CN107698253A - 一种应用于火箭发射平台的热防护陶瓷板的制备方法 - Google Patents

一种应用于火箭发射平台的热防护陶瓷板的制备方法 Download PDF

Info

Publication number
CN107698253A
CN107698253A CN201711109132.8A CN201711109132A CN107698253A CN 107698253 A CN107698253 A CN 107698253A CN 201711109132 A CN201711109132 A CN 201711109132A CN 107698253 A CN107698253 A CN 107698253A
Authority
CN
China
Prior art keywords
thermal protection
ceramic wafer
launch platform
rocket launch
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711109132.8A
Other languages
English (en)
Other versions
CN107698253B (zh
Inventor
梁新星
梁奇星
梁跃星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Jiming High Temperature Ceramic New Material Co Ltd
Original Assignee
Zhengzhou Jiming High Temperature Ceramic New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Jiming High Temperature Ceramic New Material Co Ltd filed Critical Zhengzhou Jiming High Temperature Ceramic New Material Co Ltd
Priority to CN201711109132.8A priority Critical patent/CN107698253B/zh
Publication of CN107698253A publication Critical patent/CN107698253A/zh
Application granted granted Critical
Publication of CN107698253B publication Critical patent/CN107698253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开一种应用于火箭发射平台的热防护陶瓷板的制备方法,涉及火箭发射平台的热防护材料技术领域,以氧化钇、氧化镁、单斜氧化锆为主要原料,经选料、混合、固溶、破碎、造粒、模压、烧结、切割等步骤得到高温性能稳定、热震性能良好、导热率极低,使用成本低、抗盐雾侵蚀、耐酸碱、强度高性能良好的热防护材料,在沿海地区盐雾浓度较大的地区和自然环境恶劣的地区也有着良好的适应性和良好的寿命。

Description

一种应用于火箭发射平台的热防护陶瓷板的制备方法
技术领域
本发明涉及火箭发射平台的热防护材料技术领域,尤其涉及耐酸碱耐盐雾侵蚀的热防护陶瓷板的制备方法。
背景技术
火箭发射的燃料通常为液氢液氧或液氧煤油,瞬间点火温度集中并伴随高密度热流冲刷,所以对底部热防护材料的耐温度、热震性、高温结构强度等指标要求苛刻。
并且,在沿海地带部署的火箭发射基地就经常受到盐雾腐蚀现象及其带来的危害腐蚀,给金属材料造成的直接损失巨大,盐雾是指大气中由含盐微小液滴所构成的弥散系统,是人工环境三防系列中的一种,统计每年全世界腐蚀报废的金属约一亿吨,占年产量的20%~40%。而且随着工业化的进程,腐蚀问题日趋严重化,美国1949年腐蚀消耗(材料消耗和腐蚀)为50亿美元,1975年达700亿美元,到1985年高达1680亿美元,与1949年相比增加了80余倍。全世界每年因腐蚀报废的钢铁设备相当于年产量的30%。显然,金属构件的毁坏,其价值远比金属材料的价值大的多;发达国家每年因腐蚀造成的经济损失约占国民生产总值的2-4%;美国每年因腐蚀要多消耗3.4%的能源;我国每年因腐蚀造成的经济损失至少达二百亿,海洋性气候和盐雾环境比起陆地和工业环境气候由于长年海水和海盐的腐蚀及湿气的腐蚀要严重的多,比陆地气候年腐蚀率高3-4倍。腐蚀的巨大危害不仅体现在经济损失上,它还会带来惨重的人员伤亡、环境污染、资源浪费、阻碍新技术的发展、促进自然资源的损耗。
为了保障火箭发射平台热防护材料的重复使用性能及使用安全性能,其使用的热防护材料除了具有抵抗火箭高速气流和高温的冲击前提下,其还必须同时具备耐酸碱耐盐雾附着侵蚀的良好性能。
随着近些年国家航天工业的快速发展,用于航天工业的相关配套设施也在不断的升级革新,随着近两年来国家发布和号召军民融合产业政策办法,军民融合模式的不断升温,更多的有实力有能力的民营企业产品走向军用装备领域。
由此,耐酸碱耐盐雾侵蚀的热防护陶瓷板的发明具有重大的意义,电熔部分稳定氧化锆(ZrO2)经2800摄氏度以上温度熔融而成,具有耐高温、耐化学腐蚀、抗氧化性、耐磨、热稳定性能好、高温结构强度高、耐酸碱性能好、应用气氛广泛等特点,较小的比热和导热系数等特性,因此决定了它是一种非常理想的可以应用在火箭发射平台极端环境下使用的耐酸碱耐盐雾侵蚀超高温热防护材料。
发明内容
本发明的目的在于克服现有火箭发射平台热防护材料和技术中的不足,提供能够得到高温性能稳定、热震性能良好、导热率极低、使用成本低、抗盐雾侵蚀、耐酸碱、强度高性能良好的热防护材料,一种应用于火箭发射平台耐酸碱耐盐雾侵蚀超高温热防护陶瓷板的制备方法。
本发明是通过以下技术方案实现的,一种应用于火箭发射平台的热防护陶瓷板的制备方法,包括以下步骤:
第一步,按以下重量百分比称取原料,氧化钇1-3wt%、氧化镁1-3wt%、单斜氧化锆94-96wt%;
第二步,将第一步所得三种原料混合6-24小时;
第三步,将第二步所得的物料投入熔融炉中熔融6-18小时,得到熔融物,将熔融物自然冷却自室温,得到固溶体,其中熔融温度为2800-3000℃,在熔融过程完成后,关闭电源让物料熔融物进行自然冷却,冷却后的物料因熔融态时相互之间的弥散和离子互相置换现象生成固溶体晶相结构,形成的固溶体晶相结构能够有效的抑制单斜型氧化锆的晶相变化现象,因为是熔融态进行的离子置换和固溶,所以其固溶的结构是非常稳固的,能够长时间的稳定的抑制单斜型氧化锆因受到反复温度冲击时造成的晶相变化现象;
第四步,将第三步所得的固溶体破碎至325-2000目后投入造粒机,同时向造粒机中喷洒粘结剂,所述粘结剂与固溶体的重量比为1-12:200,进行造粒,制得粒径为2-3mm的球形颗粒;
第五步,将第四步所得的球形颗粒烘干至含水量达到0.5-6wt%,然后模压成块状坯体,其中烘干温度为50-200℃;
第六步,将第五步所得的块状坯体放入窑炉中,依次进行升温烧结和恒温烧结,其中恒温烧结为在1650-1800℃下烧结8-72h,恒温烧结完成后在24-90h内降温至1300-1500℃,再自然冷却至200℃以下,得到应用于火箭发射平台的热防护陶瓷板的毛坯;
第七步,将第六步所得的毛坯进行切割处理,得到成品应用于火箭发射平台的热防护陶瓷板。
进一步地,所述氧化钇为粒径为D50值0.5-3μm的氧化钇粉末,其中氧化钇粉末中氧化钇的含量不低于95wt%,所述氧化镁为粒径为D50值0.5-5μm的氧化镁粉末,其中氧化镁粉末中氧化镁的含量不低于95wt%,所述单斜氧化锆为粒径为D50值0.5-500μm的单斜氧化锆粉末,其中单斜氧化锆粉末中单斜氧化锆的含量不低于94wt%。
进一步地,在第二步中使用V型或三维粉料混合机进行混合。
进一步地,所述熔融炉选用电熔融炉。
进一步地,所述粘结剂选用聚乙烯醇粘结剂或树脂粘结剂,在造粒的过程中,通过喷雾的形式将粘结剂均匀喷洒至造粒机中。
进一步地,将球形颗粒模压成块状坯体的过程中,压力为200-2000t,持续10-60s。
进一步地,所述升温烧结包括6-12次升温步骤,相邻两次升温步骤的温度上升值相同,相邻两次升温步骤的持续时间相同,升温烧结持续时间20-120h。
进一步地,第六步中经过2-4次降温步骤在24-90h内降温至1300-1500℃,相邻两次降温步骤的温度下降值相同,相邻两次降温步骤的持续时间相同。
本发明的有益效果在于:采用复合材料进行固溶,得到晶相稳定的固溶体材料,利用氧化锆的低热导率,在保障材料的低导热率性能同时,提高材料的液相温度点;通过固溶材料之间的烧结温度和晶粒发育增大和产品的热时效处理增加产品的高温强度和抗高温高压气流的冲刷性能;得到产品厚度可为5-100毫米的形状为搭接结构的板状或异形状产品,性能指标优异;复合固溶体陶瓷热防护材料产品具有高温性能稳定、热震性能良好、使用成本低、抗侵蚀、强度高性能良好,可以大幅增加循环火箭发射次数及安全性;在沿海地区盐雾浓度较大的地区和自然环境恶劣的地区也有着良好的适应性和良好的寿命。
具体实施方式
以下结合具体实施例对本发明的技术方案进行说明。
以下各实施例中,氧化钇为粒径为D50值3μm的氧化钇粉末,其中氧化钇粉末中氧化钇的含量不低于95wt%,氧化镁为粒径为D50值0.5μm的氧化镁粉末,其中氧化镁粉末中氧化镁的含量不低于95wt%,单斜氧化锆为粒径为D50值0.5μm的单斜氧化锆粉末,其中单斜氧化锆粉末中单斜氧化锆的含量不低于94wt%,熔融炉选用功率为400-600kw的电熔融炉,破碎机选用不锈钢材质的锤式破碎机,造粒机选用直径为1500毫米,容量为1吨的圆盘造粒机。
实施例1
一种应用于火箭发射平台的热防护陶瓷板的制备方法,包括以下步骤:
第一步,按以下重量百分比称取原料,氧化钇1wt%、氧化镁3wt%、单斜氧化锆96 wt%;
第二步,将第一步所得三种原料在V型混合机内混合6小时;
第三步,将第二步所得的物料投入熔融炉中熔融6小时,得到熔融物,将熔融物自然冷却自室温,得到固溶体,其中熔融温度为2800℃;
第四步,将第三步所得的固溶体破碎至325目后投入造粒机,同时向造粒机中以喷雾的形式喷洒聚乙烯醇粘结剂,聚乙烯醇粘结剂与固溶体的重量比为1:200,进行造粒,制得粒径为3mm的球形颗粒;
第五步,将第四步所得的球形颗粒烘干至含水量达到0.5wt%,然后在200t的压力下,经10s模压成块状坯体,其中烘干温度为50℃;
第六步,将第五步所得的块状坯体放入窑炉中,依次进行升温烧结和恒温烧结,其中恒温烧结为在1650℃下烧结72h,恒温烧结的温度浮动不超过10℃,恒温烧结完成后在24h内经过2次降温步骤降温至1300℃,相邻两次降温步骤的温度下降值相同,相邻两次降温步骤的持续时间相同,再自然冷却至200℃以下,得到应用于火箭发射平台的热防护陶瓷板的毛坯,升温烧结包括6次升温步骤,相邻两次升温步骤的温度上升值相同,相邻两次升温步骤的持续时间相同,升温烧结持续时间20h;
第七步,将第六步所得的毛坯进行切割处理,得到成品应用于火箭发射平台的热防护陶瓷板。
实施例2
一种应用于火箭发射平台的热防护陶瓷板的制备方法,包括以下步骤:
第一步,按以下重量百分比称取原料,氧化钇2wt%、氧化镁3wt%、单斜氧化锆95 wt%;
第二步,将第一步所得三种原料在三维粉料混合机内混合24小时;
第三步,将第二步所得的物料投入熔融炉中熔融18小时,得到熔融物,将熔融物自然冷却自室温,得到固溶体,其中熔融温度为3000℃;
第四步,将第三步所得的固溶体破碎至2000目后投入造粒机,同时向造粒机中以喷雾的形式喷洒聚乙烯醇粘结剂,聚乙烯醇粘结剂与固溶体的重量比为12:200,进行造粒,制得粒径为2mm的球形颗粒;
第五步,将第四步所得的球形颗粒烘干至含水量达到6wt%,然后在2000t的压力下,经16s模压成块状坯体,其中烘干温度为200℃;
第六步,将第五步所得的块状坯体放入窑炉中,依次进行升温烧结和恒温烧结,其中恒温烧结为在1800℃下烧结8h,恒温烧结的温度浮动不超过10℃,恒温烧结完成后在90h内经过4次降温步骤降温至1500℃,相邻两次降温步骤的温度下降值相同,相邻两次降温步骤的持续时间相同,再自然冷却至200℃以下,得到应用于火箭发射平台的热防护陶瓷板的毛坯,升温烧结包括12次升温步骤,相邻两次升温步骤的温度上升值相同,相邻两次升温步骤的持续时间相同,升温烧结持续时间120h;
第七步,将第六步所得的毛坯进行切割处理,得到成品应用于火箭发射平台的热防护陶瓷板。
实施例3
一种应用于火箭发射平台的热防护陶瓷板的制备方法,包括以下步骤:
第一步,按以下重量百分比称取原料,氧化钇3wt%、氧化镁3wt%、单斜氧化锆94 wt%;
第二步,将第一步所得三种原料在V型混合机内混合15小时;
第三步,将第二步所得的物料投入熔融炉中熔融12小时,得到熔融物,将熔融物自然冷却自室温,得到固溶体,其中熔融温度为2900℃;
第四步,将第三步所得的固溶体破碎至1500目后投入造粒机,同时向造粒机中以喷雾的形式喷洒聚乙烯醇粘结剂,聚乙烯醇粘结剂与固溶体的重量比为7:200,进行造粒,制得粒径为3mm的球形颗粒;
第五步,将第四步所得的球形颗粒烘干至含水量达到6wt%,然后在1000t的压力下,经30s模压成块状坯体,其中烘干温度为100℃;
第六步,将第五步所得的块状坯体放入窑炉中,依次进行升温烧结和恒温烧结,其中恒温烧结为在1725℃下烧结40h,恒温烧结的温度浮动不超过10℃,恒温烧结完成后在60h内经过3次降温步骤降温至1400℃,相邻两次降温步骤的温度下降值相同,相邻两次降温步骤的持续时间相同,再自然冷却至200℃以下,得到应用于火箭发射平台的热防护陶瓷板的毛坯,升温烧结包括8次升温步骤,相邻两次升温步骤的温度上升值相同,相邻两次升温步骤的持续时间相同,升温烧结持续时间60h;
第七步,将第六步所得的毛坯进行切割处理,得到成品应用于火箭发射平台的热防护陶瓷板。
实施例1-3所得的应用于火箭发射平台的热防护陶瓷板理化性质如附表1。
对实施例1-3所得的应用于火箭发射平台的热防护陶瓷板进行高温气体喷射热穿透深度实验,所得结果如附表2:
应用环境气氛 大气环境
应用温度 2200-2800℃
高温时间 >30-60秒
高温气流强度 >2200-2400米每秒
高温气流冲刷时间 >5-120秒
热防护材料厚度 <30毫米
背面50摄氏度时热流穿透深度 3.13-8.84毫米
允许表层灼失厚度 <0.1毫米
热防护材料体积热膨胀率(%) <0.6
酸性盐雾环境腐蚀率 <0.25%
1350℃水冷循环(次) >10
密度 4800-5500kg/㎥
导热系数 2.0-2.1 W/(m.K)
比热容 7100-7300 J/(kg.K)
附表1
附表2
其中,喷出口直径为0.065m、喷出口到板高度0.16m、扩张角为3°、气流温度2327℃、气流流速2377m/s,板材的初始温度均为40℃。
温度2327℃的高温气体从喷嘴喷出,直接板材接触,板材表面即刻达到高温气体温度。此后,板材内的传热过程为非稳态导热。
根据非稳态导热特点,建立并求解描述该过程的数学模型。解的最终数学形式为:θ/θ0=erf·u。其中u=x/4aτ,erf为高斯误差函数。
以此为基础,通过计算机编程,计算不同时刻τ时,陶瓷板材某层面温度达到预设值时,该层面距离板材热面距离。
将实施例1-3所得的任一种应用于火箭发射平台的热防护陶瓷板根据火箭发射平台的设计图纸安装需要,进行不同尺寸的切割或者拼接,每块陶瓷板的背面均开具有宽度2-5毫米,深度0.5-1毫米的凹槽或者宽度为2-5毫米,高度为0.5-1毫米的凸槽,切割设备为直径为200-300毫米的金刚石锯片切割机或直径为0.1-0.2毫米的金刚石切割线,进行拼接安装施工,按照设计图纸进行拼接,每块热防护陶瓷制品的接触面之间利用凹凸型字母扣方式进行对接,对接时需要在每块陶瓷制品对接的接触面上涂抹厚度在0.5-1毫米,背面在2-5毫米厚度,耐温度达到1800-2000摄氏度的氧化铝含量为72-82%,氧化钙含量为19-23%的纯铝酸钙水泥加入5-10%水分调和均匀后的纯铝酸钙水泥泥料进行粘结,每块陶瓷制品的对接面缝隙不得超过0.5-1毫米。在整体施工完成后,待粘结用的纯铝酸钙水泥泥料经过10-18小时的自然凝固和水分挥发后,整体安装施工过的用于火箭发射平台耐酸碱耐盐雾侵蚀的热防护陶瓷材料层即可投入使用。

Claims (8)

1.一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,包括以下步骤:
第一步,按以下重量百分比称取原料,氧化钇1-3wt%、氧化镁1-3wt%、单斜氧化锆94-96wt%;
第二步,将第一步所得三种原料混合6-24小时;
第三步,将第二步所得的物料投入熔融炉中熔融6-18小时,得到熔融物,将熔融物自然冷却自室温,得到固溶体,其中熔融温度为2800-3000℃;
第四步,将第三步所得的固溶体破碎至325-2000目后投入造粒机,同时向造粒机中喷洒粘结剂,所述粘结剂与固溶体的重量比为1-12:200,进行造粒,制得粒径为2-3mm的球形颗粒;
第五步,将第四步所得的球形颗粒烘干至含水量达到0.5-6wt%,然后模压成块状坯体,其中烘干温度为50-200℃;
第六步,将第五步所得的块状坯体放入窑炉中,依次进行升温烧结和恒温烧结,其中恒温烧结为在1650-1800℃下烧结8-72h,恒温烧结完成后在24-90h内降温至1300-1500℃,再自然冷却至200℃以下,得到应用于火箭发射平台的热防护陶瓷板的毛坯;
第七步,将第六步所得的毛坯进行切割处理,得到成品应用于火箭发射平台的热防护陶瓷板。
2.根据权利要求1所述的一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,所述氧化钇为粒径为D50值0.5-3μm的氧化钇粉末,其中氧化钇粉末中氧化钇的含量不低于95wt%,所述氧化镁为粒径为D50值0.5-5μm的氧化镁粉末,其中氧化镁粉末中氧化镁的含量不低于95wt%,所述单斜氧化锆为粒径为D50值0.5-500μm的单斜氧化锆粉末,其中单斜氧化锆粉末中单斜氧化锆的含量不低于94wt%。
3.根据权利要求1所述的一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,在第二步中使用V型或三维粉料混合机进行混合。
4.根据权利要求1所述的一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,所述熔融炉选用电熔融炉。
5.根据权利要求1所述的一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,所述粘结剂选用聚乙烯醇粘结剂或树脂粘结剂,在造粒的过程中,通过喷雾的形式将粘结剂均匀喷洒至造粒机中。
6.根据权利要求1所述的一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,将球形颗粒模压成块状坯体的过程中,压力为200-2000t,持续10-60s。
7.根据权利要求1所述的一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,所述升温烧结包括6-12次升温步骤,相邻两次升温步骤的温度上升值相同,相邻两次升温步骤的持续时间相同,升温烧结持续时间20-120h。
8.根据权利要求1所述的一种应用于火箭发射平台的热防护陶瓷板的制备方法,其特征在于,第六步中经过2-4次降温步骤在24-90h内降温至1300-1500℃,相邻两次降温步骤的温度下降值相同,相邻两次降温步骤的持续时间相同。
CN201711109132.8A 2017-11-11 2017-11-11 一种应用于火箭发射平台的热防护陶瓷板的制备方法 Active CN107698253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711109132.8A CN107698253B (zh) 2017-11-11 2017-11-11 一种应用于火箭发射平台的热防护陶瓷板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711109132.8A CN107698253B (zh) 2017-11-11 2017-11-11 一种应用于火箭发射平台的热防护陶瓷板的制备方法

Publications (2)

Publication Number Publication Date
CN107698253A true CN107698253A (zh) 2018-02-16
CN107698253B CN107698253B (zh) 2020-03-27

Family

ID=61180124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711109132.8A Active CN107698253B (zh) 2017-11-11 2017-11-11 一种应用于火箭发射平台的热防护陶瓷板的制备方法

Country Status (1)

Country Link
CN (1) CN107698253B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079644A (zh) * 2020-09-24 2020-12-15 郑州方铭高温陶瓷新材料有限公司 一种浮法玻璃窑炉使用的烧结高锆平板砖及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102308A1 (en) * 2002-11-06 2004-05-27 Simpson Robert E. Crucible material and crucible
CN1534001A (zh) * 2003-04-02 2004-10-06 珠海粤科清华电子陶瓷有限公司 由流延法制备氧化锆陶瓷的方法及其由该方法获得的产品
CN101462876A (zh) * 2009-01-14 2009-06-24 济南大学 一种氧化锆陶瓷纤维板的制备方法
CN101767991A (zh) * 2010-01-08 2010-07-07 临沂临虹无机材料有限公司 箱体波纹型氧化锆电子陶瓷承烧板及其制造方法
CN103755220A (zh) * 2014-01-22 2014-04-30 龙口市正阳特种耐火材料有限公司 一种氧化锆陶瓷纤维板的制备方法
CN105622095A (zh) * 2016-02-16 2016-06-01 中材科技股份有限公司 一种耐高温氧化锆纤维陶瓷板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102308A1 (en) * 2002-11-06 2004-05-27 Simpson Robert E. Crucible material and crucible
CN1534001A (zh) * 2003-04-02 2004-10-06 珠海粤科清华电子陶瓷有限公司 由流延法制备氧化锆陶瓷的方法及其由该方法获得的产品
CN101462876A (zh) * 2009-01-14 2009-06-24 济南大学 一种氧化锆陶瓷纤维板的制备方法
CN101767991A (zh) * 2010-01-08 2010-07-07 临沂临虹无机材料有限公司 箱体波纹型氧化锆电子陶瓷承烧板及其制造方法
CN103755220A (zh) * 2014-01-22 2014-04-30 龙口市正阳特种耐火材料有限公司 一种氧化锆陶瓷纤维板的制备方法
CN105622095A (zh) * 2016-02-16 2016-06-01 中材科技股份有限公司 一种耐高温氧化锆纤维陶瓷板及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079644A (zh) * 2020-09-24 2020-12-15 郑州方铭高温陶瓷新材料有限公司 一种浮法玻璃窑炉使用的烧结高锆平板砖及其制备工艺

Also Published As

Publication number Publication date
CN107698253B (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN102029366B (zh) 特厚板坯包晶钢专用连铸结晶器保护渣及其制备方法
CN101838530B (zh) 低密度高强陶粒支撑剂及其制备方法
CN103570370B (zh) 薄带连铸侧封板的热压陶瓷耐火材料及其制备方法
JP2009513832A (ja) セラミック粉末及び熱障壁被覆
CN104909567A (zh) 钒钛搪瓷釉料及其制备方法
CN110668812B (zh) 一种纳米氧化锆喷涂粉末及其制备方法
WO2020173151A1 (zh) 强韧、导热与高温微结构稳定一体化的非晶氧化物陶瓷复合涂层制备方法
CN105801145A (zh) 一种有机硅改性酚醛树脂结合不烧免浸渍环保型滑板砖、生产方法与应用
CN103695832A (zh) 一种抗磨损抗腐蚀的复合功能涂层
CN101003086A (zh) 一种Cr3C2-NiCr复合粉末制备技术
CN104803692A (zh) 可应用于燃气轮机燃烧室的刚玉-莫来石烧成砖及制备方法
CN105016732B (zh) 一种强度高耐磨性好的碳化锆陶瓷材料及其制备方法
CN109652018A (zh) 一种核壳结构相变蓄热颗粒及其制备方法
CN103469144B (zh) 一种高气孔率且具有等轴晶结构的热障涂层
CN106634079A (zh) 一种电解铝预焙阳极钢爪防腐涂料及制备方法
CN104804712A (zh) 一种高导热的金属-氯化物熔盐材料及制备方法与应用
CN107698253A (zh) 一种应用于火箭发射平台的热防护陶瓷板的制备方法
CN108856666A (zh) 不锈钢用连铸保护渣及其制备方法
CN108424155A (zh) 一种利用滑板磨削泥废料制成的下水口砖及其制备方法
Cano et al. Mullite/ZrO2 coatings produced by flame spraying
CN102407321B (zh) 一种电渣重熔渣及其制造方法
CN114015962A (zh) 一种耐高温复相陶瓷喷涂粉末的制备方法
CN103922761A (zh) 低锆莫来石导流管砖及其制备方法
CN108840690A (zh) 一种微-纳米多级孔结构镁铝尖晶石及其制备方法
CN105130439A (zh) 一种高强度碳化硅棚板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant