囊7、14、21、28天小动物活体CT扫描并利用NRecon软件进行气囊3D模型重建如图12所示,其气囊发展预测如图13所示,气囊将在植入80天消失,样品则在83天消失。
实施例4
选用φ7mm长20mm的纯镁棒材为原材料。
粗糙度控制:①电火花打孔:依据图1屏障膜孔设计,钼丝直径为0.1mm、走丝速度≤2m/s,打孔至孔径达到d=0.3mm,孔径公差<±0.008mm、孔内粗糙度=0.79μm,打孔后采用基恩士VHX-6000超景深三维显微系统测试孔内粗糙,其形貌如图3;②金刚石线切割:采用金刚石线切割机,切割线为金刚石线,线直径为0.3mm,切割速度≤0.25mm/min,切割步进精度为0.01mm,无水乙醇为冷却液。切割厚度为0.8mm;③抛光:用3000#的砂纸打磨表面,随后用10000#的砂纸打磨表面至光滑且游标卡尺测量厚度为0.5±0.05mm;最后进行抛光至表面粗糙度Ra=0.35μm,其金相照片如图2所示。
将样品分别浸泡与Hank’s 37℃溶液和3.5wt%NaCl溶液进行析氢实验其24小时析氢量为0.5443mL/cm2和0.7829mL/cm2,如图4、5所示;样品依据GB/T 1974-2018标准浸泡于Hanks’溶液、3.5wt%NaCl溶液7天,其形貌如图6、7所示,腐蚀速率分别为0.264mm/year,0.323mm/year。
实施例5
选用φ7mm长20mm的Mg-3Zn-0.2Ca镁合金棒材为原材料。
粗糙度控制:①电火花打孔:依据图1屏障膜孔设计,钼丝直径为0.1mm、走丝速度≤2m/s,打孔至孔径达到d=0.3mm,孔径公差<±0.007mm、孔内粗糙度=0.55μm,打孔后采用基恩士VHX-6000超景深三维显微系统测试孔内粗糙,其形貌如图3;②金刚石线切割:采用金刚石线切割机,切割线为金刚石线,线直径为0.3mm,切割速度≤0.25mm/min,切割步进精度为0.01mm,无水乙醇为冷却液。切割厚度为0.8mm;③抛光:用3000#的砂纸打磨表面,随后用10000#的砂纸打磨表面至光滑且游标卡尺测量厚度为0.5±0.05mm;最后进行抛光至表面粗糙度Ra=0.26μm,其金相照片如图2所示。
将样品分别浸泡与Hank’s 37℃溶液和3.5wt%NaCl溶液进行析氢实验其24小时析氢量为0.5135mL/cm2和0.6771mL/cm2,如图4、5所示;样品依据GB/T 1974-2018标准浸泡于Hanks’溶液、3.5wt%NaCl溶液7天,其形貌如图6、7所示,腐蚀速率分别为0.260mm/year,0.312mm/year。
实施例6
选用φ7mm长20mm的纯镁棒材为原材料。
粗糙度控制:①电火花打孔:依据图1屏障膜孔设计,钼丝直径为0.1mm、走丝速度≤2m/s,打孔至孔径达到d=0.3mm,孔径公差<±0.007mm、孔内粗糙度=0.47μm,打孔后采用基恩士VHX-6000超景深三维显微系统测试孔内粗糙,其形貌如图3。②金刚石线切割:采用金刚石线切割机,切割线为金刚石线,线直径为0.3mm,切割速度≤0.25mm/min,切割步进精度为0.01mm,无水乙醇为冷却液。切割厚度为0.8mm;③抛光:用3000#的砂纸打磨表面,随后用10000#的砂纸打磨表面至光滑且游标卡尺测量厚度为0.5±0.05mm;最后进行表面抛光至粗糙度Ra=0.20μm,其金相照片如图2所示。
将样品分别浸泡与Hank’s 37℃溶液和3.5wt%NaCl溶液进行析氢实验其24小时析氢量为0.4604mL/cm2和0.6335mL/cm2,如图4、5所示;Hank’s 37℃溶液1~28天析氢速度如图8所示;样品依据GB/T 1974-2018标准浸泡于Hanks’溶液、3.5wt%NaCl溶液7天,其形貌如图6、7所示,腐蚀速率分别为0.251mm/year,0.298mm/year。
将样品植入10周龄雄性Sprague-Dawley大鼠前肢末端。用戊巴比妥钠(Pelltobarbitalum Natricum,C11H17O3N2Na,50mg/kg)对大鼠进行麻醉后,在SD大鼠左前肢末端皮肤上做一个1cm大小的矢状切口并分离皮下层,小心地把样品植入到皮下层后缝合切口。手术完成后,将大鼠圈养在单独的笼子中,对其进行为期三天的抗感染处理,注射抗生素(华北制药,中国)8万单位/天,以防术后抗感染。对大鼠体内7、10、14、21、28天样品活体小动物CT观察如图11所示,由于拍摄角度未能反映样品真实形貌。植入28天,处死大鼠取出样品形貌如图10所示,样品没保持形态完整。体内气囊7、14、21、28天小动物活体CT扫描三维重建如图12所示,气囊将在植入105天消失,样品则在75天左右消失。
表1样品及工艺参数
Figure BDA0003614893940000071
表2样品的7天析氢量和平均腐蚀速度
Figure BDA0003614893940000072
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (2)

1.一种牙科用阶梯降解镁合金屏障膜的制备方法,其特征在于,包括以下步骤:
步骤(1),镁合金屏障膜的粗糙度控制;
所述的镁合金屏障膜的粗糙度控制包括:
①镁合金棒电火花打孔,孔内公差<±0.008mm,孔内粗糙度Ra≦0.8μm;
②金刚线切割;
③表面抛光,Ra<0.4μm;
步骤(2),TiN/TiO2纳米复合膜沉积;
所述的TiN/TiO2纳米复合膜沉积包括:
①镁合金屏障膜除氢:用丙酮溶液进行超声波清洗>30min;真空炉内氧浓度<0.01Pa,250℃烘烤3h以上除氢;
②TiN/TiO2纳米复合膜双面沉积:采用四(二甲胺基)钛作为钛源,氨气和一氧化碳按1:7混合为氮源;氮气作为载气;样品台沉积温度250℃,工艺压力0.1Torr,氮气载气流量50sccm,氮气等离子体流量50sccm,射频功率250W;循环TiN沉积步骤多次至厚度为20nm,通入氧气20sccm为20min氧化温度为250℃,完成单面沉积;将屏障膜翻面,进行背面的TiN/TiO2纳米复合膜沉积。
2.一种牙科用阶梯降解镁合金屏障膜,其特征在于,采用权利要求1所述的制备方法制备得到。
CN202210440458.3A 2022-04-25 2022-04-25 一种牙科用阶梯降解镁合金屏障膜及其制备方法 Active CN114807839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210440458.3A CN114807839B (zh) 2022-04-25 2022-04-25 一种牙科用阶梯降解镁合金屏障膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210440458.3A CN114807839B (zh) 2022-04-25 2022-04-25 一种牙科用阶梯降解镁合金屏障膜及其制备方法

Publications (2)

Publication Number Publication Date
CN114807839A CN114807839A (zh) 2022-07-29
CN114807839B true CN114807839B (zh) 2023-03-14

Family

ID=82506895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210440458.3A Active CN114807839B (zh) 2022-04-25 2022-04-25 一种牙科用阶梯降解镁合金屏障膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114807839B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160534A1 (zh) * 2010-06-22 2011-12-29 上海交通大学 体内可降解的镁合金血管支架材料及其制造方法
CN103276361A (zh) * 2013-05-09 2013-09-04 中南大学 一种在镁基复合材料表面制备Ti/TiO2或TiN生物相容性膜层的方法
JP2014162972A (ja) * 2013-02-27 2014-09-08 Kurashiki Boring Kiko Co Ltd マグネシウム基材の表面処理方法
CN104195517A (zh) * 2014-08-29 2014-12-10 南京工程学院 一种降低生物医用镁合金表面涂层残余应力的方法
CN104213091A (zh) * 2014-08-29 2014-12-17 南京工程学院 改善生物医用镁合金表面磁控溅射TiN涂层结合性能的方法
CN107723680A (zh) * 2017-08-28 2018-02-23 南昌大学 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法
CN108823552A (zh) * 2018-06-19 2018-11-16 南昌大学 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法
CN111068106A (zh) * 2019-11-27 2020-04-28 东南大学 一种医用可降解抗菌复合材料及其制备方法和应用
CN112999413A (zh) * 2021-02-22 2021-06-22 广东省人民医院 一种可降解镁基肿瘤骨切缘填充器及其制备方法与应用
CN113384755A (zh) * 2021-05-12 2021-09-14 北京大学口腔医学院 一种生物活性可降解镁合金引导骨再生膜及其密集孔的加工方法
CN114225120A (zh) * 2021-11-25 2022-03-25 中国科学院金属研究所 一种可降解纯镁或镁合金口腔生物屏障膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098922A2 (en) * 2007-02-13 2008-08-21 Cinvention Ag Biodegradable porous stent
US20120059455A1 (en) * 2010-09-07 2012-03-08 Boston Scientific Seimed, Inc. Bioerodible Magnesium Alloy Containing Endoprostheses
WO2015031035A1 (en) * 2013-08-28 2015-03-05 Boston Scientific Scimed, Inc. Bioerodible composites for endoprostheses

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160534A1 (zh) * 2010-06-22 2011-12-29 上海交通大学 体内可降解的镁合金血管支架材料及其制造方法
JP2014162972A (ja) * 2013-02-27 2014-09-08 Kurashiki Boring Kiko Co Ltd マグネシウム基材の表面処理方法
CN103276361A (zh) * 2013-05-09 2013-09-04 中南大学 一种在镁基复合材料表面制备Ti/TiO2或TiN生物相容性膜层的方法
CN104195517A (zh) * 2014-08-29 2014-12-10 南京工程学院 一种降低生物医用镁合金表面涂层残余应力的方法
CN104213091A (zh) * 2014-08-29 2014-12-17 南京工程学院 改善生物医用镁合金表面磁控溅射TiN涂层结合性能的方法
CN107723680A (zh) * 2017-08-28 2018-02-23 南昌大学 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法
CN108823552A (zh) * 2018-06-19 2018-11-16 南昌大学 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法
CN111068106A (zh) * 2019-11-27 2020-04-28 东南大学 一种医用可降解抗菌复合材料及其制备方法和应用
CN112999413A (zh) * 2021-02-22 2021-06-22 广东省人民医院 一种可降解镁基肿瘤骨切缘填充器及其制备方法与应用
CN113384755A (zh) * 2021-05-12 2021-09-14 北京大学口腔医学院 一种生物活性可降解镁合金引导骨再生膜及其密集孔的加工方法
CN114225120A (zh) * 2021-11-25 2022-03-25 中国科学院金属研究所 一种可降解纯镁或镁合金口腔生物屏障膜及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Hard wearproof PEO-coatings formed on Mg alloy using TiN nanoparticles;Dmitry V. Mashtalyar等;《Applied Surface Science》;20200215;第503卷;第1-36页 *
Microstructure and corrosion resistance of TiN/TiO2 nano-composite film on AZ31 magnesium alloy;Zihui Xu等;《Surface & Coatings Technology》;20201125;第406卷;第1-21页 *
Zihui Xu等.Microstructure and corrosion resistance of TiN/TiO2 nano-composite film on AZ31 magnesium alloy.《Surface & Coatings Technology》.2020,第406卷第1-21页. *
氮钛双离子注入AZ31镁合金的抗腐蚀和力学性能;刘洪喜等;《材料热处理学报》;20110825;第32卷(第8期);第137-142页 *

Also Published As

Publication number Publication date
CN114807839A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Sumida et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh
JP4719841B2 (ja) 生体適合性の増加した改質表面を有するインプラントとその生産方法
Mangano et al. Prospective clinical evaluation of 201 direct laser metal forming implants: results from a 1-year multicenter study
Mounir et al. Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge
Coelho et al. Biomechanical and bone histomorphologic evaluation of four surfaces on plateau root form implants: an experimental study in dogs
US20150209471A1 (en) Metal Oxide Scaffolds
Jiang et al. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo
JP6289708B2 (ja) 生体インプラント
Kunrath Customized dental implants: Manufacturing processes, topography, osseointegration and future perspectives of 3D fabricated implants
Huang et al. Main applications and recent research progresses of additive manufacturing in dentistry
JP2004528109A (ja) 軟組織付着の改善方法、および移植片作製のための該方法の使用
Shi et al. Customized barrier membrane (titanium alloy, poly ether-ether ketone and Unsintered hydroxyapatite/poly-l-Lactide) for guided bone regeneration
Li et al. Assessment of customized alveolar bone augmentation using titanium scaffolds vs polyetheretherketone (PEEK) scaffolds: a comparative study based on 3D printing technology
Duan et al. Selective laser melted titanium implants play a positive role in early osseointegration in type 2 diabetes mellitus rats
Fadl-allah et al. Surface modification of titanium plate with anodic oxidation and its application in bone growth
Pinheiro et al. In-vivo bone response to titanium screw implants anodized in sodium sulfate
CN114807839B (zh) 一种牙科用阶梯降解镁合金屏障膜及其制备方法
CN111449777A (zh) 一种3d打印牙齿种植体及其制备方法与应用
Byeon et al. Enhancement of bioactivity and osseointegration in Ti-6Al-4V orthodontic mini-screws coated with calcium phosphate on the TiO2 nanotube layer
RU145527U1 (ru) Имплантируемое медицинское изделие
Sousa et al. A clinical report of bone regeneration in maxillofacial surgery using Bonelike® synthetic bone graft
Jassim et al. The effect of implant screw coating with nano-hydroxyapatite and magnesium chloride mixture on osseointegration: Biomechanical and histological study
Marin et al. Histologic and biomechanical evaluation of 2 resorbable-blasting media implant surfaces at early implantation times
Hamad Evaluation of mechanical and histological significance of nano hydroxyapatite and nano zirconium oxide coating on the osseointegration of CP Ti implants
Mishchenko et al. Craniofacial reconstruction using 3D personalized implants with enhanced surface properties: Technological and clinical aspects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant