CN107680831B - 一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法 - Google Patents

一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法 Download PDF

Info

Publication number
CN107680831B
CN107680831B CN201710730058.5A CN201710730058A CN107680831B CN 107680831 B CN107680831 B CN 107680831B CN 201710730058 A CN201710730058 A CN 201710730058A CN 107680831 B CN107680831 B CN 107680831B
Authority
CN
China
Prior art keywords
nitrogen
nico
electrode material
doped graphene
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710730058.5A
Other languages
English (en)
Other versions
CN107680831A (zh
Inventor
章明美
王滢
潘登辉
李�远
马天骄
谢吉民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710730058.5A priority Critical patent/CN107680831B/zh
Publication of CN107680831A publication Critical patent/CN107680831A/zh
Application granted granted Critical
Publication of CN107680831B publication Critical patent/CN107680831B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明属于复合电极材料领域,公开了一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯复合材料的合成方法。将氧化石墨烯、Ni(NO3)2、Co(NO3)2溶解于乙二胺水溶液中,分散,微波反应,得Co3O4@NiCo2O4/氮掺杂石墨烯复合材料。采用一步法完成石墨烯的氮掺杂与金属氧化物的共沉积,操作简单,成本低廉,产率较高。乙二胺为石墨烯掺杂提供N,且水解产生氨水与Co2+、Ni2+结合产生钴镍金属氧化物。制得的介孔管状钴酸镍晶体表面生长有颗粒状Co3O4晶体与三维改性石墨烯包覆结合,双金属氧化物共生复合后晶体颗粒中金属离子表面电子云得到极大的活化,在充放电过程中电子转移加快,同时改性石墨烯所掺杂氮元素得邻近C活性位点与金属氧化物在充放电过程中的协同效益有效提高了复合材料的电容和循环稳定性。

Description

一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的 制备方法
技术领域
本发明属于复合自支撑电极材料领域,涉及一种空心玉米棒状双金属协同效应Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法。
技术背景
石墨烯凭借其独特的蜂窝网状二维空间结构,展现出超大的比表面积、良好的电子迁移率、超高的稳定性等优异性能。因此作为基体材料在超级电容器领域有着极佳的应用潜力。然而已有的文献表明,石墨烯电极材料的实际容量远小于理论容量,且衰减较快,这需要进行氮元素的掺杂调节石墨烯的电子结构。在石墨烯片层间引入N、B等杂原子可以有效的将石墨烯从零带隙的半金属转变成半导体,形成n-型或p-型掺杂的石墨烯。(ZhangC H,Fu L 等,Adv.Mater.2011,23,1020–1024;Huang C J,Chen C等,J.Mater.Chem.A,2013, 1,12192-12197)氮元素的引入增加石墨烯导电能力的同时在石墨烯表面造成平面结构的改变,有利于减小石墨烯相互间的堆叠。
钴系金属氧化物性能稳定,廉价易得绿色环保是一种理想的超级电容器电极材料。其中 Co3O4具有优异的氧化还原性和较高的理论电容值(3560F·g-1),但较差的循环稳定性及较低的倍率性能限制了其在超级电容器方面的应用。钴酸镍是一种典型的尖晶石型混合价态金属复合氧化物,在其晶体结构中,镍离子占据八面体位置,钴离子既占有八面体位置又占据四面体位置。固态氧化还原对Co2+/Co3+和Ni2+/Ni3+在结构中的出现为赝电容的产生提供了两个活性中心。混合过渡金属氧化物(Co3O4/NiCo2O4)由于阳离子的多种价态和不同的性能使得电子转移有较低的活化能,比电容性能提高是非常理想的超级电容器电极材料。将NiCo2O4与Co3O4双金属共结晶能够在钴酸镍纳米管表面生成颗粒状的四氧化三钴纳米晶(如玉米棒上生长玉米粒),金属氧化物与三维氮掺杂石墨烯基材料进行复合使纳米棒包覆在石墨烯片层间,有效的避免石墨烯间重新堆叠,使NiCo2O4的高电容与石墨烯材料的大比表面积优势相互结合,极大的改良了复合和材料的性能。(Wu H Y,Wang H W,物理化学学报,2013,29 (7),1501-1506)一般地,双金属氧化物纳米管状结构易损导致导电性变差,为了保证电极的柔性和导电性符合要求,可以将具有高长径比的双金属氧化物的纳米线或纳米棒与碳纳米管 (石墨烯)复合成柔性电极。这种氧化物纳米线或纳米管与石墨烯相互穿插的结构之间存在着相互连通的孔道,有利于电解液的填充而使氧化还原反应充分进行,具有较高的能量密度和功率密度。(Tai Z,Yan X,Lang J,Xue Q,J.PowerSources.2012,199:373-378)。
发明内容
本发明的目的是提供一种操作简单、具有空心玉米棒状结构的Co3O4@NiCo2O4/氮掺杂石墨烯复合纳米材料的制备方法,制备自支撑柔性复合材料的比电容可达2324.6F·g-1
本发明以乙二胺为氮源,氧化石墨烯,六水合硫酸钴和六水合硝酸镍为原料,在微波加热的过程中钴镍离子催化乙二胺分解产生氨,小分子氨中的氮原子取代氧化石墨烯中的部分碳原子,并修复氧化石墨烯的部分缺陷结构,形成氮掺杂石墨烯。乙二胺分解同时产生氨水,溶液呈现碱性,无需外加碱源;微波加热生成的四氧化三钴负载在钴酸镍空心纳米棒上,并均匀分散在氮掺杂石墨烯表面,制备出电化学性能良好的特殊形貌Co3O4@NiCo2O4/氮掺杂石墨烯制成了具有高柔软性和高比电容的电极材料。
本发明通过以下步骤实现:
将氧化石墨烯、Ni(NO3)2·6H2O、Co(NO3)2·6H2O分散在乙二胺的水溶液中,分散均匀后,得到混合溶液,然后将混合溶液转移到微波反应器中,微波反应结束后,产物分别用去离子水和乙醇洗涤,得到空心玉米状的Co3O4@NiCo2O4/氮掺杂石墨烯复合电极材料。
所述乙二胺为氮源和碱源。
所述混合溶液中Ni(NO3)2·6H2O、Co(NO3)2·6H2O和乙二胺的摩尔比为1:(2.5~10): (0.1~10),其中,镍离子在所述混合溶液中的摩尔浓度为0.071mol/L。
所述乙二胺水溶液中,乙二胺和去离子水的体积比例为(1~10):(69~60)。
所述微波反应的温度为300~450℃,反应时间为10~30min,微波功率是850W。
利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、电化学工作站来表征其材料及电容活性。
用此方法制备的Co3O4@NiCo2O4/氮掺杂石墨烯复合物,纳米管尺寸可控,纳米管直径为 40-60nm,长度为2-5um,纳米晶Co3O4颗粒均匀,直径为3.5-4nm。
将本发明制备的空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料用于制备柔性超级电容器电极,不需要外加粘接剂、导电材料。
本发明的有益效果为:
(1)本方法具有反应条件温和、反应易于控制、成本低、工艺和流程简便的优点。
(2)微波合成纳米氧化物过程氮原子能同步掺杂到石墨烯中。
附图说明
图1为所制备Co3O4@NiCo2O4/氮掺杂石墨烯,Co3O4/氮掺杂石墨烯及其NiCo2O4/氮掺杂石墨烯的XRD衍射谱图,图中衍射峰均为四氧化三钴、钴酸镍和石墨烯的特征衍射峰。
图2为双金属玉米棒状Co3O4@NiCo2O4的透射电镜照片。
图3为Co3O4@NiCo2O4/氮掺杂石墨烯的XPS谱图。
图4为NiCo2O4/氮掺杂石墨烯,Co3O4@NiCo2O4/GO,Co3O4@NiCo2O4/氮掺杂石墨烯在1A·g-1条件下的恒电流充放电曲线图。
图5为Co3O4@NiCo2O4/氮掺杂石墨烯在不同电流密度下的恒电流充放电曲线图。
具体实施方式
下面结合具体实施实例对本发明做进一步说明。
实施例1
将7.28g Co(NO3)2·6H2O(0.025mol)、1.45g Ni(NO3)2·6H2O(0.005mol)、0.15g氧化石墨烯超声分散在70ml乙二胺溶液中(V乙二胺:V去离子水=1:6),将溶液转移到微波反应器中,于850W功率、350℃下微波加热15min后将得到的产物分别用去离子水和乙醇洗涤三遍,得到Co3O4@NiCo2O4/氮掺杂石墨烯复合物。
如图1,样品在2θ为18.9°、31.1°、36.7°、38.4°、44.5°、55.3°、59.2°和65.0°均出现了X 射线的衍射峰,分别可以与NiCo2O4晶体(JCPDS No.73-1702)的(111)、(220)、(311)、(222)、(400)、(422)、(511)、(440)晶面对应。在19.0°、31.2°、36.9°、44.9°和65.3°的衍射峰分别与Co3O4晶体(JCPDS No.42-1467)在(111)、(220)、(311)、(400)、(440) 晶面的标准谱图相一致。三维氮掺杂石墨烯具有较大的比表面积,氮元素的掺杂活化了与其相邻的碳原子,增加了改性石墨烯表面活性位点的数量,有利于金属氧化物与改性石墨烯表面之间的电子转移。而中空介孔的NiCo2O4晶体晶格与Co3O4晶体晶格结构一致,有利于小粒径Co3O4的负载,如图2。Co3O4@NiCo2O4/氮掺杂石墨烯复合材料经X射线光电子能谱分析(XPS)表明镍元素、钴元素是以Ni2+、Co2+、Co3+的价态存在,氮元素以碳氮键、吡啶氮、吡咯氮形式存在,如图3。
实施例2
将7.28g Co(NO3)2·6H2O(0.025mol)、1.45g Ni(NO3)2·6H2O(0.005mol)、0.15g氧化石墨烯超声分散在70ml乙二胺溶液中(V乙二胺:V去离子水=1:69),将溶液转移到微波反应器中,于850W功率、450℃下微波加热15min后将得到的产物分别用去离子水和乙醇洗涤三遍,得到Co3O4@NiCo2O4/氮掺杂石墨烯复合物。
三维氮掺杂石墨烯具有较大的比表面积,氮元素的掺杂活化了与其相邻的碳原子,增加了改性石墨烯表面活性位点的数量,有利于金属氧化物与改性石墨烯表面之间的电子转移。而中空介孔的NiCo2O4晶体晶格与Co3O4晶体晶格结构一致,有利于小粒径Co3O4的负载,将上述制备的复合材料进行充放电测试,当电流密度为1A·g-1时,比容量达到2157.3F·g-1;经过2000次循环充放电测试之后比容量仍保持在89%以上。
实施例3
将4.00g Co(NO3)2·6H2O(0.014mol)、1.45g Ni(NO3)2·6H2O(0.005mol)、0.15g氧化石墨烯超声分散在70ml乙二胺溶液中(V乙二胺:V去离子水=1:34),将溶液转移到微波反应器中,于850W功率、350℃下微波加热15min后将得到的产物分别用去离子水和乙醇洗涤三遍,得到Co3O4@NiCo2O4/氮掺杂石墨烯复合物。
三维氮掺杂石墨烯具有较大的比表面积,氮元素的掺杂活化了与其相邻的碳原子,增加了改性石墨烯表面活性位点的数量,有利于金属氧化物与改性石墨烯表面之间的电子转移。而中空介孔的NiCo2O4晶体晶格与Co3O4晶体晶格结构一致,有利于小粒径Co3O4的负载,将上述制备的复合材料进行充放电测试,电流密度为1A·g-1时,比容量达到了2198.7F·g-1,如图4,比电容值大于NiCo2O4/氮掺杂石墨烯(1874.3F·g-1)和Co3O4@NiCo2O4/GO(2005.6 F·g-1);经过2000次循环充放电测试之后比容量仍保持在88.2%以上。
实施例4
将11.64g Co(NO3)2·6H2O(0.040mol)、1.45g Ni(NO3)2·6H2O(0.005mol)、0.15g氧化石墨烯超声分散在70ml乙二胺溶液中(V乙二胺:V去离子水=1:34),将溶液转移到微波反应器中,于850W功率、450℃下微波加热15min后将得到的产物分别用去离子水和乙醇洗涤三遍,得到Co3O4@NiCo2O4/氮掺杂石墨烯复合物。
三维氮掺杂石墨烯具有较大的比表面积,氮元素的掺杂活化了与其相邻的碳原子,增加了改性石墨烯表面活性位点的数量,有利于金属氧化物与改性石墨烯表面之间的电子转移。而中空介孔的NiCo2O4晶体晶格与Co3O4晶体晶格结构一致,有利于小粒径Co3O4的负载,将上述制备的复合材料进行充放电测试,当电流密度为1A·g-1时,比容量达到了2003.6F·g-1;经过2000次循环充放电测试之后比容量仍保持在91.6%以上。
实施例5
将7.28g Co(NO3)2·6H2O(0.025mol)、1.45g Ni(NO3)2·6H2O(0.005mol)、0.15g氧化石墨烯超声分散在70ml乙二胺溶液中(V乙二胺:V去离子水=1:34),将溶液转移到微波反应器中,于850W功率、350℃下微波加热15min后将得到的产物分别用去离子水和乙醇洗涤三遍,得到Co3O4@NiCo2O4/氮掺杂石墨烯复合物。
三维氮掺杂石墨烯具有较大的比表面积,氮元素的掺杂活化了与其相邻的碳原子,增加了改性石墨烯表面活性位点的数量,有利于金属氧化物与改性石墨烯表面之间的电子转移。而中空介孔的NiCo2O4晶体晶格与Co3O4晶体晶格结构一致,有利于小粒径Co3O4的负载,将上述制备的复合材料进行充放电测试,当电流密度为1A·g-1时,比容量达到了2324.6F·g-1;经过2000次循环充放电测试之后比容量仍保持在92.4%以上。如图5,当电流密度为1A·g-1、 2A·g-1、5A·g-1、10A·g-1和20A·g-1时,所得比电容值分别为2324.6F·g-1、2293.3F·g-1、2146.6 F·g-1、2024.6F·g-1和1824.6F·g-1。当电流密度从1A·g-1增加到20·A g-1时其放电比电容值可保持初始值的78.5%。其优异的电容性能主要是结合了钴酸镍的大比电容性能及四氧化三钴的高稳定性能,同时发挥了同类型双金属氧化物晶体间的协同效应。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法,其特征在于:具体步骤为:
将氧化石墨烯、Ni(NO3)2·6H2O、Co(NO3)2·6H2O分散在乙二胺的水溶液中,分散均匀后,得到混合溶液,然后将混合溶液转移到微波反应器中,微波反应结束后,产物分别用去离子水和乙醇洗涤,得到空心玉米状的Co3O4@NiCo2O4/氮掺杂石墨烯复合电极材料。
2.如权利要求1所述的一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法,其特征在于:乙二胺为氮源和碱源。
3.如权利要求1所述的一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法,其特征在于:所述混合溶液中Ni(NO3)2·6H2O、Co(NO3)2·6H2O和乙二胺的摩尔比为1:(2.5~10):(0.1~10),其中,镍离子在所述混合溶液中的摩尔浓度为0.071mol/L。
4.如权利要求1所述的一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法,其特征在于:所述乙二胺水溶液中,乙二胺和去离子水的体积比例为(1~10):(69~60)。
5.如权利要求1所述的一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法,其特征在于:所述微波反应的温度为300~450℃,反应时间为10~30min,微波功率是850W。
6.一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料,是通过权利要求1~5任一项所述制备方法制得的,为自支撑电极材料,纳米管直径为40-60nm,长度为2-5um,纳米晶Co3O4颗粒均匀,直径为3.5-4nm;比电容达2324.6F·g-1,形貌为空心玉米棒状。
7.将权利要求6所述的空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料用于制备柔性超级电容器电极。
CN201710730058.5A 2017-08-23 2017-08-23 一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法 Expired - Fee Related CN107680831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710730058.5A CN107680831B (zh) 2017-08-23 2017-08-23 一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710730058.5A CN107680831B (zh) 2017-08-23 2017-08-23 一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN107680831A CN107680831A (zh) 2018-02-09
CN107680831B true CN107680831B (zh) 2019-06-28

Family

ID=61134831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710730058.5A Expired - Fee Related CN107680831B (zh) 2017-08-23 2017-08-23 一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN107680831B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164710A (zh) * 2019-05-27 2019-08-23 湖南大学 一种超级电容器用二元金属化合物复合材料及其制备方法
CN115893510B (zh) * 2022-11-24 2024-03-12 贝特瑞(四川)新材料科技有限公司 一种氮掺杂蜂巢型钠离子电池用负极材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614449B1 (ko) * 2009-01-22 2016-04-21 삼성전자주식회사 전이 금속/탄소 나노튜브 복합체 및 이의 제조 방법
CN103117389B (zh) * 2013-01-25 2014-12-24 浙江大学 镍钴氧化物/石墨烯复合材料及其制备方法和应用
CN104229781B (zh) * 2014-09-09 2016-01-27 东莞市翔丰华电池材料有限公司 一种制备高掺氮量氮掺杂石墨烯的方法
CN104882298A (zh) * 2015-04-30 2015-09-02 江苏大学 一种微波法制备NiCo2O4/石墨烯超级电容材料的方法
CN105489399B (zh) * 2016-01-19 2018-06-26 江苏大学 一种Co3O4/氮掺杂石墨烯复合电极材料的制备方法
CN106783232B (zh) * 2017-01-03 2018-09-18 镇江大成新能源有限公司 一种NiO/NiCo2O4/三维氮掺杂石墨烯复合电极材料的制备方法

Also Published As

Publication number Publication date
CN107680831A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
Sun et al. A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors
Yin et al. Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber
Zong et al. Three-dimensional coral-like NiCoP@ C@ Ni (OH) 2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors
Zha et al. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life
Wen et al. Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors
Zhang et al. Ultrafast microwave synthesis of nickel-cobalt sulfide/graphene hybrid electrodes for high-performance asymmetrical supercapacitors
Gao et al. Fabrication of metallic nickel–cobalt phosphide hollow microspheres for high-rate supercapacitors
Hu et al. Flower-like NiCo2S4 microspheres based on nanosheet self-assembly anchored on 3D biomass-derived carbon for efficient microwave absorption
Kavinkumar et al. Interface-modulated uniform outer nanolayer: a category of electrodes of nanolayer-encapsulated core-shell configuration for supercapacitors
Jin et al. CNTs@ NC@ CuCo2S4 nanocomposites: An advanced electrode for high performance lithium-ion batteries and supercapacitors
Liu et al. Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@ NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors
Jia et al. Hierarchical nanocomposite of carbon-fiber-supported NiCo-based layered double-hydroxide nanosheets decorated with (NiCo) Se2 nanoparticles for high performance energy storage
Li et al. Carbon coated sodium-titanate nanotube as an advanced intercalation anode material for sodium-ion batteries
Liu et al. In-situ generated NiCo2O4/CoP polyhedron with rich oxygen vacancies interpenetrating by P-doped carbon nanotubes for high performance supercapacitors
Du et al. Ternary nickel-cobalt selenide nanosheet arrays with enhanced electrochemical performance for hybrid supercapacitors
Ren et al. Facile ion exchange to construct Ni-Fe-Co sulfides and hydroxides ultrathin nanosheets with rich interfaces for advanced all-solid-state asymmetric supercapacitors
Xue et al. Fabrication of hierarchical NiCo2S4 nanotubes@ NiMn-LDH nanosheets core-shell hybrid arrays on Ni foam for high-performance asymmetric supercapacitors
Liu et al. Highly nitrogen-doped graphene anchored with Co3O4 nanoparticles as supercapacitor electrode with enhanced electrochemical performance
Wang et al. Hierarchical Cu0. 92Co2. 08O4@ NiCo-layered double hydroxide nanoarchitecture for asymmetric flexible storage device
Xing et al. NiMoO4@ Ni3S2 core–shell composites grown in situ on nickel foam for applications in supercapacitors
Hu et al. Reduced graphene oxide nanosheet-wrapped hollow cobalt selenide nanocubes as electrodes for supercapacitors
Chen et al. Nano-dendrite structured cobalt phosphide based hybrid supercapacitor with high energy storage and cycling stability
CN107680831B (zh) 一种空心玉米状Co3O4@NiCo2O4/氮掺杂石墨烯柔性电极材料的制备方法
Ren et al. Hierarchically nanostructured Zn0. 76C0. 24S@ Co (OH) 2 for high-performance hybrid supercapacitor
Zhao et al. Coaxial fabrication of Ni-Co layered double hydroxide into 3D carbon nanotube networks for high-performance flexible fiber supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190628

Termination date: 20200823

CF01 Termination of patent right due to non-payment of annual fee