CN107703955B - 一种基于额定力矩不同的混合动量轮系力矩分配计算方法 - Google Patents

一种基于额定力矩不同的混合动量轮系力矩分配计算方法 Download PDF

Info

Publication number
CN107703955B
CN107703955B CN201710879527.XA CN201710879527A CN107703955B CN 107703955 B CN107703955 B CN 107703955B CN 201710879527 A CN201710879527 A CN 201710879527A CN 107703955 B CN107703955 B CN 107703955B
Authority
CN
China
Prior art keywords
momentum
moment
wheels
wheel
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710879527.XA
Other languages
English (en)
Other versions
CN107703955A (zh
Inventor
乔国栋
刘新彦
宗立森
黎康
史晓霞
彭洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201710879527.XA priority Critical patent/CN107703955B/zh
Publication of CN107703955A publication Critical patent/CN107703955A/zh
Application granted granted Critical
Publication of CN107703955B publication Critical patent/CN107703955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/0825Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/285Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using momentum wheels

Abstract

本发明涉及一种基于额定力矩不同的混合动量轮系力矩分配计算方法。针对航天器多类动量轮混合工作的实际情况,考虑到整星高寿命、高精度、频繁姿态机动以及高稳定度的任务需求,该方法在保证每次姿态机动中体轴需要的控制力矩的前提下,不仅能够保证不同种类的大、小轮子输出力矩不超过各自的饱和值,而且可以调整各个轮子的输出力矩平衡,即不会出现小轮子过能力使用,而大轮子欠能力使用的现象。这能够充分发挥大、小动量轮的执行能力,提高轮子的使用寿命。

Description

一种基于额定力矩不同的混合动量轮系力矩分配计算方法
技术领域
本发明属于航天器姿态控制领域,涉及一种的混合动量轮系力矩分配计算方法。
背景技术
提高航天器姿态机动控制的能力,需要多类动量轮共同参与姿控。当多于3个动量轮参与姿态控制时,根据三轴姿控力矩分配每个动量轮的控制力矩的分配方式并不是唯一的。中国宇航出版社出版的《卫星姿态动力学与控制(2)》一书中,对于已知动量轮的安装矩阵A,基于伪逆矩阵的形式,给出了分配矩阵D的计算公式:D=AT(AAT)-1。该种方法适用于姿态机动能力要求不高,对工作动量轮控制力矩均衡性要求不高的情况。当要求航天器进行快速姿态机动时,希望充分发挥各类动量轮的执行能力,混合轮控方式下采用上述伪逆方法不能保证分配给各类动量轮的控制力矩均衡,从而影响了姿态机动的快速性和精度。
发明内容
本发明的技术解决问题是:克服现有技术的不足之处,提供一种基于额定力矩不同的混合动量轮系力矩分配计算方法,使得动量轮控制力矩分配均衡、提高姿态机动的速度和精度。
本发明的技术解决方案是:一种基于额定力矩不同的混合动量轮系力矩分配计算方法,包括步骤如下:
(1)控制航天器绕滚动轴或俯仰轴进行姿态机动,根据航天器上各动量轮的安装位置,计算航天器姿态机动时所能获得的最大控制力矩,并记录此时航天器上各动量轮的控制力矩Ti,i=1,2,3,...,n;n为参与姿态控制的动量轮个数,为正整数;
(2)根据步骤(1)中记录的各动量轮的控制力矩Ti,在控制力矩达到动量轮所能输出最大力矩的动量轮中任意选取一个动量轮j;j为正整数;
(3)根据航天器上参与姿态控制的n个动量轮的安装矩阵A3×n,计算姿控力矩预分配矩阵D'=A3×n T(A3×nA3×n T)-1
(4)分别计算除动力轮j外的其余n-1个动量轮的力矩分配调整系数C(i,i),并确定对角矩阵C,其中,对角矩阵的对角元素为其余n-1个动量轮的力矩分配调整系数C(i,i)及C(j,j)=1;
(5)对姿控力矩预分配矩阵D'进行调整,得到最终的姿控力矩分配矩阵D=CA3×n T(A3×nCA3×n T)-1,根据姿控力矩分配矩阵D确定每个动量轮的控制力矩。
所述步骤(4)中,动量轮的力矩分配调整系数C(i,i)的计算公式如下:
Figure GDA0002408072020000021
其中,i≠j,Tj表示动量轮j的控制力矩;k的取值为1或2,k=1表示航天器绕滚动轴进行姿态机动;k=2表示航天器绕俯仰轴进行姿态机动。
所述n>3。
本发明与现有技术相比的有益效果是:
本发明方法根据航天器上各类动量轮的安装位置,计算姿态机动能获得最大控制力矩时各类动量轮的控制力矩,然后将控制力矩达到动量轮所能输出最大力矩的动量轮作为基准动量轮,并根据动量轮的安装,计算姿控力矩预分配矩阵,最后根据基准动量轮的控制力矩以及预分配矩阵,并根据力矩分配调整系数对姿控力矩预分配矩阵进行调整。本发明方法充分发挥了各类动量轮的执行能力,使得分配给动量轮的控制力矩均衡,提高了姿态机动的快速性和精度。
附图说明
图1(a)为星体姿态机动期间的姿态角曲线图;
图1(b)为星体姿态机动期间的角速度曲线图;
图2为星体姿态机动期间各个轮子的角动量曲线图;
图3为通过一般分配矩阵计算各类轮子提供的力矩的曲线图;
图4为通过本发明的方法确定的最优分配矩阵计算各类轮子提供的力矩的曲线图;
图5为本发明的方法的流程图。
具体实施方式
下面结合附图及实施例对本发明进行进一步说明。
如图5所示,一种基于额定力矩不同的混合动量轮系力矩分配计算方法,包括步骤如下:
1)、根据航天器动量轮的安装位置,计算航天器姿态机动获得最大控制力矩时,各动量轮的控制力矩Ti,i=1,2,3,...,n,n为航天器上参与姿态控制的动量轮个数,n>3,此时的Ti为充分发挥每个动量轮执行能力时的控制力矩。
2)、选择控制力矩达到动量轮所能输出最大力矩的动量轮作为基准动量轮,记其编号为j。
3)、根据动量轮安装矩阵A3×n,计算初步的姿控力矩预分配矩阵D'=A3×n T(A nA3×n T)-1
4)、基于基准动量轮的控制力矩和预分配矩阵,计算动量轮的力矩分配调整系数,调整动量轮预分配控制力矩。将各调整系数组成对角矩阵C,
Figure GDA0002408072020000031
5)、最后据此对初步的姿控力矩预分配矩阵D'进行调整,计算最终的姿控力矩分配矩阵D=CAT(ACAT)-1,使得分配后的各动量轮控制力矩均衡,并充分发挥其执行能力,从而达到提高航天器姿态机动控制能力和精度的目的。
实施例1:
设共有4个动量轮参与姿态控制,计作2-3-4-5,其中2-3-4表示大力矩动量轮,其最大提供力矩等于0.5NM,5表示小力矩动量轮,其最大提供力矩等于0.1NM;
(1)混合动量轮安装矩阵如下:
Figure GDA0002408072020000041
选取小轮子4作基准动量轮,则各类动量轮最大输出力矩为1Nm,则在此前提下航天器绕滚动轴姿态机动时最大控制力矩为2.285Nm,其中每个动量轮的输出力矩为:T2=-0.423Nm,T3=1Nm,T4=0.906Nm,T5=1Nm。
(2)小力矩动量轮5的控制力矩达到了最大值,选取j=4。
(3)计算姿控力矩预分配矩阵:
Figure GDA0002408072020000042
(4)计算力矩分配调整系数,对角矩阵C的元素:
Figure GDA0002408072020000043
Figure GDA0002408072020000044
Figure GDA0002408072020000045
C(4,4)=1。
(5)计算最终的姿控力矩分配矩阵:
Figure GDA0002408072020000046
姿控力矩分配矩阵乘以对应的三轴姿控力矩即可计算出各类动量轮应提供的控制力矩。
俯仰机动4次、滚动机动1次、俯仰再反向机动4次、滚动反向机动1次,如图1(a)、图1(b)、图2所示,本发明的方法应用于航天器姿轨控系统中,可以合理的在参与姿控的额定力矩不同的混合动量轮轮系中合理分配控制力矩,各动量轮的力矩如图3、图4所示,给出的例子,40s机动0.64度,稳定时间8s,所选轮子中2-3-4表示大力矩轮子,5表示小力矩轮子。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (2)

1.一种基于额定力矩不同的混合动量轮系力矩分配计算方法,其特征在于,包括步骤如下:
(1)控制航天器绕滚动轴或俯仰轴进行姿态机动,根据航天器上各动量轮的安装位置,计算航天器姿态机动时所能获得的最大控制力矩,并记录此时航天器上各动量轮的控制力矩Ti,i=1,2,3,...,n;n为参与姿态控制的动量轮个数,为正整数;
(2)根据步骤(1)中记录的各动量轮的控制力矩Ti,在控制力矩达到动量轮所能输出最大力矩的动量轮中任意选取一个动量轮j;j为正整数;
(3)根据航天器上参与姿态控制的n个动量轮的安装矩阵A3×n,计算姿控力矩预分配矩阵D'=A3×n T(A3×nA3×n T)-1
(4)分别计算除动力轮j外的其余n-1个动量轮的力矩分配调整系数C(i,i),并确定对角矩阵C,其中,对角矩阵的对角元素为其余n-1个动量轮的力矩分配调整系数C(i,i)及C(j,j)=1;
(5)对姿控力矩预分配矩阵D'进行调整,得到最终的姿控力矩分配矩阵D=CA3×n T(A nCA3×n T)-1,根据姿控力矩分配矩阵D确定每个动量轮的控制力矩;
所述步骤(4)中,动量轮的力矩分配调整系数C(i,i)的计算公式如下:
Figure FDA0002408072010000011
其中,i≠j,Tj表示动量轮j的控制力矩;k的取值为1或2,k=1表示航天器绕滚动轴进行姿态机动;k=2表示航天器绕俯仰轴进行姿态机动。
2.根据权利要求1所述的一种基于额定力矩不同的混合动量轮系力矩分配计算方法,其特征在于:所述n>3。
CN201710879527.XA 2017-09-26 2017-09-26 一种基于额定力矩不同的混合动量轮系力矩分配计算方法 Active CN107703955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710879527.XA CN107703955B (zh) 2017-09-26 2017-09-26 一种基于额定力矩不同的混合动量轮系力矩分配计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710879527.XA CN107703955B (zh) 2017-09-26 2017-09-26 一种基于额定力矩不同的混合动量轮系力矩分配计算方法

Publications (2)

Publication Number Publication Date
CN107703955A CN107703955A (zh) 2018-02-16
CN107703955B true CN107703955B (zh) 2020-09-18

Family

ID=61175332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710879527.XA Active CN107703955B (zh) 2017-09-26 2017-09-26 一种基于额定力矩不同的混合动量轮系力矩分配计算方法

Country Status (1)

Country Link
CN (1) CN107703955B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664035B (zh) * 2018-05-16 2021-02-26 北京电子工程总体研究所 多执行机构飞行器分配控制方法及系统
CN110888444B (zh) * 2019-12-04 2021-03-09 腾讯科技(深圳)有限公司 自平衡行驶装置及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499220B (zh) * 2009-01-24 2010-09-29 哈尔滨工业大学 一种模拟航天器上大型推力器的方法及其装置
CN101576750B (zh) * 2009-04-14 2011-04-06 上海微小卫星工程中心 航天器的姿态跟踪控制系统及方法
CN102616386B (zh) * 2012-03-29 2014-04-02 哈尔滨工业大学 单轴快速机动航天器飞轮构型的优化方法
CN102627151B (zh) * 2012-05-09 2014-07-02 哈尔滨工业大学 一种基于混合执行机构的快速机动卫星的力矩分配方法
US9584000B2 (en) * 2012-11-29 2017-02-28 Beijing University Of Technology Method and device for torque generation based on electromagnetic effect
CN103092208B (zh) * 2013-01-09 2015-06-24 哈尔滨工业大学 基于sgcmg和rw的航天器高精度快速姿态机动方法
CN103345275B (zh) * 2013-06-07 2015-08-19 哈尔滨工业大学 基于角动量裕度的单轴批量反作用飞轮力矩优化分配方法
CN103950556B (zh) * 2014-04-22 2016-01-13 北京控制工程研究所 一种控制力矩陀螺替代动量轮的卫星稳态控制方法
CN106896821B (zh) * 2017-03-10 2019-10-11 北京航空航天大学 一种变速控制力矩陀螺的角动量管理方法

Also Published As

Publication number Publication date
CN107703955A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN103092208B (zh) 基于sgcmg和rw的航天器高精度快速姿态机动方法
CN107703955B (zh) 一种基于额定力矩不同的混合动量轮系力矩分配计算方法
CN109164822B (zh) 一种基于具有混合执行机构的航天器姿态控制方法
CN109625334B (zh) 卫星动量轮在轨姿态无偏差起旋和消旋的控制方法
CN104699108B (zh) 一种多旋翼飞行器的控制分配方法
CN103231810B (zh) 一种利用卫星俯仰轴姿态机动卸载俯仰轴角动量的方法
CN110425943B (zh) 面向变质心飞行器的工程化再入制导方法
CN108674695A (zh) 航天器再入返回轨道规划方法
CN106094529B (zh) 编队任务多脉冲控制条件下的推力器在轨自主标定方法
CN107487458A (zh) 一种全电推进卫星平台姿轨控执行机构的系统
CN107330152B (zh) 一种适用于旋翼飞行器的高效气动配平方法
CN107860273A (zh) 一种以旋转弹弹旋周期作为控制基准的新型旋转弹控制方法
CN102616386B (zh) 单轴快速机动航天器飞轮构型的优化方法
CN109634294B (zh) 一种基于机动能力辨识的抗干扰四元数姿态机动路径规划方法
CN115265292A (zh) 非轴对称运载火箭减载控制方法及存储设备
CN107562064A (zh) 一种基于多执行机构的飞行器的姿态控制分配方法
CN104914873B (zh) 一种姿轨控发动机的耦合方法
CN102749846A (zh) 一种两平行构型VSDGCMGs奇异回避操纵律设计方法
CN104850128B (zh) 一种用于具有大惯量积航天器的动量轮布局配置方法
CN109445448B (zh) 一种轮控小卫星自适应积分滑模姿态控制器
CN107491082A (zh) 航天器姿态控制混合执行机构优化控制方法
CN111007867A (zh) 一种可预设调整时间的高超声速飞行器姿态控制设计方法
CN104848857B (zh) 弹道导弹惯性测量系统精度指标自动分配方法
CN106508002B (zh) 一种利用飞轮捕获地球的三轴机动渐进控制方法
CN108107726B (zh) 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant