CN107709336B - 作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物 - Google Patents

作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物 Download PDF

Info

Publication number
CN107709336B
CN107709336B CN201680034454.8A CN201680034454A CN107709336B CN 107709336 B CN107709336 B CN 107709336B CN 201680034454 A CN201680034454 A CN 201680034454A CN 107709336 B CN107709336 B CN 107709336B
Authority
CN
China
Prior art keywords
compound
reaction
formula
group
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680034454.8A
Other languages
English (en)
Other versions
CN107709336A (zh
Inventor
张汉承
刘世峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Innogate Pharma Co Ltd
Original Assignee
Hangzhou Innogate Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Innogate Pharma Co Ltd filed Critical Hangzhou Innogate Pharma Co Ltd
Publication of CN107709336A publication Critical patent/CN107709336A/zh
Application granted granted Critical
Publication of CN107709336B publication Critical patent/CN107709336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种作为Syk抑制剂和/或Syk‑HDAC双重抑制剂的杂环化合物,具体地,本发明提供了一种如下式(I)所示的化合物,其中,各基团的定义如说明书中所述。本发明的化合物具有Syk抑制活性和/或Syk‑HDAC双重抑制活性,可以用于治疗与Syk和/或HDAC活性或表达量相关的疾病。

Description

作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物
技术领域
本发明提供了一类新型杂环化合物,其合成及应用,例如,用作为Syk(Spleentyrosine kinase,脾酪氨酸激酶)抑制剂和/或Syk-HDAC(Histone deacetylase,组蛋白乙酰化酶)双重抑制剂。
背景技术
Syk是一种非受体型蛋白酪氨酸激酶,在各种细胞中均有表达,尤其是在各类造血细胞中广泛表达。在单核细胞、巨噬细胞、肥大细胞、嗜碱性粒细胞、嗜酸性粒细胞、嗜中性粒细胞、未成熟T细胞、CD4效应T细胞、B细胞、自然杀伤细胞、树突细胞、血小板和红细胞均有表达。此外,在成纤维细胞、破骨细胞、内皮细胞和神经细胞中,也能检测到Syk的表达。Syk还存在于各种组织中,如肺、肾、心肌细胞的上皮细胞。1991年Taniguchi等从猪脾的cDNA中分离出分子量为72kDa的蛋白激酶,命名为Syk。Syk含有629个氨基酸残基,由N端的两个串联的Src同源结构域(N-SH2和C-SH2)和一个C端的激酶结构域组成,与蛋白激酶(ZAP-70)拥有部分的共同结构,均为胞质蛋白质激酶。Syk通过SH2区域与依赖酪氨酸的免疫受体活化基序(ITAM)结合而活化。
脾酪氨酸激酶参与很多细胞的信号转导过程,作为一种细胞信号转导因子,特别是免疫信号转导因子,受到广泛的关注。近年来研究表明,Syk对于抑制细胞的分裂和增殖等起关键作用,其过度激活可以促使恶性肿瘤细胞增殖和抑制凋亡,特别是B细胞。Syk也会影响某些细胞因子的分泌,对T细胞和单核细胞细胞因子的生成、破骨细胞的骨骼吸收以及巨噬细胞的吞噬作用等都起关键作用。Syk也会影响免疫细胞的成熟及激活,与过敏性和抗体介导的自身免疫性疾病密切相关。由于Syk位于细胞信号通路的上游,所以以其为靶点的治疗方法相对于抑制单个下游通路的药物来说,更具优势。因此Syk已被作为潜在的多种疾病的治疗靶点,比如慢性炎症性疾病如类风湿性关节炎,过敏性疾病(过敏性鼻炎和哮喘),多发性硬化症,免疫性疾病(类风湿性关节炎),多种肿瘤(乳腺癌、胃癌、直肠癌、胰腺癌、肝癌、B细胞淋巴瘤,慢性淋巴细胞白血病、非霍金斯淋巴瘤等),动脉粥样硬化(冠心病和缺血性脑卒),胃肠功能紊乱,特发性血小板减少性紫癜,Wiskott-Aldrich综合征和系统性红斑狼疮等。
HDAC是一类蛋白酶,对染色体的结构修饰和基因表达调控发挥着重要的作用。HDAC使组蛋白氨基末端的赖氨酸侧链去乙酰化,组蛋白乙酰化与组蛋白去乙酰化过程处于动态平衡,由组蛋白乙酰化转移酶(HAT)和组蛋白去乙酰化酶共同调控。组蛋白的乙酰化,逆转HAT的赖氨酸残基乙酰化作用,恢复赖氨酸残基正电荷,有利于DNA与组蛋白八聚体的解离,核小体结构松弛,从而使各种转录因子和协同转录因子能与DNA结合位点特异性结合,激活基因的转录。由于HDAC在肿瘤细胞中的过度表达,使组蛋白的去乙酰化作用增强,通过恢复组蛋白正电荷增加DNA与组蛋白之间的引力,使松弛的核小体变得十分紧密,不利于特定基因的表达,包括一些肿瘤抑制基因。
HDAC抑制剂可通过提高染色质特定区域组蛋白乙酰化,从而调控细胞凋亡及分化相关蛋白的表达和稳定性,可以诱导肿瘤细胞周期阻滞和凋亡,促进肿瘤细胞自我吞噬,还可以抑制肿瘤新生血管的生成,促进肿瘤细胞的免疫原性,HDAC抑制剂不仅成为用于肿瘤的靶向治疗,而且可以在神经性疾病,炎症,促进自身免疫等方面发挥作用。
临床前期和临床研究试验表明,HDAC抑制剂在和其他抗肿瘤化合物联用时也可以有效的发挥协同作用,抑制肿瘤生长,HDAC负责去除组蛋白上的乙酰基团,对基因的表达,癌蛋白的稳定性,细胞迁移,蛋白质的分解代谢,和细胞周期的调控都有明显的影响。
Hagiwara,K.等于2015在Apoptosis发表的研究证实了,联合用Syk抑制剂R406和HDAC抑制剂伏立诺他对于杀死套细胞淋巴瘤细胞具有协同增强效用。
综上所述,Syk抑制剂或Syk-HDAC双重抑制剂将可用于多种癌症及其它疾病的治疗。
发明内容
本发明的目的是提供一类结构新颖的Syk抑制剂和/或Syk-HDAC双重抑制剂,以及它们的制备方法和应用。
本发明的第一方面,提供了一种如下式(I)所示的化合物,或其药学上可接受的盐,前药,氘代衍生物,水合物,溶剂合物:
Figure GPA0000235643020000041
式(I)中:
R1为任意取代的芳基或任意取代的杂芳基;
R2、R3、R4各自独立地选自下组:氢原子、卤素、或C1-8的烷基;
U选自下组:NR7、O或S;其中R7为氢或C1-4烷基;
A选自下组:式(II),式(III),或式(IV):
Figure GPA0000235643020000042
其中:
Figure GPA0000235643020000043
表示式(II),式(III)或式(IV)与式(I)中的U的连接位点;
“*”表示手性中心;
Ar为芳基或杂芳基;
Y为3-至15-元单环或多环杂环、卤素取代的8-至12-元桥环,其中,所述的杂环含有1-5个各自独立地为N、O、S、S(O)或S(O)2的杂原子;
m为0或1;
X为氢、卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、CN、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6、OC(O)R5、NR6C(O)R5、或S(O)2R5
各个R各自独立地为氢、卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、CN、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6、OC(O)R5、NR6C(O)R5、S(O)2R5、=O、=S或(CH2)p-V-(CH2)qC(O)NH(OH);
附加条件为,当Y为具有1-2个各自独立地选自N、O或S的杂原子的3-至8-元的单环或二环杂环时,R为(CH2)p-V-(CH2)qC(O)NH(OH);或当m为0时,R为(CH2)p-V-(CH2)qC(O)NH(OH);
各个p和q各自独立地为0、1、2、3、4、5、6、7、8、9或10;
V为CHR5、CH=CH、C≡C、O、S、NR13、C(O)、OC(O)、C(O)O、OC(O)O、C(O)NH、NHC(O)、NHC(O)NH、S(O)、S(O)2、S(O)2NH、NHS(O)2、C3-8环烷基、3-至12-元杂环基、芳基或杂芳基,其中R13为R5、C(O)R5或S(O)2R5
各个R5和R6各自独立地为氢、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基、芳基、杂芳基、或-(CH2)qC(O)NH(OH);或R5和R6与其相连的氮原子共同形成任选地额外含有1-3个各自独立地为N、O或S的杂原子的3-至9-元环;
n为0、1或2;
B为含有1-5个各自独立地为N、O或S的杂原子的4-至15-元环(包括与6-元芳环共用的原子);
各个K、M、P和Q各自独立地为N或CR8
其中,各个R8各自独立地为氢、卤素、C1-8烷基、C2-8烯基、C2-8炔基、OR5、SR5、NR5R6、CN、C(O)R5、C(O)OR5,或不存在(当CR8作为U的连接点时);
且当B为4-至7-元环且K、M、P和Q中的每一个各自独立地为CR8时,R为(CH2)p-V-(CH2)qC(O)NH(OH);
J为O、S、CR9R10、NR12或C(O);
其中,每个R9或R10各自独立地为氢或C1-8烷基;
R12为氢、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、C(O)R5、C(O)OR5、C(O)NR5R6、S(O)2R5或(CH2)p-V-(CH2)qC(O)NH(OH);
E为N或CR11,其中R11为氢、C1-4烷基或OR5
G为NR12、O、S、S(O)、S(O)2或CR9R10
各个a、b和c各自独立地为0、1、2或3;
其中,各个上述的烷基、烯基、炔基、环烷基、杂环基、芳基和杂芳基任选地且各自独立地被1-3个各自独立地选自下组的取代基取代:卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基、芳基、杂芳基、CN、NO2、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6或S(O)2R5
除非特别说明,上述的芳基为含有6-12个碳原子的芳基;杂芳基为5-至15-元杂芳基。
在另一优选例中,附加条件为,当Y为具有1-3个各自独立地选自N、O或S的杂原子的3-至7-元的单环或二环杂环,或Y不存在(m为0)时,R为(CH2)p-V-(CH2)qC(O)NH(OH)且n不为0。
在另一优选例中,附加条件为,当B为5-至7-元环且K、M、P和Q中的每一个各自独立地为CR8时,R为(CH2)p-V-(CH2)qC(O)NH(OH)且n不为0。
在另一优选例中,所述的卤素取代的8-至12-元桥环包括:被1-3个卤素取代的且含1、2或3个选自N、O或S的杂原子的桥环。
在另一优选例中,所述的二环杂环不包括:卤素取代的8-12元桥环。
在另一优选例中,U为NR7;和/或
R1为任选取代的二环杂芳基。
在另一优选例中,U为NH;R2、R3、R4各自独立地为氢原子、氟原子或氯原子。
在另一优选例中,所述二环杂芳基的R1为任意取代的吲唑基或吲哚基。
在另一优选例中,所述二环杂芳基为6-吲唑基或6-吲哚基。
在另一优选例中,A为式(II),Y为具有1-4个各自独立地为N、O或S的杂原子的4-至12-元单环或多环杂环;且当Y为具有1-2个各自独立地为N、O或S的杂原子的4-至8-元单环或二环杂环时,R为(CH2)p-V-(CH2)qC(O)NH(OH)且n不为0;
或当m为0时,R为(CH2)p-V-(CH2)qC(O)NH(OH)。
在另一优选例中,A为式(II),m为1;Y为具有1-3个各自独立地为N、O或S的杂原子的5-至10-元单环或多环杂环。
在另一优选例中,A为式(II),Y为卤素取代的8-至12-元桥环。
在另一优选例中,Y为具有1-2个各自独立地为N、O或S的杂原子的4-至8-元单环或二环杂环,m为1,R为(CH2)p-V-(CH2)qC(O)NH(OH),其中V为CHR5、O、S、NR13、或C(O);R5和R13各自独立地为氢或C1-4烷基;p为0、1、2、3、或4;q为1、2、3、4、5、6、7、或8;n为1。
在另一优选例中,A为式(II),m为0,R为(CH2)p-V-(CH2)qC(O)NH(OH),其中V为CHR5、O、S、NR13、或C(O);R5和R13各自独立地为氢或C1-4烷基;p为0、1、2、3、或4;q为1、2、3、4、5、6、7、或8;n为1。
在另一优选例中,Ar为苯基。
在另一优选例中,A为式(III),B为具有1-4个各自独立地为N、O或S的杂原子的5-至12-元环(包括与6-元芳环共用的原子);
且当B为具有1-2个各自独立地为N、O或S的杂原子的5-至7-元环,且当K、M、P和Q各自独立地为CR8时,R为(CH2)p-V-(CH2)qC(O)NH(OH),n为1。
在另一优选例中,A为式(III),B为具有1-3个各自独立地为N、O或S的杂原子的5-至10-元环。
在另一优选例中,K、M、P和Q各自独立地为CR8,各个R8各自独立地为氢、卤素、C1-4烷基、或不存在(当CR8作为U的连接点时)。
在另一优选例中,A为式(III),B为具有1-2个各自独立地为N、O或S的杂原子的5-至7-元环;K、M、P和Q各自独立地为CR8,各个R8各自独立地为氢、卤素、C1-4烷基、或不存在(当CR8作为U的连接点时);R为(CH2)p-V-(CH2)qC(O)NH(OH),其中V为CHR5、O、S、NR13、或C(O);R5和R13各自独立地为氢或C1-4烷基;p为0、1、2、3、或4;q为1、2、3、4、5、6、7、或8;n为1。
在另一优选例中,式(III)为下组之一:
Figure GPA0000235643020000061
其中,d和e各自独立地为0、1、2、3或4;当d和e各自独立地为0、1或2时,R12为(CH2)p-V-(CH2)qC(O)NH(OH);
f为1、2、3或4;当f为1或2时,R12为(CH2)p-V-(CH2)qC(O)NH(OH);
g和h各自独立地为2、3、4或5;
X为氢、卤素、C1-4烷基、CN、OR5
在另一优选例中,式(III)为下组之一:
Figure GPA0000235643020000071
其中,
R12为氢、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、C(O)R5、C(O)OR5、C(O)NR5R6、S(O)2R5或(CH2)p-V-(CH2)qC(O)NH(OH);
g和h各自独立地为2、3、4或5;
X为氢、卤素、C1-4烷基、CN、或OR5
在另一优选例中,A为式(IV),且式(IV)为下组之一:
Figure GPA0000235643020000072
a、b和c各自独立地为1或2;
X为氢、卤素、C1-4烷基、CN,OR5
n为0或1;R为C1-4烷基、卤素、或=O。
在另一优选例中,式(IV)为下组之一:
Figure GPA0000235643020000073
a、b和c各自独立地为1或2;
X为氢、卤素、C1-4烷基、CN或OR5
在另一优选例中,式(IV)为下组之一:
Figure GPA0000235643020000081
其中,n为0或1;
R为=O。
在另一优选例中,式(IV)中J为O或NR12
在另一优选例中,式(IV)为下组之一:
Figure GPA0000235643020000082
在另一优选例中,R12各自独立地为氢、C1-6烷基、C3-6环烷基、C(O)R5、或V-(CH2)qC(O)NH(OH),其中R5为C1-6烷基,q为1-8,V为CH2或C(O)。
在另一优选例中,R1、R2、R3、R4、U、A分别为实施例中所制备的各具体式I化合物所对应的相应基团。
在另一优选例中,选自下组之一:
Figure GPA0000235643020000091
在本发明的第二方面,提供了本发明第一方面所述的式I化合物的用途,它被用于:
(a)制备治疗与Syk激酶和/或HDAC活性或表达量相关的疾病的药物;
(b)制备Syk激酶和/或HDAC靶向抑制剂;和/或
(c)体外非治疗性地抑制Syk激酶和/或HDAC的活性。
在本发明的第三方面,提供了一种药物组合物,所述的药物组合物包括:(i)有效量的本发明第一方面所述的式I化合物,或其药学上可接受的盐;和(ii)药学上可接受的载体。
在本发明的第四方面,提供了一种抑制Syk激酶和/或HDAC活性的方法,包括步骤:对抑制对象施用抑制有效量的本发明第一方面所述的式I化合物或其药学上可接受的盐,或对抑制对象施用抑制有效量的本发明第三方面所述的药物组合物。
在另一优选例中,所述的Syk激酶和HDAC活性抑制是体外非治疗性的抑制。
在另一优选例中,所述的抑制是Syk激酶选择性抑制。
在另一优选例中,所述的抑制是Syk激酶和HDAC双重抑制。
在本发明的第五方面,提供了本发明第一方面所述化合物的制备方法,该方法包括步骤:
Figure GPA0000235643020000101
(1)在惰性溶剂中,用Ia化合物与A-NH2反应,得到Ib化合物;
Figure GPA0000235643020000102
(2)在惰性溶剂中,用Ib化合物与R1B(OH)2化合物反应,得到式I化合物;
上述各式中,各基团的定义如第一方面中所述。
在另一优选例中,所述的制备方法包括步骤:
Figure GPA0000235643020000103
(1a)在惰性溶剂中,用C4化合物与A8化合物反应,得到C5化合物;优选地,所述的反应在碱(如DIPEA,N,N-二异丙基乙胺)存在下进行;
(2a)在惰性溶剂中,用C5化合物与R1B(OH)2化合物反应,得到C6化合物;优选地,所述的反应在钯催化剂(如Pd(dppf)Cl2)存在下进行;
上述各式中,各基团的定义如本发明第一方面中所述。
在本发明的第六方面,提供了一种如下式(V)所示的化合物:
Figure GPA0000235643020000104
其中:
W为NO2、NH2、Cl、Br、I、OTs、或OMs;
X为氢、卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、CN、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6、OC(O)R5、NR6C(O)R5、或S(O)2R5
R12为氢、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、C(O)R5、C(O)OR5、C(O)NR5R6、S(O)2R5、或(CH2)p-V-(CH2)qC(O)NH(OH);
各个R5和R6各自独立地为氢、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基,或杂芳基;或R5和R6与其相连的氮原子共同形成任选地额外含有1-3个各自独立地为N、O或S的杂原子的3-至9-元环;
n为0、1或2;
各个R各自独立地为氢、卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、=O、=S、CN、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6、OC(O)R5、NR6C(O)R5、S(O)2R5、或(CH2)p-V-(CH2)qC(O)NH(OH);
各个p和q各自独立地为0、1、2、3、4、5、6、7、8、9、或10;
V为CHR5、CH=CH、C=C、O、S、NR13、C(O)、OC(O)、C(O)O、OC(O)O、C(O)NH、NHC(O)、NHC(O)NH、S(O)、S(O)2、S(O)2NH、NHS(O)2、C3-8环烷基、3-至12-元杂环基、芳基、或杂芳基,其中R13为R5、C(O)R5、或S(O)2R5
其中,各个上述的烷基、烯基、炔基、环烷基、杂环基、芳基、和杂芳基任选地且各自独立地被1-3个各自独立地选自下组的取代基取代:卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、CN、NO2、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6、或S(O)2R5
“*”表示手性中心。
在另一优选例中,所述化合物为式(V-1)所示的化合物:
Figure GPA0000235643020000111
其中:
W为NO2、NH2、Cl、Br、I、OTs、或OMs;
X为氢、卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、CN、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6、OC(O)R5、NR6C(O)R5、或S(O)2R5
R12为氢、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、C(O)R5、C(O)OR5、C(O)NR5R6、S(O)2R5、或(CH2)p-V-(CH2)qC(O)NH(OH);
各个R5和R6各自独立地为氢、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基,或杂芳基;或R5和R6与其相连的氮原子共同形成任选地额外含有1-3个各自独立地为N、O或S的杂原子的3-至9-元环;
其中,各个上述的烷基、烯基、炔基、环烷基、杂环基、芳基、和杂芳基任选地且各自独立地被1-3个各自独立地选自下组的取代基取代:卤素、C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、CN、NO2、OR5、SR5、NR5R6、C(O)R5、C(O)OR5、C(O)NR5R6、或S(O)2R5
“*”表示手性中心。
在另一优选例中,n为0,且所述方法包括步骤:
Figure GPA0000235643020000121
(i)在碱性条件下,式(Va)化合物与式(Vb)化合物反应,得到式(Vc)化合物;
任选的(ii)在酸性条件下,用式(Vc)化合物反应,从而脱去保护基;
(iii)用式(Vc)化合物反应,得到式(V)化合物;其中,W为NO2
和任选的(iv)对式(V)化合物进行还原,得到式(V)化合物;其中,W为NH2
在另一优选例中,所述的步骤(iii)中,所述的反应选自下组:烷基化反应、酰化反应,或芳基化反应。
在另一优选例中,R为=O,n为1,并且所述方法包括步骤:
Figure GPA0000235643020000122
(i)式(Vd)化合物与式(Ve)化合物通过Mitsunobu反应得到式(Vf)化合物;
(ii)在碱性条件下,惰性溶剂中用式(Vt)化合物进行分子内关环反应,得到式(V)化合
物,其中,W为NO2
(iii)对式(V)化合物进行还原,得到式(V)化合物;其中,W为NH2
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
具体实施方式
本发明人经过长期而深入的研究,意外地发现了一类具有Syk(脾酪氨酸激酶)抑制活性或Syk-HDAC双重抑制活性的杂环化合物,因此可以用于制备治疗与Syk和/或HDAC活性或表达量相关的疾病的药物组合物。基于上述发现,发明人完成了本发明。
术语
除特别说明之处,本文中提到的“或”具有与“和/或”相同的意义(指“或”以及“和”)。
除特别说明之处,本发明的所有化合物之中,各手性碳原子(手性中心)可以任选地为R构型或S构型,或R构型和S构型的混合物。
如本文所用,在单独或作为其他取代基一部分时,术语“烷基”指具有1~12个碳原子的直链(即,无支链)或支链饱和烃基,或其组合。当烷基前具有碳原子数限定(如C1-10)时,指所述的烷基含有1-10个碳原子,例如,C1-8烷基可以包括具有1-8个碳原子的直链或支链烷基,例如甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、或类似基团。
如本文所用,在单独或作为其他取代基一部分时,术语“烯基”是指直链或支链,具有至少1个碳碳双键的碳链。具有一个双键的烯基可以被表示为-CnH2n-1,具有2个双键的烯基可以被表示为-CnH2n-3。当烯基前具有碳原子数限定(如C2-8)时,指所述的烯基含有2-8个碳原子,例如,具有2-8个碳原子的直链或支链烯基,例如乙烯基、丙烯基、1,2-丁烯基、2,3-丁烯基、丁二烯基、或类似基团。
如本文所用,在单独或作为其他取代基一部分时,术语“炔基”是指具有至少一个碳碳三键的脂肪族碳氢基团。所述的炔基可以是直链或支链的,或其组合。在一些实施例中,所述的炔基具有2-12(例如,2-8,2-6,或2-4)个碳原子。当炔基前具有碳原子数限定(如C2-8炔基)时,指所述的炔基含有2-8个碳原子,例如,术语“C2-8炔基”指具有2~8个碳原子的直链或支链炔基,例如乙炔基、丙炔基、异丙炔基、丁炔基、异丁炔基、仲丁炔基、叔丁炔基、或类似基团。
如本文所用,在单独或作为其他取代基一部分时,术语“环烷基”指具有饱和的或部分饱和的单元,二环或三环(并环、桥环或螺环)环系。所述的环烷基可以具有3-12个(例如,3-10个,或5-10个)碳原子。当某个环烷基前具有碳原子数限定(如C3-10)时,指所述的环烷基含有3-10个碳原子。在一些优选实施例中,术语“C3-8环烷基”指具有3~8个碳原子的饱和或部分饱和的单环或二环烷基,例如环丙基、环丁基、环戊基、环庚基、或类似基团。
如本文所用,术语“烷氧基”或“烷基氧基”指通过氧原子相连的烷基(例如,-O-烷基),其中烷基如上所述。特定的烷氧基的例子例如(但并不限于)甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、仲丁氧基、叔丁氧基、或类似基团。烷氧基可以被1个或多个取代基取代,所述的取代基例如卤素、氨基、氰基,或羟基。烷氧基可以为直链或支链的。当烷氧基前具有碳原子数限定(如C1-8)时,指所述的烷基含有1-8个碳原子。
如本文所用,在单独或作为其他取代基一部分时,术语“卤素”指F、Cl、Br和I。
如本文所用,术语“烷氧基羰基”指直链或支链的烷基-氧羰基片段(烷氧基-C=O)。烷氧基可具有1-8个碳原子。当烷氧基羰基前具有碳原子数限定(如C1-8)时,指所述的烷氧基羰基的烷基部分含有1-8个碳原子,例如,C1-8烷氧基羰基指具有C1-8烷氧基-C=O-结构的基团,例如甲氧基羰基、乙氧基羰基、叔丁氧基羰基,或类似基团。
如本文所用,在单独或作为其他取代基一部分时,术语“芳基”指单环,二环或稠环的芳香族碳氢基团。所述的芳基可以是取代或未取代的。当一个芳基前具有碳原子数限定(如C6-12)时,指所述的芳基含有6-12个碳原子。芳基的例子例如(但并不限于):苯基、联苯基、萘基、或类似基团(其中的每个碳原子均可以被任意取代)。
如本文所用,在单独或作为其他取代基一部分时,术语“杂芳基”指单环,二环或稠环的芳香族基团,所述基团具有特定的成环碳原子数(例如,C4-10即具有4-10个成环碳原子),且包括至少一个相同或不同的选自N、O或S的杂原子。每个环上原子可以被任意取代。所述的杂芳基可以是5-至15-元的,具有1-5个各自独立地选自N、O或S的杂原子的芳香环基。杂芳基的例子例如(但并不限于):吡啶、嘧啶、吡咯、吲唑、吲哚、呋喃、苯并呋喃、噻吩,或类似基团。
如本文所用,在单独或作为其他取代基一部分时,术语“杂环基”指单环或多环的饱和或部分饱和取代基,所述基团具有特定的成环碳原子数(例如,C3-11即具有3-11个成环碳原子),且包括至少一个相同或不同的选自N、O或S的杂原子。所述的杂环基可以是3-至15-元的,具有1-5个各自独立地选自N、O或S的杂原子的杂环基。杂环基可以为单环、二环或三环。杂环基可以通过环上的碳原子或杂原子链接分子的其它部分。杂环基的例子例如(但并不限于):氮杂环基、氧杂环基、硫杂环基、氮氧杂环基、氮硫杂环基、氧硫杂环基等,代表性的杂环基例如(但并不限于):哌啶基、哌嗪基、吗啉基、吡咯烷基、硫代吗啉基、二氧六环基、二氧杂环戊基、吡咯啉基、吡喃基、硫代吡喃基、四氢呋喃基、四氢噻吩基、或类似基团。取代的杂环基还包括杂环上被一个或多个氧基(=O)所取代,比如:丁内酰胺基、戊内酰胺、哌啶酮基、吡喃酮基、或类似基团。
如本文所用,术语“卤素取代的8-至12-元桥环”指被1-3个卤素取代的且含1、2或3个选自N、O或S的杂原子的桥环。代表性的例子包括(但并不限于):卤素取代的3,7-二氮杂-二环[3.3.1]壬烷(3,7-diaza-bicyclo[3.3.1]nonane)。
如本文所用,术语“任意的”或“任选的”(例如,“被任意取代的”)指所述的部分为取代的或未取代的,且该取代仅发生与化学上可实现的位置。例如,H、共价键或-C(=O)-基团不可以被取代基取代。
如本文所用,“氧”或“氧基”指=O。
如本文所用,除非特别说明,术语“药学上可接受的盐”指适合与对象(例如,人)的组织接触,而不会产生不适度的副作用的盐。在一些实施例中,本发明的某一化合物的药学上可接受的盐包括具有酸性基团的本发明的化合物的盐(例如,钾盐,钠盐,镁盐,钙盐)或具有碱性基团的本发明的化合物的盐(例如,硫酸盐,盐酸盐,磷酸盐,硝酸盐,碳酸盐)。
除非另外说明,否则在本发明的术语部分中所提及各基团(卤素除外)包括未取代的或任意取代的,其中包括(但并不限于):烷基、烯基、炔基、环烷基、烷氧基、烷氧基羰基、芳基、杂芳基、杂环基。例如,芳基包括取代或未取代的芳基;杂芳基取代或未取代的杂芳基;杂环基取代或未取代的杂环基。
如本文所用,术语“取代”(在有或无“任意地”修饰时)指特定的基团上的一个或多个氢原子被特定的取代基所取代。特定的取代基为在前文中相应描述的取代基,或各实施例中所出现的取代基。除非特别说明,某个任意取代的基团可以在该基团的任何可取代的位点上具有一个选自特定组的取代基,所述的取代基在各个位置上可以是相同或不同的。环状取代基,例如杂环烷基,可以与另一个环相连,例如环烷基,从而形成螺二环系,例如,两个环具有一个共用碳原子。本领域技术人员应理解,本发明所预期的取代基的组合是那些稳定的或化学上可实现的组合。所述取代基例如(但并不限于):C1-8烷基、C2-8烯基、C2-8炔基、C3-8环烷基、3-至12-元杂环基,芳基、杂芳基、卤素、羟基、羧基(-COOH)、C1-8醛基、C2-10酰基、C2-10酯基、氨基。
为了方便以及符合常规理解,术语“任意取代”或“任选取代”只适用于能够被取代基所取代的位点,而不包括那些化学上不能实现的取代。
化合物的通用合成方法
本发明的式I化合物可以通过以下方法制备得到:
Figure GPA0000235643020000151
(1)在惰性溶剂中,用Ia化合物与A-NH2反应,得到Ib化合物;
Figure GPA0000235643020000152
(2)在惰性溶剂中,用Ib化合物与R1B(OH)2化合物反应,得到式I化合物;
上述各式中,各基团的定义如上文中所述。各步骤的试剂和条件可以选用本领域进行该类制备方法常规的试剂或条件,在本发明的化合物结构公开后,上述选择可以由本领域技术人员根据本领域知识进行。
更具体地,本发明通式I所示化合物可通过如下的方法制得,然而该方法的条件,例如反应物、溶剂、碱、所用化合物的量、反应温度、反应所需时间等不限于下面的解释。本发明化合物还可以任选将在本说明书中描述的或本领域已知的各种合成方法组合起来而方便的制得,这样的组合可由本发明所属领域的技术人员容易地进行。
在本发明的制备方法中,各反应通常在惰性溶剂中,反应温度通常为-20~150℃(优选0~120℃)下进行。各步反应时间通常为0.5~48h,较佳地为2~12h。
反应式A描述了化合物A11的通用合成方法:
反应式A:
Figure GPA0000235643020000153
反应式B描述了化合物B6的通用合成方法:
反应式B
Figure GPA0000235643020000161
反应式C描述了化合物C6的通用合成方法:
反应式C:
Figure GPA0000235643020000162
反应式D描述了化合物D4的通用合成方法:
反应式D:
Figure GPA0000235643020000171
反应式E描述了化合物E9的通用合成方法:
反应式E:
Figure GPA0000235643020000172
反应式F描述了化合物F5的通用合成方法:
反应式F:
Figure GPA0000235643020000181
药物组合物和施用方法
由于本发明化合物具有优异的对Syk激酶的抑制活性和/或对Syk-HDAC双重抑制活性,因此本发明化合物及其各种晶型,药学上可接受的无机或有机盐,水合物或溶剂合物,以及含有本发明化合物为主要活性成分的药物组合物可用于治疗、预防以及缓解由与Syk和HDAC活性或表达量相关的疾病。根据现有技术,本发明化合物可用于治疗以下疾病(但并不限于):淋巴癌、淋巴细胞白血病、皮肤T细胞淋巴瘤、直肠癌、乳腺癌、胃癌、胰腺癌、肝癌、肺癌、头颈癌、肾癌、结肠癌、卵巢癌、前列腺癌、多发性硬化症、免疫性疾病(类风湿性关节炎和肾炎)、过敏性疾病(过敏性鼻炎和哮喘)、动脉粥样硬化(冠心病和缺血性脑卒)、胃肠功能紊乱、特发性血小板减少性紫癜、系统性红斑狼疮、阿尔茨海默病、卒中及冠状动脉疾病、Wiskott-Aldrich综合征、骨髓纤维化、艾滋病等疾病。
本发明的药物组合物包含安全有效量范围内的本发明化合物或其药理上可接受的盐及药理上可以接受的赋形剂或载体。其中“安全有效量”指的是:化合物的量足以明显改善病情,而不至于产生严重的副作用。通常,药物组合物含有1-2000mg本发明化合物/剂,更佳地,含有5-200mg本发明化合物/剂。较佳地,所述的“一剂”为一个胶囊或药片。
“药学上可以接受的载体”指的是:一种或多种相容性固体或液体填料或凝胶物质,它们适合于人使用,而且必须有足够的纯度和足够低的毒性。“相容性”在此指的是组合物中各组份能和本发明的化合物以及它们之间相互掺和,而不明显降低化合物的药效。药学上可以接受的载体部分例子有纤维素及其衍生物(如羧甲基纤维素钠、乙基纤维素钠、纤维素乙酸酯等)、明胶、滑石、固体润滑剂(如硬脂酸、硬脂酸镁)、硫酸钙、植物油(如豆油、芝麻油、花生油、橄榄油等)、多元醇(如丙二醇、甘油、甘露醇、山梨醇等)、乳化剂(如吐温
Figure GPA0000235643020000182
)、润湿剂(如十二烷基硫酸钠)、着色剂、调味剂、稳定剂、抗氧化剂、防腐剂、无热原水等。
本发明化合物或药物组合物的施用方式没有特别限制,代表性的施用方式包括(但并不限于):口服、瘤内、直肠、肠胃外(静脉内、肌肉内或皮下)、和局部给药。
用于口服给药的固体剂型包括胶囊剂、片剂、丸剂、散剂和颗粒剂。在这些固体剂型中,活性化合物与至少一种常规惰性赋形剂(或载体)混合,如柠檬酸钠或磷酸二钙,或与下述成分混合:(a)填料或增容剂,例如,淀粉、乳糖、蔗糖、葡萄糖、甘露醇和硅酸;(b)粘合剂,例如,羟甲基纤维素、藻酸盐、明胶、聚乙烯基吡咯烷酮、蔗糖和阿拉伯胶;(c)保湿剂,例如,甘油;(d)崩解剂,例如,琼脂、碳酸钙、马铃薯淀粉或木薯淀粉、藻酸、某些复合硅酸盐、和碳酸钠;(e)缓溶剂,例如石蜡;(f)吸收加速剂,例如,季胺化合物;(g)润湿剂,例如鲸蜡醇和单硬脂酸甘油酯;(h)吸附剂,例如,高岭土;和(i)润滑剂,例如,滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、十二烷基硫酸钠,或其混合物。胶囊剂、片剂和丸剂中,剂型也可包含缓冲剂。
固体剂型如片剂、糖丸、胶囊剂、丸剂和颗粒剂可采用包衣和壳材制备,如肠衣和其它本领域公知的材料。它们可包含不透明剂,并且,这种组合物中活性化合物或化合物的释放可以延迟的方式在消化道内的某一部分中释放。可采用的包埋组分的实例是聚合物质和蜡类物质。必要时,活性化合物也可与上述赋形剂中的一种或多种形成微胶囊形式。
用于口服给药的液体剂型包括药学上可接受的乳液、溶液、悬浮液、糖浆或酊剂。除了活性化合物外,液体剂型可包含本领域中常规采用的惰性稀释剂,如水或其它溶剂,增溶剂和乳化剂,例知,乙醇、异丙醇、碳酸乙酯、乙酸乙酯、丙二醇、1,3-丁二醇、二甲基甲酰胺以及油,特别是棉籽油、花生油、玉米胚油、橄榄油、蓖麻油和芝麻油或这些物质的混合物等。
除了这些惰性稀释剂外,组合物也可包含助剂,如润湿剂、乳化剂和悬浮剂、甜味剂、矫味剂和香料。
除了活性化合物外,悬浮液可包含悬浮剂,例如,乙氧基化异十八烷醇、聚氧乙烯山梨醇和脱水山梨醇酯、微晶纤维素、甲醇铝和琼脂或这些物质的混合物等。
用于肠胃外注射的组合物可包含生理上可接受的无菌含水或无水溶液、分散液、悬浮液或乳液,和用于重新溶解成无菌的可注射溶液或分散液的无菌粉末。适宜的含水和非水载体、稀释剂、溶剂或赋形剂包括水、乙醇、多元醇及其适宜的混合物。
用于局部给药的本发明化合物的剂型包括软膏剂、散剂、贴剂、喷射剂和吸入剂。活性成分在无菌条件下与生理上可接受的载体及任何防腐剂、缓冲剂,或必要时可能需要的推进剂一起混合。
本发明化合物可以单独给药,或者与其他药学上可接受的化合物联合给药。
使用药物组合物时,是将安全有效量的本发明化合物适用于需要治疗的哺乳动物(如人),其中施用时剂量为药学上认为的有效给药剂量,对于60kg体重的人而言,日给药剂量通常为1~2000mg,优选5~500mg。当然,具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
本发明的主要优点包括:
1.提供了一种如式I所示的化合物。
2.提供了一种结构新颖的Syk激酶抑制剂和/或Syk-HDAC双重抑制剂及其制备和应用,所述的抑制剂在极低浓度下即可抑制Syk激酶和HDAC的活性。
3.提供了一类治疗与Syk激酶和HDAC活性相关疾病的药物组合物。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
实施例1:化合物1的制备
Figure GPA0000235643020000201
将化合物1a(20.6毫克,0.10毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(0.2毫升)和化合物1b(27.6毫克,0.10毫摩尔),混合物加热回流4小时。反应液冷却至室温,减压浓缩得到粗品,粗品经制备层析薄板纯化得到黄色固体化合物1c(25毫克,产率62%)。1H NMR(CD3OD,400MHz,)δ7.87(s,1H),7.66(d,J=0.8Hz,,1H),7.44(s,1H),7.29(d,J=2.4Hz,1H),7.15(dd,J=8.8Hz,2.4Hz,1H),6.71(d,J=8.8Hz,1H),4.12-4.02(m,1H),3.94-3.73(m,3H),3.66-3.55(m,1H),3.46(d,J=12Hz,1H),3.20-3.12(m,1H),3.03-2.97(m,1H),2.67-2.58(m,1H);MS 402.1[M+H]+,404.1[M+H]+.
将化合物1c(25毫克,0.06毫摩尔)和化合物1d(15毫克,0.06毫摩尔)溶于2毫升1,4-二氧六环中,再加入0.2毫升1M的碳酸钠溶液和Pd(PPh3)4(3毫克)。反应体系用氩气置换3次,反应混合物在微波反应器中加热到135℃搅拌1小时。反应液减压浓缩得到粗品,粗品经过制备高压液相纯化得到白色固体化合物1(1.5毫克,两步收率6%)。1H NMR(CDCl3,400MHz,)δ8.23(s,1H),8.10(s,1H),8.05(s,1H),7.97(s,1H),7.82(d,J=8.4Hz,1H),7.70-7.55(m,4H),7.36(dd,J=8.8Hz,2.4Hz,1H),6.81(d,J=8.8Hz,1H),4.22-4.17(m,1H),4.10-3.98(m,2H),3.93-3.86(m,1H),3.82-3.75(m,1H),-3.55-3.48(m,1H),3.36-3.31(m,2H),2.92-2.83(m,1H),MS 440.2[M+H]+.
实施例2:化合物2的制备
Figure GPA0000235643020000202
在10毫升DMSO中室温搅拌下依次加入化合物2a(500毫克,3.2毫摩尔),化合物2a-1(1.33克,3.2毫摩尔)和碳酸钾(0.9克,6.5毫摩尔)。反应混合物搅拌加热至80℃,液质联用监测反应完成。反应完成后将体系冷却到室温,减压浓缩,制备层析薄板纯化得到黄色固体化合物2b(240毫克,收率33%)。
在10毫升甲醇中室温搅拌下加入化合物2b(240毫克,1.1毫摩尔)和20毫克钯碳催化剂,该反应混合物在室温常压下加氢反应1小时,TLC监测反应完成。反应混合物经过硅藻土过滤,滤液经减压浓缩得到浅白色固体化合物2c(180毫克,收率86%),产品直接用于下一步。
将化合物2c(39.4毫克,0.20毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(0.2毫升)和化合物1b(55.2毫克,0.20毫摩尔),混合物加热回流4小时。反应液冷却至室温,减压浓缩得到粗品,用制备层析薄板分离纯化得到黄色固体化合物2d(65毫克,产率83%)。MS 391.0[M+H]+,393.0[M+H]+
上步所得粗品化合物2d(65毫克)和化合物1d(40.5毫克,0.16毫摩尔)溶于2毫升1,4-二氧六环中,再加入0.2毫升1M的碳酸钠溶液和5毫克Pd(PPh3)4。反应体系用氩气置换3次,反应混合物在微波反应器中升温到135℃搅拌1小时。反应液减压浓缩得到粗品,粗品经过制备高压液相纯化得到棕色固体化合物2(29.4毫克,两步收率41%)。1H NMR(DMSO-d6,400MHz,)δ13.22(s,1H),9.65(s,1H),8.70(s,1H),8.15(s,1H),8.10(s,1H),8.01(d,J=1.2Hz,1H),7.93(d,J=2.4Hz,1H),7.85(d,J=8.4Hz,1H),7.78-7.69(m,2H),7.66(d,J=1.2Hz,1H),7.00(d,J=8.4Hz,1H),4.45-4.38(m,2H),4.30-4.21(m,2H),3.90-3.80(m,4H);MS 429.3[M+H]+.
实施例3:化合物3的制备
Figure GPA0000235643020000211
将化合物3a(24.9毫克,0.10毫摩尔)和化合物1b(27.6毫克,0.10毫摩尔),混合加热至80℃ 4小时。反应液冷却至室温,减压浓缩得到棕色固体化合物3b(30毫克)。MS 345.0[M+H]+
将上步所得粗品化合物3b(30毫克)和化合物1d(20毫克,0.08毫摩尔)溶于2毫升1,4-二氧六环中,再加入0.2毫升1M的碳酸钠溶液和3毫克Pd(PPh3)4。反应体系用氩气置换3次,反应混合物在微波反应器中加热到135℃搅拌1小时。反应液减压浓缩得到粗品,粗品经过高压液相制备纯化得到白色固体化合物3(6.55毫克,两步收率22%)。1H NMR(CD3OD,400MHz,)δ8.36(s,1H)8.19(s,1H),7.96(s,1H),7.78(s,1H),7.71(d,J=3.2Hz,1H),7.68(d,J=3.2Hz,1H),7.50(s,1H),7.28(d,J=8.4Hz,1H),6.39(d,J=8.4Hz,1H),5.15(s,2H),4.51-4.49(m,2H),2.92-2.90(m,2H);MS 383.2[M+H]+.
实施例4:化合物4的制备
Figure GPA0000235643020000221
在40毫升甲醇中搅拌下依次加入化合物4a(10.0克,50.2毫摩尔),化合物4b(6.9克,50.2毫摩尔)和乙酸(2.9毫升,50.9毫摩尔)。然后将以上溶液滴加入搅拌的3.3克多聚甲醛10毫升甲醇溶液,反应混合物加热回流1小时,然后再加入3.3克多聚甲醛,继续回流5小时。反应完成后将体系冷却到室温,加入150毫升乙醚,有机相用1M氢氧化钾水溶液洗两次(80毫升x 2)),水相再用乙醚提取三次(50毫升x 3)。合并有机相用无水硫酸镁干燥,过滤,滤液减压浓缩得到粗产物,粗产物经硅胶柱分离纯化(3∶1 石油醚乙酸乙酯)得到白色固体化合物4c(13.0克,收率72%)。MS 361.4[M+H]+
将化合物4c(5.0克,13.9毫摩尔)溶于50毫升二氯甲烷中,溶液用干冰丙酮溶液冷却至-78℃,搅拌下三十分钟内滴加二乙胺基三氟化硫(DAST,5.6克,34.75毫摩尔),反应混合物在-78℃搅拌半小时,然后升温到零度搅拌6小时,TLC监测反应完成。加入氯化铵水溶液淬灭反应,二氯甲烷提取三次(80毫升x 3)。合并有机相用饱和食盐水(30mL)洗一次,无水硫酸钠干燥后过滤,滤液减压浓缩,硅胶柱分离纯化(10∶1 石油醚∶乙酸乙酯)得到无色液体化合物4d(400毫克,收率8.0%)。MS 383.3[M+H]+.
在5毫升甲醇中室温下加入化合物4d(400毫克,1.1毫摩尔)和10毫克钯碳催化剂,该反应混合物在室温常压下加氢反应24小时,然后加入3毫升37%甲醛水溶液,继续室温常压下加氢反应24小时。反应混合物经过硅藻土过滤,滤液减压浓缩,然后经硅胶柱分离纯化(20∶1 石油醚∶乙酸乙酯)得到无色油状化合物4e(100毫克,收率35%)。MS 277.4[M+H]+
将化合物4e(100毫克,0.4毫摩尔)溶于5毫升冰浴冷却的二氯甲烷中,搅拌下加入0.3毫升二氯亚砜。室温搅拌4小时后,白色固体生成,过滤,滤饼乙醚洗涤,真空干燥得到化合物4f(55毫克,收率78%)。MS 236.1[M+H]+.
将化合物4f(150毫克,0.4毫摩尔)和化合物4g(100毫克,0.7毫摩尔)溶于10毫升乙腈,加入碳酸钾(165毫克,1.2毫摩尔),混合物加热至80℃搅拌,TLC监测反应完成。反应混合物减压浓缩得到粗产物,制备层析薄板分离纯化(2∶1 石油醚∶乙酸乙酯)得到黄色固体化合物4h(120毫克,收率67%)。1H NMR(CDCl3,400MHz,)δ8.15(d,J=9.6Hz,2H),6.70(d,,J=9.6Hz,2H),3.95-3.85(m,2H),3.64-3.55(m,2H),2.90(d,J=11.6Hz,2H),2.57(d,J=11.6Hz,2H),2.44-2.34(m,2H),2.18(s,3H);MS 298.2[M+H]+.
在3毫升甲醇中室温下加入化合物4h(120毫克,0.40毫摩尔)和10毫克钯碳催化剂,该反应混合物在30℃常压下加氢反应4小时,TLC监测反应完成。反应混合物经过硅藻土过滤,滤液经减压浓缩得到棕色固体化合物4i(95毫克,收率89%),产品直接用于下一步。MS 268.2[M+H]+
将化合物4i(26.7毫克,0.10毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(0.2毫升)和化合物1b(27.6毫克,0.10毫摩尔),混合物加热回流4小时,TLC监测反应完成。反应液冷却至室温,减压浓缩得到黄色固体化合物4j(25毫克)。
将上步所得粗品化合物4j(25毫克)和化合物1d(15毫克,0.06毫摩尔)溶于2毫升1,4-二氧六环中,再加入0.2毫升1M的碳酸钠溶液和3毫克Pd(PPh3)4。反应体系用氩气置换3次,反应混合物在微波反应器中加热至135℃搅拌1小时。反应混合物冷却至室温,减压浓缩得到粗品,粗品经过制备高压液相纯化得到棕色固体化合物4(5.5毫克,两步收率18%)。1HNMR(400MHz,CD3OD,400MHz,)δ8.35(s,1H),8.16(s,1H),7.97(d,J=0.8Hz,1H),7.86(d,J=9.2Hz,2H),7.78(d,,J=1.2Hz,1H),7.73(d,J=8.4Hz,1H),7.66(dd,J=8.4Hz,1.2Hz,1H),7.50(d,J=1.2Hz,1H),6.98(d,J=8.8Hz,2H),4.51(s,1H),3.84-3.79(m,2H),3.45-3.20(m,2H),2.94-2.83(m,2H),2.46-2.38(m,5H),1.95-1..87(m,1H),1.55-1.45(m,1H);MS 501.2[M+H]+.
实施例5:化合物5的制备
Figure GPA0000235643020000231
将化合物5a(15毫克,0.07毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(0.2毫升)和化合物1b(20毫克,0.07毫摩尔),混合物加热回流4小时。反应液冷却至室温,减压浓缩得到黄色固体化合物5b(25毫克)。
将上步所得粗品化合物5b(25毫克)和化合物1d(15毫克,0.06毫摩尔)溶于2毫升二氧六环中,再加入0.2毫升1M的碳酸钠溶液和3毫克Pd(PPh3)4。反应体系用氩气置换3次,反应混合物在微波反应器中加热到135℃搅拌1小时。反应液减压浓缩得到粗品,粗品经过制备高压液相纯化得到白色固体化合物5(3.5毫克,两步收率13%)。1H NMR(CDCl3,400MHz)δ8.23(s,1H),8.16(s,1H),8.14(s,1H),7.94(s,1H),7.82(d,J=8.8Hz,1H),7.66-7.57(m,4H),7.38-7.25(m,1H),6.84(d,J=8.8Hz,1H),4.37-4.32(m,1H),4.10-4.05(m,1H),3.73-3.64(m,1H),3.27-3.18(m,1H),3.00-2.93(m,1H),2.89-2.79(m,2H),2.37(s,3H),2.35-2.26(m,1H),1.91-1.82(m,1H);MS 453[M+H]+.
实施例6:化合物5S的制备
Figure GPA0000235643020000241
在30毫升DMSO中室温搅拌下依次加入化合物5Sa(3.0克,18.8毫摩尔),化合物5Sb(3.0克,13.8毫摩尔,100%ee)和氢氧化钾(2.4克,42.8毫摩尔)。反应混合物加热至30℃搅拌3小时,再升温到60℃搅拌5小时。反应完成后将体系冷却到室温,加入300毫升水,有固体析出,室温搅拌过夜。过滤,收集滤饼,将所得固体加入到5∶1 石油醚∶乙酸乙酯的25毫升混合溶剂中,室温搅拌半小时,过滤,得到黄色固体化合物5Sc(3.0克,收率64%)。MS 336.2[M+H]+
将化合物5Sc(2.0克,6.0毫摩尔)溶于20毫升二氯甲烷中,在室温搅拌下加入5毫升三氟乙酸。室温搅拌1小时后,TLC监测反应完成。反应液减压浓缩除去三氟乙酸,再将残留物溶于30毫升二氯甲烷中,用1M碳酸钠水溶液调PH到9~10,分液。水层用二氯甲烷萃取两次,合并有机相,用饱和食盐水(30毫升)洗一次。有机相用无水硫酸钠干燥后过滤,滤液减压浓缩得到黄色固体5Sd(1.2克,收率86%)。MS 236.1[M+H]+.
将化合物5Sd(1.2克,5.1毫摩尔)溶于20毫升甲醇中,加入37%甲醛水溶液(6毫升),再加入2滴醋酸,室温下搅拌30分钟后,加入氰基硼氢化钠(0.8克,12.7毫摩尔),室温下搅拌3小时,TLC监测反应完成。反应液减压浓缩得到粗产物,粗品过硅胶柱纯化(DCM∶MeOH=60∶1)得黄色固体5Se(1.0克,收率79%)。MS 250.2[M+H]+
在3毫升甲醇中室温下加入化合物5Se(145毫克,0.58毫摩尔)和15毫克钯碳催化剂,该反应混合物在室温常压下加氢反应1小时,TLC监测反应完成。反应混合物经过硅藻土过滤,滤液经减压浓缩得到棕色固体化合物5Sf(100毫克,收率79%),产品直接用于下一步。MS 220.2[M+H]+
将化合物5Sf(60毫克,0.27毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(70毫克,0.54毫摩尔)和化合物1b(74毫克,0.27毫摩尔),混合物加热回流3小时。反应液冷却至室温,减压浓缩得到150毫克黑色粗品5Sg,直接用于下一步。MS 415.2[M+H]+
将上步所得粗品化合物5Sg(150毫克)和化合物1d(85毫克,0.35毫摩尔)溶于3毫升二氧六环中,再加入1.5毫升1M的碳酸钠溶液和Pd(dppf)Cl2(30毫克,0.04毫摩尔)。反应体系用氩气置换3次,然后升温到100℃搅拌3小时。反应液减压浓缩得到粗品,粗品经过硅胶柱纯化(先从DCM∶MeOH=100∶1到DCM∶MeOH=30∶1除去大部分杂质,再用DCM∶MeOH∶氨水=120∶6∶1过出产品)得黄色固体(70mg,纯度75%)。所得固体再用制备层析薄板纯化(展开剂DCM∶MeOH∶氨水=120∶6∶1)得黄色固体化合物5S(35毫克,98.3%ee,两步收率29%)。1HNMR(DMSO-d6,400Hz):δ13.23(s,1H),9.47(s,1H),8.64(s,1H),8.14(s,1H),8.10(s,1H),7.98(d,J=1.2Hz,1H),7.84(d,J=8.8Hz,1H),7.73-7.67(m,2H),7.63(d,J=1.2Hz,1H),7.58(d,J=2.4Hz,1H),6.89(d,J=8.8Hz,1H),4.25(dd,J=10.8Hz,2.4Hz,1H),3.94(dd,J=10.4Hz,9.2Hz,1H),3.70(d,J=11.2Hz,1H),3.06-2.98(m,1H),2.93-2.78(m,2H),2.68-2.59(m,1H),2.24(s,3H),2.16-2.05(m,1H),1.71(t,J=10.8Hz,1H);MS 453.3[M+H]+.
实施例7:化合物5R的制备
Figure GPA0000235643020000251
在30毫升DMSO中室温搅拌下依次加入化合物5Ra(2.7克,17毫摩尔),化合物5Rb(2.7克,12.5毫摩尔,88.6%ee)和氢氧化钾(2.1克,37.5毫摩尔)。反应混合物加热至30℃搅拌3小时,再升温到60℃搅拌5小时。反应完成后将体系冷却到室温,加入300毫升水,有固体析出,室温搅拌过夜。过滤,收集滤饼,将所得固体加入到5∶1 石油醚∶乙酸乙酯的25mL混合溶剂中,室温搅拌半小时,过滤,得到黄色固体化合物5Rc(2.2克,收率54%)。MS 336.3[M+H]+
将化合物5Rc(1.0克,3.0毫摩尔)溶于10毫升二氯甲烷中,在室温搅拌下加入5mL三氟乙酸。室温搅拌1小时后,TLC监测反应完成。反应液减压浓缩除去三氟乙酸,再将残留物溶于30毫升二氯甲烷中,用1M碳酸钠水溶液调PH到9~10,分液。水层用二氯甲烷萃取两次,合并有机相,用饱和食盐水(20毫升)洗两次。有机相用无水硫酸钠干燥后过滤,滤液减压浓缩得到黄色固体5Rd(0.6克,收率86%)。MS 236.1[M+H]+.
将化合物5Rd(0.6克,2.5毫摩尔)溶于10mL甲醇中,加入三毫升37%甲醛水溶液,再加入2滴醋酸,室温下搅拌30分钟后,加入氰基硼氢化钠(0.4克,6.3毫摩尔),室温下搅拌3小时,点板监测反应完成。反应液减压浓缩得到粗产物,粗品过硅胶柱纯化(DCM∶MeOH=60∶1)得黄色固体5Re(0.45克,收率71%)。MS 250.2[M+H]+
在10毫升甲醇中室温下加入化合物5Re(450毫克,1.81毫摩尔)和50毫克钯碳催化剂,该反应混合物在室温常压下加氢反应1小时,TLC监测反应完成。反应混合物经过硅藻土过滤,滤液经减压浓缩得到棕色固体化合物5Rf(350毫克,收率86%),产品直接用于下一步。MS 220.2[M+H]+
将化合物5Rf(100毫克,0.40毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(100毫克,0.80毫摩尔)和化合物1b(110毫克,0.40毫摩尔),混合物加热回流3小时。反应液冷却至室温,减压浓缩得到230毫克黑色粗品5Sg,直接用于下一步。MS 415.1[M+H]+,417.1[M+H]+
将上步所得粗品化合物5Rg(230毫克粗品,)和化合物1d(120毫克,0.50毫摩尔)溶于3毫升二氧六环中,再加入1.5毫升1M的碳酸钠溶液和Pd(dppf)Cl2(40毫克,0.05毫摩尔)。反应体系用氩气置换3次,然后升温到100℃,搅拌3小时。反应液减压浓缩得到粗品,粗品经过硅胶柱纯化(先从DCM∶MeOH=100∶1到DCM∶MeOH=30∶1除去大部分杂质,再用DCM∶MeOH∶氨水=120∶6∶1过出产品)得黄色固体(70mg,纯度75%)。所得固体再用制备层析薄板纯化(展开剂DCM∶MeOH∶氨水=120∶6∶1)得黄色固体化合物5R(40毫克,91.1%ee,两步收率20%)。1H NMR(DMSO-d6,400MHz):δ13.23(s,1H),9.48(s,1H),8.65(s,1H),8.14(s,1H),8.10(s,1H),7.98(s,1H),7.84(d,J=8.8Hz,1H),7.73-7.67(m,2H),7.63(s,1H),7.58(d,J=2.4Hz,1H),6.89(d,J=8.8Hz,1H),4.25(dd,J=10.8Hz,2.4Hz,1H),3.94(dd,J=10.4Hz,9.6Hz,1H),3.70(d,J=11.2Hz,1H),3.06-2.98(m,1H),2.93-2.78(m,2H),2.68-2.59(m,1H),2.24(s,3H),2.16-2.05(m,1H),1.69(t,J=10.8Hz,1H);MS 453.2[M+H]+.
实施例8:化合物6的制备
Figure GPA0000235643020000261
在2毫升1,4-二氧六环中氮气保护下搅拌加入6-溴吲哚(50毫克,0.255毫摩尔),联硼酸频那醇酯(77毫克,0.306毫摩尔),Pd(dppf)2Cl2(21毫克,0.026毫摩尔)和醋酸钾(75毫克,0.765毫摩尔),该反应混合物氮气保护下在封管中加热至75℃搅拌过夜,冷却至室温,加入10毫升乙酸乙酯和10毫升水。分离的有机相用10毫升饱和氯化钠洗涤两次,无水硫酸钠干燥,过滤,滤液减压浓缩得到黑色粗产物6b(55毫克,产率88%),粗产物不用分离纯化直接用于下一步反应。
在5毫升异丙醇中室温搅拌下加入化合物6c(20毫克,0.103毫摩尔),化合物1b(28毫克,0.103毫摩尔)和DIPEA(120毫克,0.96毫摩尔),该反应液加热回流3小时,冷却至室温,然后减压浓缩得到棕色油状粗产物6d(44毫克),粗产物不用分离纯化直接用于下一步反应。MS 390.8[M+H]+
上一步得到的粗产物6d(44毫克,0.113毫摩尔)和化合物6b(55毫克,0.225毫摩尔)溶于1.5毫升1,4-二氧六环,在常温氮气保护下将Pd(dppf)Cl2(9毫克,0.011毫摩尔)和1M碳酸钠水溶液(0.4毫升)加入反应液。该反应液在微波反应器中加热至100℃后搅拌1小时,冷却至室温,反应液经过硅藻土过滤,滤液减压浓缩得到粗产物,粗产物经硅胶柱(1∶1石油醚∶乙酸乙酯)分离纯化得到棕色固体化合物6(14毫克,收率为32%)。1H NMR(DMSO-d6,400MHz):δ11.26(s,1H),9.59(s,1H),8.56(s,1H),8.03(s,1H),7.99(d,J=1.2Hz,1H),7.95(d,J=2.4Hz,1H),7.78(dd,J=8.8Hz,2.8Hz,1H),7.63(s,3H),7.41(t,J=2.4Hz,1H),7.01(d,J=8.8Hz,1H),6.46(s,1H),4.41-4.38(m,2H),4.25-4.22(m,2H),3.87-3.82(m,4H);MS 428.0[M+H]+.
实施例9:化合物7的制备
Figure GPA0000235643020000271
在2毫升N,N-二甲基甲酰胺中加入化合物7b(2.95克,13.22毫摩尔),4-硝基苯酚(1.67克,12.01毫摩尔)和碳酸钾(2.0克,14.42毫摩尔),该反应混合物加热至90℃搅拌16小时,冷却至室温,加入100毫升乙酸乙酯和30毫升水。分离的有机相用30毫升饱和氯化钠洗涤两次,无水硫酸钠干燥,过滤,滤液减压浓缩得到淡黄色粗产物7c(3.18克,产率94%),粗产物不用分离纯化直接用于下一步反应。MS 282.2[M+H]+
在3毫升甲醇中室温下加入化合物7c(200毫克,0.712毫摩尔)和15毫克钯碳催化剂,该反应混合物在室温常压下加氢反应1小时,TLC监测反应完成。反应混合物经过硅藻土过滤,滤液经减压浓缩得到白色固体化合物7d(186毫克,收率99%),产品直接用于下一步。MS 252.0[M+H]+.
化合物7d(120毫克,0.48毫摩尔)和化合物1b(130毫克,0.48毫摩尔)溶于异丙醇(5毫升)。DIPEA(120毫克,0.96毫摩尔)在常温下加入反应液。该反应液加热至100℃搅拌4小时后,冷却至室温,然后减压浓缩得到棕色油状粗产物7e(210毫克),粗产物不用分离纯化直接用于下一步反应。MS 446.8[M+H]+
上一步得到的粗产物7e(80毫克,0.179毫摩尔)和化合物1d(57毫克,0.233毫摩尔)溶于1,4-二氧六环(1毫升)。在常温氮气保护下将Pd(dppf)Cl2(20毫克,0.027毫摩尔)和1M碳酸钠水溶液(1毫升)加入反应液。该反应液在微波反应器中加热至100℃后搅拌1小时,冷却至室温,然后减压旋转蒸干得到粗产物,粗产物用制备层析薄板(DCM/MeOH=17/1)分离纯化得到棕色固体化合物7f(55毫克,收率为64%)。MS 484.9[M+H]+
在2毫升N,N-二甲基甲酰胺中常温下加入化合物7f(50毫克,0.103毫摩尔),DBU(31毫克,0.207毫摩尔)和羟氨水溶液(0.2mL,50%水溶液),该反应混合物室温搅拌过夜。反应混合物经制备高压液相分离纯化得到白色固体化合物7(4.7毫克,收率9%)。1H NMR(DMSO-d6,400MHz):δ13.20(s,1H),10.36(s,1H),9.61(s,1H),8.69(br,2H),8.19(s,1H),8.09-7.98(m,4H),7.84(d,J=8.4Hz,1H),7.72(dd,J=8.4Hz,1.2Hz,1H),7.65(d,J=0.8Hz,1H),6.97(d,J=8.8Hz,2H),3.98(t,J=6.4Hz,2H),1.97(t,J=7.2Hz,2H),1.76-1.68(m,2H),1.58-1.26(m,6H);MS 486.2[M+H]+.
实施例10:化合物8的制备
Figure GPA0000235643020000281
将化合物8a(40毫克0.13毫摩尔)溶于二氯甲烷(1毫升),然后在室温下加入三氟乙酸(1毫升)。反应液在室温下搅拌3小时后,减压旋转蒸干得到黑色油状物粗产物8b,无需纯化直接用于下一步反应。MS 209.1[M+H]+.
上一步的粗品化合物8b(0.13毫摩尔)和化合物1b(38毫克,0.14毫摩尔)溶于异丙醇(1.5毫升)。DIPEA(50毫克,0.39毫摩尔)在常温下加入反应液。该反应液加热至100℃后搅拌3小时,然后减压浓缩得到粗产物8c,粗产物无需分离纯化直接用于下一步反应。MS404.0[M+H]+
上一步的粗品化合物8c(0.13毫摩尔)和化合物1d(41mg,0.17mmol)溶于1,4-二氧六环(2毫升)。在常温下将Pd(dppf)Cl2(30毫克,0.04毫摩尔)和1M碳酸钠水溶液(1.5毫升)加入反应液。该反应液在微波反应器中加热至100℃后搅拌1.5小时,冷却至室温,然后减压浓缩得到粗产物,粗产物经制备层析薄板分离纯化(DCM/MeOH/氨水=40/1/0.2)得到淡黄色固体产物8(6.98mg,三步收率为12%)。1H NMR(DMSO-d6,400MHz):δ13.23(s,1H),9.38(s,1H),8.62(s,1H),8.14(s,1H),8.10(s,1H),7.97(d,J=0.8Hz,1H),7.84(d,J=8.8Hz,1H),7.71(dd,J=8.4Hz,1.2Hz,1H),7.66-7.62(m,2H),7.55(d,J=2.0Hz,1H),6.74(d,J=8.8Hz,1H),4.43-4.30(m,2H),3.56(t,J=6.0Hz,2H),3.44(t,J=5.2Hz,2H),3.40-3.34(m,2H),3.29(s,3H);MS 442.2.[M+H]+.
实施例11:化合物9S的制备
Figure GPA0000235643020000291
化合物5Sd(180毫克,0.77毫摩尔,用100%ee的5Sb制备而得)在室温下溶于4毫升二氯甲烷中,加入DIPEA(200毫克,1.54毫摩尔),再滴加乙酰氯(90毫克,1.16毫摩尔)。室温搅拌一小时,TLC监控反应完全。反应液用二氯甲烷(50毫升)稀释。有机相用饱和食盐水(10毫升x 2)洗涤,无水硫酸钠干燥,过滤,滤液经减压浓缩得黄色固体化合物9Sa(150毫克),产品直接用于下一步。
化合物9Sa(150毫克,0.54毫摩尔)室温下溶于3毫升甲醇中,加入15毫克钯碳催化剂,在室温常压下加氢反应1小时,TLC监测反应完成。反应混合物经过硅藻土过滤,滤液经减压旋转蒸发得到类白色固体化合物9Sb(100毫克),产品直接用于下一步。MS 248.2[M+H]+.
将化合物9Sb(50毫克,0.20毫摩尔)和化合物1b(56毫克,0.20毫摩尔)溶于异丙醇(5毫升)。DIPEA(78毫克,0.61毫摩尔)在常温下加入反应液。该反应液加热至100℃搅拌3小时后,减压浓缩得到粗产物9Sc,粗产物不用分离纯化直接用于下一步反应。MS 443.1[M+H]+.
上一步得到的粗产物9Sc(0.20毫摩尔)和化合物1d(64毫克,0.263毫摩尔)溶于两毫升1,4-二氧六环。在常温氮气保护下将Pd(dppf)Cl2(20毫克,0.027毫摩尔)和1M碳酸钠水溶液(1毫升)加入反应液。该反应液在微波反应器中加热至100℃后搅拌2小时,冷却至室温,然后减压浓缩得到粗产物,粗产物用制备层析薄板(DCM/MeOH/氨水=20/1/0.2)分离纯化得到类白色固体化合物9S(22毫克,99.4%ee,)。1H NMR(DMSO-d6,400MHz):δ13.23(s,1H),9.50(s,1H),8.65(s,1H),8.13(s,1H),8.10(s,1H),7.99(s,1H),7.85(d,J=8.0Hz,1H),7.75-7.65(m,2H),7.65-7.60(m,2H),7.00-6.89(m,1H),4.53-4.40(m,1H),4.35(dd,J=10.8,2.8Hz,1H),4.00-3.90(m,2H),3.82(d,J=11.6Hz,1H),3.32-3.28(m,0.5H),3.08-2.97(m,0.5H),2.93-2.87(m,1H),2.77-2.60(m,1H),2.53-2.37(m,1H),2.07(s,3H);MS481.2[M+H]+.
实施例12:化合物9R的制备
Figure GPA0000235643020000301
化合物5Rd(600毫克,2.55毫摩尔,用100%ee的5Rb制备而得)在室温下溶于8毫升二氯甲烷中,加入DIPEA(490毫克,3.83毫摩尔),再滴加乙酰氯(240毫克,3.06毫摩尔)。室温搅拌一小时,TLC监控反应完全。反应液用二氯甲烷(50毫升)稀释。有机相用饱和食盐水(15毫升x 2)洗涤,无水硫酸钠干燥,过滤,滤液经减压旋转蒸干得黄色固体化合物9Ra(600毫克),产品直接用于下一步。MS 278.1[M+H]+.
化合物9Ra(600毫克,2.17毫摩尔)室温下溶于8毫升甲醇中,加入60毫克钯碳催化剂,在室温常压下加氢反应1小时,TLC监测反应完成。反应混合物经过硅藻土过滤,滤液经减压旋转蒸干得到类白色固体化合物9Rb(500毫克),产品直接用于下一步。MS 248.2[M+H]+.
将化合物9Rb(80毫克,0.32毫摩尔)和化合物1b(89毫克,0.32毫摩尔)溶于4毫升异丙醇。DIPEA(78毫克,0.61毫摩尔)在常温下加入反应液。该反应液加热至100℃搅拌3小时后,减压浓缩得到粗产物9Rc,粗产物不用分离纯化直接用于下一步反应。MS 443.1[M+H]+.
上一步得到的粗产物9Rc(0.32毫摩尔)和化合物1d(94毫克,0.38毫摩尔)溶于两毫升1,4-二氧六环。在常温氮气保护下将Pd(dppf)Cl2(20毫克,0.027毫摩尔)和1.5毫升1M碳酸钠水溶液加入反应液。该反应液在微波反应器中加热至100℃后搅拌3小时,然后减压浓缩得到粗产物,粗产物用制备层析薄板(DCM/MeOH/氨水=20/1/0.1)分离纯化得到白色固体化合物9R(45毫克,97.7%ee)。
1H NMR(DMSO-d6,400MHz):δ13.23(s,1H),9.50(s,1H),8.65(s,1H),8.13(s,1H),8.10(s,1H),7.99(s,1H),7.84(d,J=8.4Hz,1H),7.75-7.65(m,2H),7.65-7.60(m,2H),7.01-6.89(m,1H),4.53-4.40(m,1H),4.36(dd,J=10.8,2.4Hz,1H),4.00-3.90(m,2H),3.82(d,J=12.0Hz,1H),3.32-3.28(m,0.5H),3.08-2.97(m,0.5H),2.93-2.87(m,1H),2.77-2.60(m,1H),2.53-2.37(m,1H),2.07(s,3H);MS 481.2[M+H]+.
实施例13:化合物1S的制备
Figure GPA0000235643020000311
将(3R)-3-(羟甲基)吗啉-4-羧酸叔丁酯(2.0g,9.21mmol)溶于干燥的1,4-二氧六环(10mL)中,在搅拌的状态下,加入氯化氢的1,4-二氧六环溶液(4M,5mL)。该反应体系在室温下搅拌反应3小时,然后在35℃下减压除去溶剂,加入三氯甲烷超声,然后浓缩得到白色固体化合物粗品1Sb,直接用于下一步反应。将得到的1Sb粗品和化合物5Sa(1.5g,9.43mmol)溶于DMSO(6mL)中,然后加入KOH粉末(2.1g,37.49mmol)。先将混合物在室温下搅拌3小时,再加热到60℃反应过夜。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(15mL x 3),将有机层合并用饱和食盐水洗涤(15mL),然后无水硫酸钠干燥,过滤浓缩后得到的粗品,硅胶柱分离(石油醚/乙酸乙酯=1/1)得到黄色固体化合物1Sc(400mg,两步收率18%)。
将化合物1Sc(140mg,0.59mmol)置于50mL的单口烧瓶中,加入甲醇(5mL)将其溶解,然后向其中加入Pd/C(10%,20mg),用氢气置换瓶中的空气,该反应体系在氢气氛围下常温搅拌1小时。TLC监测显示反应完毕,将反应液过滤,然后将滤液旋干得到棕色固体化合物1Sd(110mg,收率90%)。MS 207.2[M+H]+.
将化合物1Sd(50毫克,0.24毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(63毫克,0.49mmol)和化合物1b(70毫克,0.25毫摩尔),混合物加热回流5小时。反应液冷却至室温,减压浓缩得到粗品,粗品经制备层析薄板(二氯甲烷/甲醇=30/1)得到化合物1Se(70毫克,收率72%)。
将化合物1Se(50mg,0.124mmol),化合物1b(45mg,0.184mmol)和碳酸钠(26mg,0.245mmol)溶于1,4-二氧六环/水(2mL/0.2mL)中,再加入Pd(dppf)2Cl2(3毫克)。反应体系用氩气置换3次,反应混合物在微波反应器中加热到100℃搅拌50分钟。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(5mL x 3),合并的有机层用饱和食盐水洗涤(5mL),然后无水硫酸钠干燥,过滤浓缩后得到的粗品,制备层析薄板(二氯甲烷/甲醇=30/1)纯化得到灰色固体化合物1S(9mg,收率16%,93%ee)。1H NMR(DMSO-d6,400MHz):δ13.22(s,1H),9.48(s,1H),8.64(s,1H),8.13(s,1H),8.09(s,1H),7.99(s,1H),7.84(d,J=8.4Hz,1H),7.74-7.69(m,2H),7.63(d,J=1.2Hz),7.60(d,J=2.4Hz),6.88(d,J=8.8Hz,1H),4.24(dd,J=10.8Hz,2.4Hz,1H),3.99(d,J=10.4Hz,1H),3.94-3.85(m,2H),3.67-3.59(m,2H),3.20(t,J=10.8Hz,1H),3.12-3.03(m,1H),2.73-2.64(m,1H);MS 440.2[M+H]+.
实施例14:化合物1R的制备
Figure GPA0000235643020000321
将(3S)-3-(羟甲基)吗啉-4-羧酸叔丁酯(500mg,2.30mmol)溶于干燥的1,4-二氧六环(5mL)中,在搅拌的状态下,加入氯化氢的1,4-二氧六环溶液(4M,5mL)。该反应体系在室温下搅拌反应3小时,然后在35℃下减压除去溶剂,加入三氯甲烷超声,然后浓缩得到白色固体化合物粗品1Rb,直接用于下一步反应。将得到的1Rb粗品和化合物5Sa(400mg,2.51mmol)溶于DMSO(6mL)中,然后加入KOH粉末(561mg,10.02mmol)。先将混合物在室温下搅拌3小时,再加热到60℃反应过夜。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(10mL x 3),将有机层合并用饱和食盐水洗涤(15mL),然后无水硫酸钠干燥,过滤浓缩后得到的粗品,硅胶柱分离(石油醚/乙酸乙酯=1/1)得到黄色固体化合物1Rc(230mg,两步总收率42%)。
将化合物1Rc(230mg,0.974mmol)置于50mL的单口烧瓶中,加入甲醇(6mL)将其溶解,然后向其中加入Pd/C(10%,30mg),用氢气置换瓶中的空气,该反应体系在氢气氛围下常温搅拌1小时。TLC监测显示反应完毕,将反应液过滤,然后将滤液旋干得到棕色固体化合物1Rd(195mg,产率97%)。1H NMR(DMSO-d6,400MHz):δ6.56(d,J=8.4Hz,1H),6.10(d,J=8.4Hz,1H),6.05(d,J=2.0Hz,1H),4.94(s,2H),4.10(dd,J=10.4Hz,2.4Hz,1H),3.90(d,J=10.4Hz,1H),3.78(t,J=9.6Hz,2H),3.58(td,J=11.2Hz,2.8Hz,1H),3.42(d,J=11.6Hz,1H),3.14(t,J=10.8Hz,1H),2.90-2.83(m,1H),2.42-2.34(m,1H);MS 207.2[M+H]+.
将化合物1Rd(60毫克,0.291毫摩尔)悬浮于2毫升异丙醇中,加入DIPEA(75毫克,0.581mmol)和化合物1b(83毫克,0.30毫摩尔),混合物加热回流5小时。反应液冷却至室温,减压浓缩得到粗品,粗品经制备层析薄板(二氯甲烷/甲醇=30/1)得到化合物1Re(70毫克,收率60%)。
将化合物1Re(50mg,0.124mmol),化合物1b(45mg,0.184mmol)和碳酸钠(26mg,0.245mmol)溶于1,4-二氧六环/水(2mL/0.2mL)中,再加入Pd(dppf)2Cl2(3毫克)。反应体系用氩气置换3次,反应混合物在微波反应器中加热到100℃搅拌50分钟。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(5mL x 3),合并的有机层用饱和食盐水洗涤(5mL),然后无水硫酸钠干燥,过滤浓缩后得到的粗品,制备层析薄板(石油醚/乙酸乙酯=1/1)纯化得到灰色固体化合物1R(16mg,收率29%,>99.0%ee)。1H NMR(DMSO-d6,400MHz):δ13.22(s,1H),9.48(s,1H),8.64(s,1H),8.13(s,1H),8.09(s,1H),7.99(s,1H),7.84(d,J=8.4Hz,1H),7.74-7.69(m,2H),7.63(d,J=1.2Hz),7.60(d,J=2.4Hz),6.88(d,J=8.8Hz,1H),4.24(dd,J=10.8Hz,2.4Hz,1H),3.99(d,J=10.4Hz,1H),3.94-3.85(m,2H),3.67-3.59(m,2H),3.20(t,J=10.4Hz,1H),3.12-3.03(m,1H),2.73-2.64(m,1H);MS 440.2[M+H]+.
实施例15:化合物10S的制备
Figure GPA0000235643020000331
将化合物10Sa(1.3g,5.67mmol)和肌氨酸乙酯盐酸盐(1.7g,11.07mmol)溶于干燥的甲醇(15mL)中,混合物在室温下搅拌2小时,向体系中加入乙酸(664mg,11.06mmol),然后将反应体系置于冰浴中,分批加入氰基硼氢化钠(692mg,11.01mmol),保持温度低于5℃,加完后,反应体系在室温搅拌3小时。将反应液倒入饱和碳酸氢钠溶液中(10mL),乙酸乙酯萃取三遍(15mL x 3),将有机层合并用饱和食盐水洗涤(15mL),然后无水硫酸钠干燥,过滤浓缩后得到的粗品,硅胶柱分离纯化(石油醚/乙酸乙酯=4/1)得到无色油状化合物10Sb(800mg,收率43%)。MS 331.2[M+H]+.
将化合物10Sb(800mg,2.42mmol)溶于甲醇(8mL)中,然后加入0.8mL的6N盐酸溶液,反应体系加热至75℃搅拌16h。反应冷却至室温后,将其倒入碳酸氢钠溶液中(10mL),用乙酸乙酯萃取两遍(10mL x 2)。水层减压浓缩,所得固体分散于二氯甲烷/甲醇/氨水(100/10/1)中,过滤,将滤液旋干得到黄色固体化合物10Sc(320mg,收率92%)。1H NMR(CDCl3,400MHz)δ6.79(s,1H),3.74-3.66(m,2H),3.63-3.55(m,1H),3.14(d,J=16.4Hz,1H),3.03(d,J=16.8Hz,1H),2.72(dd,J=12.0Hz,4.4Hz,1H),2.58(dd,J=12.0Hz,5.2Hz,1H),2.34(s,3H);MS 145.1[M+H]+.
将化合物10Sc(100mg,0.69mmol),化合物10Sd(174mg,1.11mmol)和三苯基膦(365mg,1.39mmol)溶于干燥的二氯甲烷(4mL)中,在室温下向反应体系其中加入偶氮二甲酸二异丙酯(283mg,1.40mmol),然后将该反应体系室温搅拌16h。减压浓缩得到粗品,粗品经制备层析薄板(乙酸乙酯)纯化得到黄色固体化合物10Se(85mg,产率43%)。1H NMR(CDCl3,400MHz)δ7.96-7.83(m,2H),7.23(dd,J=9.2Hz,0.8Hz,1H),6.32(s,1H),4.25-4.16(m,1H),4.14(dd,J=8.8Hz,8.0Hz,1H),4.01-3.92(m,1H),3.20(d,J=16.4Hz,1H),3.05(d,J=16.8Hz,1H),2.77(dd,J=15.8Hz,3.6Hz,1H),2.58(dd,J=16.4Hz,5.2Hz,1H),2.37(s,3H).
将化合物10Se(50mg,0.177mmol)悬浮于干燥的DMF(3mL)中,加入碳酸铯(115mg,0.353mmol),混合物加热至45℃搅拌反应3小时。反应液冷却至室温,将反应液倒入冰水中,用乙酸乙酯萃取三遍(10mL x 3),将有机层合并用饱和食盐水洗涤,然后无水硫酸钠干燥,过滤浓缩后得到的粗品,制备层析薄板分离纯化(二氯甲烷/甲醇=60/1)得到黄色固体化合物10Sf(28mg,收率60%)。1H NMR(CDCl3,400MHz)δ8.45(d,J=9.2Hz,1H),7.82-7.76(m,2H),4.40(dd,J=10.4Hz,2.4Hz,1H),4.11(dd,J=10.4Hz,10.4Hz,1H),4.04-3.96(m,1H),3.52(dd,J=16.8Hz,2.0Hz,1H),3.13-3.02(m,2H),2.40-2.36(m,4H);MS 264.2[M+H]+.
将化合物10Sf(26mg,0.099mmol)置于25mL的单口烧瓶中,用甲醇(3mL)将其溶解,然后向其中加入Pd/C(10%,5mg),用氢气置换瓶中的空气,该反应体系在氢气氛围下常温搅拌40分钟。TLC监测显示反应完毕,将反应液过滤,然后将滤液旋干得到灰色固体化合物10Sg(23mg,收率99%)。1H NMR(CDCl3,400MHz)δ8.00(d,J=8.4Hz,1H),6.27(dd,J=8.8Hz,2.4Hz,1H),6.20(d,J=2.8Hz,1H),4.25(dd,J=10.4Hz,2.4Hz,1H),4.03(dd,J=10.4Hz,10.0Hz,1H),4.00-3.90(m,1H),3.80-3.45(br s,2H),3.44(dd,J=16.4Hz,2.0Hz,1H),3.04-2.95(m,2H),2.36-2.27(m,4H).
将化合物10Sg(22mg,0.094mmol)悬浮于异丙醇(1mL)中,加入碳酸钾(26mg,0.188mmol)和6,8-二溴-咪唑[1,2-A]吡嗪(52mg,0.188mmol),反应混合物在微波反应器中加热到100℃搅拌3小时。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(10mL x 2),将有机层合并用饱和食盐水洗涤,然后无水硫酸钠干燥,过滤浓缩后得到的粗品。制备层析薄板(二氯甲烷/甲醇=25/1)纯化得到灰色固体化合物10Sh(18mg,收率:44%)。MS 429.2[M+H]+,431.2[M+H]+.
将化合物10Sh(18mg,0.042mmol),化合物1d(20mg,0.082mmol)和碳酸钠(9mg,0.085mmol)溶于1,4-二氧六环/水(1.5mL/0.15mL)中,再加入Pd(dppf)2Cl2(3毫克)。反应体系用氩气置换3次,反应混合物在微波反应器中加热到100℃搅拌40分钟。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(5mL x 3),合并的有机层用饱和食盐水洗涤,然后无水硫酸钠干燥,过滤浓缩后得到的粗品。制备层析薄板(二氯甲烷/甲醇=15/1)纯化得到灰色固体化合物10S(8mg,收率41%)。1H NMR(DMSO-d3,400MHz)δ13.26(s,1H),9.73(s,1H),8.72(s,1H),8.20-8.15(m,2H),8.10(s,1H),8.02(d,J=1.2Hz,1H),7.88-7.79(m,3H),7.72(d,J=8.8Hz,1H),7.67(d,J=0.8Hz,1H),4.42(dd,J=10.4Hz,2.4Hz,1H),4.04(dd,J=10.4Hz,10.0Hz,1H),4.01-3.91(m,1H),3.38(d,J=16.4Hz,1H),3.03(dd,J=12.0Hz,4.0Hz,1H),2.96(d,J=16.4Hz,1H),2.35(dd,J=12.0Hz,8.4Hz,1H),2.27(s,3H),MS 467.2[M+H]+.
实施例16:化合物10R的制备
Figure GPA0000235643020000351
将化合物10Ra(780mg,3.40mmol)和肌氨酸乙酯盐酸盐(1.0g,6.51mmol)溶于干燥的甲醇(8mL)中,混合物在室温下搅拌2小时,向体系中加入乙酸(390mg,6.49mmol),然后将反应体系置于冰浴中,分批加入氰基硼氢化钠(410mg,6.52mmol),保持温度低于5℃,加完后,反应体系在室温搅拌3小时。将反应液倒入饱和碳酸氢钠溶液中(10mL),乙酸乙酯萃取三遍(15mL x 3),有机层合并用饱和食盐水洗涤(15mL),然后无水硫酸钠干燥,过滤浓缩后得到的粗品,硅胶柱分离纯化(石油醚/乙酸乙酯=4/1)得到无色油状化合物10Rb(430mg,收率43%)。MS 331.2[M+H]+.
将化合物10Rb(430mg,1.30mmol)溶于甲醇(4mL)中,然后加入0.4mL的6N盐酸溶液,反应体系加热至75℃搅拌16h。反应冷却至室温后,将其倒入碳酸氢钠溶液中(10mL),用乙酸乙酯萃取两遍(10mL x 2)。水层减压浓缩,所得固体分散于二氯甲烷/甲醇/氨水(100/10/1)中,过滤,将滤液旋干得到黄色固体化合物10Rc(160mg,收率85%)。1H NMR(CDCl3,400MHz)δ6.37(s,1H),3.76-3.52(m,3H),3.18(d,J=16.4Hz,1H),3.02(d,J=16.4Hz,1H),2.76-2.55(m,2H),2.34(s,3H).
将化合物10Rc(160mg,1.11mmol),化合物10Rd(283mg,1.80mmol)和三苯基膦(577mg,2.20mmol)溶于干燥的二氯甲烷(4mL)中,在室温下向反应体系其中加入偶氮二甲酸二异丙酯(445mg,2.20mmol),然后将该反应体系室温搅拌16h。减压浓缩得到粗品,粗品经制备层析薄板(乙酸乙酯)纯化得到黄色固体化合物10Re(140mg,产率45%)。1H NMR(CDCl3,400MHz)δ7.96-7.83(m,2H),7.25-7.20(m,1H),6.30(s,1H),4.25-4.10(m,2H),4.01-3.92(m,1H),3.20(d,J=16.4Hz,1H),3.05(d,J=17.2Hz,1H),2.79-2.61(m,2H),2.37(s,3H);MS 284.2[M+H]+.
将化合物10Re(140mg,0.177mmol)悬浮于干燥的DMF(3mL)中,加入碳酸铯(115mg,0.353mmol),混合物加热至45℃搅拌反应3小时。反应液冷却至室温,将反应液倒入冰水中,用乙酸乙酯萃取三遍(10mL x 3),将有机层合并用饱和食盐水洗涤,然后无水硫酸钠干燥,过滤浓缩后得到的粗品,制备层析薄板分离纯化(二氯甲烷/甲醇=30/1)得到黄色固体化合物10Rf(58mg,收率45%)。MS 264.2[M+H]+.
将化合物10Rf(58mg,0.22mmol)置于25mL的单口烧瓶中,用甲醇(5mL)将其溶解,然后向其中加入Pd/C(10%,10mg),用氢气置换瓶中的空气,该反应体系在氢气氛围下常温搅拌40分钟。TLC监测显示反应完毕,将反应液过滤,然后将滤液旋干得到灰色固体化合物10Rg(50mg,收率97%)。
将化合物10Rg(20mg,0.086mmol)悬浮于异丙醇(1mL)中,加入碳酸钾(24mg,0.174mmol)和6,8-二溴-咪唑[1,2-A]吡嗪(50mg,0.181mmol),反应混合物在微波反应器中加热到100℃搅拌4小时。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(10mL x 2),将有机层合并用饱和食盐水洗涤,然后无水硫酸钠干燥,过滤浓缩后得到的粗品。制备层析薄板(二氯甲烷/甲醇=25/1)纯化得到灰色固体化合物10Rh(9mg,收率24%)。MS 429.2,431.2[M+H]+.
将化合物10Rh(9mg,0.021mmol),化合物1d(10mg,0.041mmol)和碳酸钠(5mg,0.047mmol)溶于1,4-二氧六环/水(1.0mL/0.10mL)中,再加入Pd(dppf)2Cl2(3毫克)。反应体系用氩气置换3次,反应混合物在微波反应器中加热到100℃搅拌40分钟。反应液冷却至室温,然后将其倒入水中,用乙酸乙酯萃取三遍(5mL x 3),合并的有机层用饱和食盐水洗涤,然后无水硫酸钠干燥,过滤浓缩后得到的粗品。制备层析薄板(二氯甲烷/甲醇=15/1)纯化得到淡黄色固体化合物10R(6mg,收率61%)。1H NMR(DMSO-d6,400MHz)δ13.26(s,1H),9.74(s,1H),8.72(s,1H),8.20-8.15(m,2H),8.10(s,1H),8.02(d,J=1.2Hz,1H),7.88-7.79(m,3H),7.72(dd,J=8.4Hz,1.2Hz,1H),7.67(d,J=0.8Hz,1H),4.42(dd,J=10.4Hz,2.4Hz,1H),4.04(dd,J=10.4Hz,10.0Hz,1H),4.01-3.91(m,1H),3.38(d,J=16.4Hz,1H),3.03(dd,J=12.0Hz,4.0Hz,1H),2.96(d,J=16.4Hz,1H),2.35(dd,J=12.0Hz,8.0Hz,1H),2.27(s,3H);MS 467.2[M+H]+。
实施例17:
1.Syk激酶活性抑制实验
采用Caliper迁移率变动检测技术(Caliper mobility shift assay)测定SYK蛋白激酶活性。将化合物用DMSO溶解后用激酶缓冲稀释,在384孔板中加入5ul的5倍反应终浓度的化合物(10%DMSO)。加入10μl的2.5倍酶(用SYK)溶液后在室温下孵育10分钟,再加入10μl的2.5倍底物(Peptide FAM-P22和ATP)溶液。28℃下孵育30分钟,后加25μl终止液终止反应。Caliper EZ Reader II(Caliper Life Sciences)上读取转化率数据。把转化率转化成抑制率数据(%抑制率=(max-转化率)/(max-min)*100)。其中max是指DMSO对照的转化率,min是指无酶活对照的转化率。以化合物浓度和抑制率为横纵坐标,绘制曲线,使用XLFit excel add-in version4.3.1软件拟合曲线并计算IC50
结果表明,本发明的绝大多数经测试的式I化合物的IC50为10-1000nM,且优选化合物的IC50低于20nM。部分代表性化合物的活性如表1所示。
表1 Syk激酶活性抑制
化合物 Syk(IC<sub>50</sub>,nM)
1 <20
2 <20
4 <50
5 <20
5S <20
5R <10
6 <50
7 <20
8 <100
9S <10
9R <10
2.HDAC-1和HDAC-6活性抑制实验
采用Synergy MX多功能酶标仪测定HDAC活性。将化合物用DMSO溶解,用Echo非接触式纳升级声波移液系统将化合物转移到384孔测试板中。加入15μl的酶(分别用HDAC1/HDAC6)溶液后,在室温下孵育15分钟,再加入10μl底物(trypsin and Ac-peptide)溶液。室温下孵育60分钟后直接在Synergy MX上(荧光激发355nm,发射荧光460nm)读取荧光强度信号。把荧光强度信号转化成抑制率数据(%抑制率=(max-荧光强度)/(max-min)*100)。其中max是指DMSO对照的荧光强度,min是指无酶活对照的荧光强度。以化合物浓度和抑制率为横纵坐标,绘制曲线,使用GraphPad Prism V5.0软件拟合曲线并计算IC50。测得化合物7对HDAC-1和·HDAC-6的抑制活性分别达到IC50<10nM。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (8)

1.一种如下式(I)所示的化合物,或其药学上可接受的盐:
Figure FDA0003061203230000011
式(I)中:
R1为任意取代的吲唑基或吲哚基,其中,所述的任意取代指被1-3个各自独立地选自下组的取代基取代:卤素、C1-8烷基;
R2、R3、R4各自独立地选自下组:氢原子;
U选自下组:NH;
A选自式(III),或式(IV):
Figure FDA0003061203230000012
其中:
式(III)为下组之一:
Figure FDA0003061203230000013
其中,
R12为氢、C1-8烷基、C3-8环烷基、C(O)R5;各个R5各自独立地选自下组:氢、C1-8烷基、C3-8环烷基;
g和h各自独立地为2;
X为氢;
式(IV)为下组之一:
Figure FDA0003061203230000021
Figure FDA0003061203230000022
表示式(III)或式(IV)与式(I)中的U的连接位点;
“*”表示手性中心;
X为氢;
各个R各自独立地为氢、C1-8烷基、=O;
n为0、1或2;
J为O;
其中,各个上述的烷基、环烷基任选地且各自独立地被1-3个各自独立地选自下组的取代基取代:卤素、C1-8烷基。
2.如权利要求1所述的化合物,其特征在于,式(IV)为下组之一:
Figure FDA0003061203230000023
3.如权利要求1所述的化合物,其中R12各自独立地为氢、C1-6烷基、C(O)R5
4.一种选自下组的化合物:
Figure FDA0003061203230000031
5.如权利要求1或4所述的化合物的用途,其特征在于,用于:
(a)制备治疗与Syk激酶和/或HDAC活性或表达量相关的疾病的药物;
(b)制备Syk激酶和/或HDAC靶向抑制剂;和/或
(c)体外非诊断和非治疗性地抑制Syk激酶和/或HDAC的活性。
6.一种药物组合物,其特征在于,所述的药物组合物包括:(i)有效量的如权利要求1或4所述的化合物,或其药学上可接受的盐;和(ii)药学上可接受的载体。
7.一种非诊断和非治疗性地抑制Syk激酶和/或HDAC活性的方法,其特征在于,包括步骤:对抑制对象施用抑制有效量的如权利要求1或4所述的化合物或其药学上可接受的盐,或对抑制对象施用抑制有效量的如权利要求6所述的药物组合物。
8.一种如权利要求1或4所述化合物的制备方法,该方法包括步骤:
Figure FDA0003061203230000041
(1)在惰性溶剂中,用Ia化合物与A-NH2反应,得到Ib化合物;
Figure FDA0003061203230000042
(2)在惰性溶剂中,用Ib化合物与R1B(OH)2化合物反应,得到式I化合物;
上述各式中,各基团的定义如权利要求1或4中所述。
CN201680034454.8A 2015-06-12 2016-06-12 作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物 Active CN107709336B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2015103240957 2015-06-12
CN201510324095 2015-06-12
PCT/CN2016/085505 WO2016197987A1 (zh) 2015-06-12 2016-06-12 作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物

Publications (2)

Publication Number Publication Date
CN107709336A CN107709336A (zh) 2018-02-16
CN107709336B true CN107709336B (zh) 2021-06-22

Family

ID=57504429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680034454.8A Active CN107709336B (zh) 2015-06-12 2016-06-12 作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物

Country Status (2)

Country Link
CN (1) CN107709336B (zh)
WO (1) WO2016197987A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734454B (zh) * 2016-12-12 2021-08-17 石药集团中奇制药技术(石家庄)有限公司 一类含有三环杂芳基的化合物
WO2018108083A1 (zh) * 2016-12-12 2018-06-21 杭州英创医药科技有限公司 作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物
CA3065114A1 (en) * 2017-06-14 2018-12-20 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Syk inhibitor and use method therefor
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US10899735B2 (en) 2018-04-19 2021-01-26 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
JP7105359B2 (ja) 2018-07-13 2022-07-22 ギリアード サイエンシーズ, インコーポレイテッド Pd-1/pd-l1阻害剤
US11236085B2 (en) 2018-10-24 2022-02-01 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
WO2021213317A1 (zh) * 2020-04-20 2021-10-28 微境生物医药科技(上海)有限公司 Hpk1抑制剂及其制备方法和用途
CN113583026B (zh) * 2020-04-30 2024-06-14 杭州英创医药科技有限公司 一类含有稠合三环结构的化合物
CN117736198A (zh) * 2022-09-21 2024-03-22 科辉智药生物科技(深圳)有限公司 大环含氮冠醚化合物及其作为蛋白激酶抑制剂的应用
CN117865993A (zh) * 2023-01-10 2024-04-12 杭州师范大学 一种aak1抑制剂及其制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307474A (zh) * 2008-12-08 2012-01-04 吉利德康涅狄格股份有限公司 咪唑并吡嗪syk抑制剂
US20130338142A1 (en) * 2012-06-14 2013-12-19 Gilead Connecticut, Inc. Imidazopyrazine syk inhibitors
CN104059073A (zh) * 2008-12-08 2014-09-24 吉利德康涅狄格股份有限公司 咪唑并哌嗪syk抑制剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307474A (zh) * 2008-12-08 2012-01-04 吉利德康涅狄格股份有限公司 咪唑并吡嗪syk抑制剂
CN104059073A (zh) * 2008-12-08 2014-09-24 吉利德康涅狄格股份有限公司 咪唑并哌嗪syk抑制剂
US20130338142A1 (en) * 2012-06-14 2013-12-19 Gilead Connecticut, Inc. Imidazopyrazine syk inhibitors

Also Published As

Publication number Publication date
CN107709336A (zh) 2018-02-16
WO2016197987A1 (zh) 2016-12-15

Similar Documents

Publication Publication Date Title
CN107709336B (zh) 作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物
CN113651814B (zh) Kras突变蛋白抑制剂
CN113286794B (zh) Kras突变蛋白抑制剂
CN110156786B (zh) 嘧啶并环化合物及其制备方法和应用
AU2017279014B2 (en) Substituted carbonucleoside derivatives useful as anticancer agents
JP2023523640A (ja) ベンゾチアゾリルビアリール系化合物、その調製方法及び使用
CN109843872B (zh) 作为ido抑制剂和/或ido-hdac双重抑制剂的多环化合物
EP3483158B1 (en) Heterocyclic compound serving as fgfr4 inhibitor
CN110746443B (zh) 一类含有三环杂芳基的化合物
CN110099909B (zh) 作为Syk抑制剂和/或Syk-HDAC双重抑制剂的杂环化合物
JP2009536189A (ja) 抗ウイルス剤としての五環インドール誘導体
JP2023511337A (ja) ピリミジン-4(3h)-オンヘテロ環式化合物、その調製方法、およびその医薬的使用
JP6746613B2 (ja) ウレア誘導体、またはその薬理学的に許容される塩
WO2015077193A1 (en) Inhibitors of lysine methyl transferase
WO2020188467A1 (zh) 作为激酶抑制剂的稠合三环化合物
CN103582638A (zh) 杂芳基并嘧啶类衍生物、其制备方法和用途
CN112300153A (zh) 一种杂环化合物、药物组合物和用途
EP4043457A1 (en) Aromatic heterocyclic compound having tricyclic structure, and preparation method therefor and application thereof
CN114981273A (zh) 杂环酰胺类化合物、其可药用的盐及其制备方法和用途
JP7338896B2 (ja) Mdm2阻害剤、その調製方法、医薬組成物および応用
JPWO2012099129A1 (ja) 抗癌活性化合物
US11453688B2 (en) Phosphorus imidazoquinoline amine derivatives, pharmaceutical compositions and therapeutic methods thereof
JP2023526548A (ja) 新規三環芳香族複素環化合物、ならびにその調製方法、医薬組成物および適用
CN115916771A (zh) 多靶点的抗肿瘤化合物及其制备方法和应用
WO2023220247A1 (en) Lrrk2 inhibitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant