CN108823552A - 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 - Google Patents
一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 Download PDFInfo
- Publication number
- CN108823552A CN108823552A CN201810627291.5A CN201810627291A CN108823552A CN 108823552 A CN108823552 A CN 108823552A CN 201810627291 A CN201810627291 A CN 201810627291A CN 108823552 A CN108823552 A CN 108823552A
- Authority
- CN
- China
- Prior art keywords
- temperature
- titanium nitride
- titanium
- preparation
- nano titania
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法,包括以下步骤:(1)ALD工作腔准备;(2)氮化钛/二氧化钛纳米复合耐蚀涂层的制备,首先制备氮化钛膜,随后利用自氧化将部分氮化钛转化为二氧化钛,最终得到氮化钛/二氧化钛纳米复合涂层;(3)ALD工作腔还原。本发明利用原子层外延技术制备得到的氮化钛/二氧化钛纳米复合耐蚀涂层,可在任意形状表面(二维或三维)形成化学计量比精确、覆盖性好、薄膜厚度精准的纳米涂层,工艺重复稳定性好。涂层材料对人体无毒、无害,可提高金属耐蚀性,特别是对镁、锌等活泼金属。
Description
技术领域
本发明属于表面改性处理技术,特别涉及金属材料的耐蚀涂层设计、制备。
背景技术
金属材料具有良好的导电性、导热性、强度、韧性、耐磨性等特性,在许多领域中都得到了广泛应用。但金属大多具有活泼的反应特点,在普通大气下或与腐蚀介质发生接触时,会发生化学或是电化学反应,导致腐蚀现象发生,材料发生损伤或破坏,影响材料性能的发挥,严重时还会引发事故,造成资源和能源的极大浪费。因此,需要做好金属材料的防腐工作,更好的发挥出金属材料的性能,确保其使用安全性。近年来,随着表面改性技术的发展,出现许多实用化的提高金属耐蚀性技术和涂层。如化学转化法[T. Ishizaki, R.Kudo, et al. Mater. Lett, 2012, 68 :122–125.]、微弧氧化法[R.C. Zeng, L.Y. Cui,et al. ACS Appl. Mater. Interfaces, 2016, 8: 10014–10028.]、聚合物涂层[F.Zhang, C.L. Zhang, et al. Acta Metall. Sin, 2015, 28: 1373–1381 (Engl.Lett.).]和电化学电镀[X.B. Chen, H.Y. Yang, et al. Corrosion (Houston,TX,U.S.) , 2012, 68: 518–535.]等。然而当前的一些表面改性技术仍有一定局限性,如:化学转化薄膜结合性较差易脱;弧氧化技术可生成陶瓷层保护层但微弧氧化过程中电解液温度上升较快容易造成薄膜多孔;电化学电镀污染环境等。现有表面改性的技术一般只能适应一种或几种耐蚀涂层的制备;且耐蚀层的厚度均匀性、组分控制精确性、致密性差;对于复杂构型的构件难以生成三维性台阶覆盖层。
发明内容
本发明的目的是提出一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法。涂层采用原子层外延技术制备(atomic layer deposition, ALD),利用表面反应的自限性(化学吸附自限制性和顺次反应自限性),在任意形状表面(二维或三维)形成化学计量比精确、覆盖性好、薄膜厚度精准的纳米涂层,工艺重复稳定性好。涂层材料对人体无毒、无害,可用于提高金属耐蚀性,特别是活泼金属如镁、锌的耐蚀性能。
本发明是通过以下技术方案实现。
本发明的所需装置为原子层沉积系统(ALD)设备。
本发明所述的一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法,包含以下步骤:ALD工作腔准备、氮化钛/二氧化钛纳米复合耐蚀涂层的制备、ALD工作腔还原。
具体地说,本发明所述的一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法,包括以下步骤。
(1)ALD工作腔准备:确认供气压力,干燥氩气压力为0.45~0.55MPa,反应气源压力为0.2MPa;设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为400℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、空气流量计、加热器,随后充气至压力为760torr;打开工作腔体,放入金属试样,关闭腔门。
(2)氮化钛/二氧化钛纳米复合耐蚀涂层的制备。
所述氮化钛/二氧化钛纳米复合耐蚀涂层厚度约为20nm,其制备过程为首先通过ALD制备厚度为20nm的氮化钛膜,随后通氧,利用自氧化将部分氮化钛转化为二氧化钛,最终得到氮化钛/二氧化钛纳米复合薄膜。
所述氮化钛/二氧化钛纳米复合耐蚀涂层中氧化钛(TiN)薄膜,其制备过程为:以四(二乙基氨)钛(TDEAT)为钛源、氨气(NH3)和一氧化碳(CO)为1:7的混合气体为氮源;设置加热器为250℃、吹扫温度为75℃/120℃、热阱温度为400℃、泵管温度为100℃;工艺压力为0.1torr; 以TDEAT注气2s、吹扫15s、NH3和CO注气3s、吹扫20s为1个循环,每次薄膜厚度增加0.02nm,循环1000次,得到厚度为20nm的氮化钛膜。
所述通氧利用自氧化将部分氮化钛转化为二氧化钛,最终得到最终得到氮化钛/二氧化钛纳米复合薄膜,其制备过程为:氮化钛膜制备完成后,在ALD工作腔内静置30分钟;随后通入的氧气(O2)流量为20sccm,设置加热器为150~300℃,热阱温度为400℃、泵管温度为100℃;工艺压力为0.1torr;使得部分氮化钛自氧化生成二氧化钛;持续通氧直至氧化过程饱和,此时纳米复合涂层总重量不再增加。
所述氮化钛/二氧化钛纳米复合耐蚀涂层,其中氮化钛为结晶相,而二氧化钛为非晶相;氮化钛的自氧化的温度150~300℃之间,随着温度的升高,氮化钛与二氧化钛的膜厚度比值减小,比值在3~0.333之间不等。
(3)ALD工作腔还原:关闭反应气源,设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为400℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、流量计、加热器,充气至压力为760torr;打开工作腔体,取出合金试样,关闭腔门。
本发明利用原子层外延技术制备(atomic layer deposition, ALD)得到的氮化钛/二氧化钛纳米复合耐蚀涂层,可在任意形状表面(二维或三维)形成化学计量比精确、覆盖性好、薄膜厚度精准的纳米涂层, 工艺重复稳定性好。涂层材料对人体无毒、无害,可提高金属耐蚀性,特别是对镁、锌等活泼金属。
附图说明
图1为实施例1镁合金衬底上氮化钛/二氧化钛纳米复合耐蚀涂层的掠射X射线衍射图,通氧温度为250℃。
图2为实施例1镁合金镀厚度为20nm的氮化钛/氧化钛纳米复合耐蚀涂层的极化曲线,通氧温度为250℃。
图3为实施例2镁合金衬底上氮化钛/二氧化钛纳米复合耐蚀涂层的掠射X射线衍射图,通氧温度为300℃。
图4为实施例2镁合金镀厚度为20nm的氮化钛/氧化钛纳米复合耐蚀涂层的极化曲线,通氧温度为300℃。
图5为实施例3镁合金衬底上氮化钛/二氧化钛纳米复合耐蚀涂层的掠射X射线衍射图,通氧温度为150℃。
图6为实施例1镁合金镀厚度为20nm的氮化钛/氧化钛纳米复合耐蚀涂层的极化曲线,通氧温度为150℃。
具体实施方式
本发明将结合以下实施例作进一步的说明。
实施例1。
以尺寸为50mm×50mm×0.5mm镁合金为衬底,表面镀氮化钛/二氧化钛纳米复合耐蚀涂层。如发明内容所述进行ALD工作腔准备、氮化钛/二氧化钛纳米复合耐蚀涂层的制备、ALD工作腔还原步骤等步骤,其中通氧利用自氧化将部分氮化钛转化为二氧化钛通氧温度为250℃,通氧时间为20min后氧化过程饱和,此时纳米复合涂层总重量不再增加。制备完成后利用X射线反射率测厚度(XRR)和原子力显微镜(AFM)测得耐蚀层厚度为20nm,利用X射线光电子深度分析(XPS-depth)标定其中氮化钛/二氧化钛纳米复合膜中氮化钛和二氧化钛的厚度分别为10nm和10nm,两者其厚度比为1。
在3.5%的NaCl溶液中进行动极化测试(PDP)的自腐蚀电位Ecorr提高(-1.401→-1.206V),自腐蚀电流密度Icorr降低(2.449→0.485u A/cm2),年腐蚀速率Vcorr降低(0.06→0.01mpy),同时相比镀膜前出现了钝化电位(Epassiv=-1.142V)。
实施例2。
以尺寸为50mm×50mm×0.5mm镁合金为衬底,表面镀20nm的氮化钛/二氧化钛纳米复合耐蚀涂层。如发明内容所述进行ALD工作腔准备、氮化钛/二氧化钛纳米复合耐蚀涂层的制备、ALD工作腔还原步骤等步骤,其中通氧利用自氧化将部分氮化钛转化为二氧化钛通氧温度为300℃,通氧时间为10min后氧化过程饱和,此时纳米复合涂层总重量不再增加。制备完成后利用X射线反射率测厚度(XRR)和原子力显微镜(AFM)测得耐蚀层厚度为20nm,利用X射线光电子深度分析(XPS-depth)标定其中氮化钛/二氧化钛纳米复合膜中氮化钛和二氧化钛的厚度分别为5nm和15nm,两者其厚度比为0.333。
在3.5%的NaCl溶液中的自腐蚀电位Ecorr提高(-1.401→-1.325V),自腐蚀电流密度Icorr降低(2.449→1.317u A/cm2),年腐蚀速率Vcorr降低(0.06→0.03mpy),同时相比镀膜前出现了钝化电位(Epassiv=-0.913V)。
实施例3。
以尺寸为50mm×50mm×0.5mm镁合金为衬底,表面镀氮化钛/二氧化钛纳米复合耐蚀涂层。如发明内容所述进行ALD工作腔准备、氮化钛/二氧化钛纳米复合耐蚀涂层的制备、ALD工作腔还原步骤等步骤,其中通氧利用自氧化将部分氮化钛转化为二氧化钛通氧温度为150℃,通氧时间为60min后氧化过程饱和,此时纳米复合涂层总重量不再增加。制备完成后利用X射线反射率测厚度(XRR)和原子力显微镜(AFM)测得耐蚀层厚度为20nm,利用X射线光电子深度分析(XPS-depth)标定其中氮化钛/二氧化钛纳米复合膜中氮化钛和二氧化钛的厚度分别为15nm和5nm,两者其厚度比为3。
在3.5%的NaCl溶液中的自腐蚀电位Ecorr提高(-1.401→-1.329V),自腐蚀电流密度Icorr降低(2.449→0.722u A/cm2),年腐蚀速率Vcorr降低(0.06→0.02mpy)。
表1 极化数据表
Claims (1)
1.一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法,其特征是包括以下步骤:
(1)ALD工作腔准备:确认供气压力,干燥氩气压力为0.45~0.55MPa,反应气源压力为0.2MPa;设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为400℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、空气流量计、加热器,随后充气至压力为760torr;打开工作腔体,放入金属试样,关闭腔门;
(2)氮化钛/二氧化钛纳米复合耐蚀涂层的制备:
首先,以四(二乙基氨)钛为钛源、氨气和一氧化碳为1:7的混合气体为氮源;设置加热器为250℃、吹扫温度为75℃/120℃、热阱温度为400℃、泵管温度为100℃;工艺压力为0.1torr;以四(二乙基氨)钛注气2s、吹扫15s、氨气和一氧化碳注气3s、吹扫20s为1个循环,每次薄膜厚度增加0.02nm,循环1000次,得到厚度为20nm的氮化钛膜;
氮化钛膜制备完成后,在ALD工作腔内静置30分钟;随后通入的氧气流量为20sccm,设置加热器为150~300℃,热阱温度为400℃、泵管温度为100℃;工艺压力为0.1torr;使得部分氮化钛自氧化生成二氧化钛;持续通氧直至氧化过程饱和;
(3)ALD工作腔还原:关闭反应气源,设置加热器温度为100℃、腔体温度为100℃、吹扫温度为100℃、热阱温度为400℃,开启真空泵、流量计、加热器;待温度稳定,关闭真空泵、流量计、加热器,充气至压力为760torr;打开工作腔体,取出合金试样,关闭腔门。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810627291.5A CN108823552A (zh) | 2018-06-19 | 2018-06-19 | 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810627291.5A CN108823552A (zh) | 2018-06-19 | 2018-06-19 | 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108823552A true CN108823552A (zh) | 2018-11-16 |
Family
ID=64142387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810627291.5A Pending CN108823552A (zh) | 2018-06-19 | 2018-06-19 | 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108823552A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114807839A (zh) * | 2022-04-25 | 2022-07-29 | 南昌大学 | 一种牙科用阶梯降解镁合金屏障膜及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1057867A (zh) * | 1990-06-29 | 1992-01-15 | 株式会社新铁工所 | 用于形成氮化钛镀膜以及制造镀有该镀膜容器的方法 |
CN1312218A (zh) * | 2001-03-23 | 2001-09-12 | 中国科学院上海硅酸盐研究所 | 二氧化钛氮化法制备纳米氮化钛粉体 |
KR20120068184A (ko) * | 2010-12-17 | 2012-06-27 | 주식회사 케이씨텍 | 원자층 증착 방법 |
CN107723680A (zh) * | 2017-08-28 | 2018-02-23 | 南昌大学 | 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 |
-
2018
- 2018-06-19 CN CN201810627291.5A patent/CN108823552A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1057867A (zh) * | 1990-06-29 | 1992-01-15 | 株式会社新铁工所 | 用于形成氮化钛镀膜以及制造镀有该镀膜容器的方法 |
CN1312218A (zh) * | 2001-03-23 | 2001-09-12 | 中国科学院上海硅酸盐研究所 | 二氧化钛氮化法制备纳米氮化钛粉体 |
KR20120068184A (ko) * | 2010-12-17 | 2012-06-27 | 주식회사 케이씨텍 | 원자층 증착 방법 |
CN107723680A (zh) * | 2017-08-28 | 2018-02-23 | 南昌大学 | 一种耐蚀性可调控的镁合金表面多级纳米涂层的制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114807839A (zh) * | 2022-04-25 | 2022-07-29 | 南昌大学 | 一种牙科用阶梯降解镁合金屏障膜及其制备方法 |
CN114807839B (zh) * | 2022-04-25 | 2023-03-14 | 南昌大学 | 一种牙科用阶梯降解镁合金屏障膜及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dabala et al. | Cerium-based chemical conversion coating on AZ63 magnesium alloy | |
Halada et al. | Influence of nitrogen on electrochemical passivation of high-nickel stainless steels and thin molybdenum-nickel films | |
Ohno et al. | Measurement of the instantaneous rate of electroless plating by an electrochemical method | |
Rashtchi et al. | Evaluation of Ni‐Mo and Ni‐Mo‐P Electroplated Coatings on Stainless Steel for PEM Fuel Cells Bipolar Plates | |
Mosavi et al. | Investigation of oxidation and electrical behavior of AISI 430 steel coated with Mn–Co–CeO2 composite | |
Högström et al. | On the evaluation of corrosion resistances of amorphous chromium-carbon thin-films | |
Pan et al. | Anti-corrosion performance of the conductive bilayer CrC/CrN coated 304SS bipolar plate in acidic environment | |
Yilbas et al. | A study of the corrosion properties of TiN coated and nitrided Ti-6Al-4V | |
JP3078015B2 (ja) | 物品の金属表面の処理方法およびこの方法に用いる処理溶液 | |
Bîrdeanu et al. | Corrosion protection characteristics of ceramics, porphyrins and hybrid ceramics/porphyrins, deposited as single and sandwich layers, by pulsed laser deposition (PLD) | |
Mao et al. | Multiple transitional metal oxides conversion coating on AA6063 toward corrosion protection and electrical conductivity | |
CN108823552A (zh) | 一种氮化钛/二氧化钛纳米复合耐蚀涂层的制备方法 | |
Quan et al. | High temperature oxidation behavior of a novel Ni− Cr binary alloy coating prepared by cathode plasma electrolytic deposition | |
Wu et al. | Electrochemical and passive film evaluation on the corrosion resistance variation of Fe-based amorphous coating affected by high temperature | |
Drovosekov et al. | Chemically deposited Ni-WB coatings: Composition, structure, and properties | |
CN110527943A (zh) | 用超临界二氧化碳对镁及镁合金防腐蚀处理的装置及方法 | |
Zhang et al. | Effects of hydrogen on passivation and semiconductive properties of passive film on Fe-based amorphous coatings | |
Badrnezhad et al. | Study of the corrosion resistance properties of Ni–P and Ni–P–C nanocomposite coatings in 3.5 wt% NaCl solution | |
Wang et al. | Kinetics of the hydriding-dehydriding reactions of the hydrogen-metal hydride systems | |
Hao et al. | The effects of P and metal elements in electroless nickel-based alloys on the formation of Ti/Zr conversion coating | |
Isaacs et al. | Behavior of dissolved molybdenum during localized corrosion of austenitic stainless steel | |
Molenaar | Autocatalytic Deposition of Gold‐Copper Alloys | |
JP2020084219A (ja) | 雰囲気制御方法及び雰囲気制御装置 | |
Park et al. | Corrosion prevention of chromium nitride coating with an application to bipolar plate materials | |
CN102534468B (zh) | 一种低温渗铝石油管线用钢表面原位陶瓷层的制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181116 |