CN107667135A - 多糖珠粒的制备方法 - Google Patents

多糖珠粒的制备方法 Download PDF

Info

Publication number
CN107667135A
CN107667135A CN201680032270.8A CN201680032270A CN107667135A CN 107667135 A CN107667135 A CN 107667135A CN 201680032270 A CN201680032270 A CN 201680032270A CN 107667135 A CN107667135 A CN 107667135A
Authority
CN
China
Prior art keywords
methyl
polysaccharide
ketone
organic solvent
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680032270.8A
Other languages
English (en)
Other versions
CN107667135B (zh
Inventor
P.E.埃米斯森
S.K.M.林德伯格
J.维纳斯森
J.古斯塔夫斯森
A.胡赖诺维茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cytiva Sweden AB
Original Assignee
GE Healthcare Bio Sciences AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Healthcare Bio Sciences AB filed Critical GE Healthcare Bio Sciences AB
Publication of CN107667135A publication Critical patent/CN107667135A/zh
Application granted granted Critical
Publication of CN107667135B publication Critical patent/CN107667135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/78Cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开一种制备多糖珠粒的方法,其包括以下步骤:i)提供包含多糖水溶液的水相;ii)提供包含至少一种水‑不混溶的有机溶剂和至少一种油溶性乳化剂的油相;iii)使水相在油相中乳化以形成油包水(w/o)乳液;和iv)诱导水相在w/o乳液中的凝固,其中有机溶剂是脂族或脂环族酮或醚。

Description

多糖珠粒的制备方法
本发明的技术领域
本发明涉及多糖珠粒,且更特别地涉及通过反相悬浮技术制备多糖珠粒。本发明也涉及交联的多糖珠粒和涉及珠粒用于分离目的的用途。
发明背景
交联的多糖珠粒通常用作蛋白和其它生物分子的色谱分离的静止相。这样的珠粒在二十世纪六十年代早期引入(见例如US3208994,其通过引用以其整体结合到本文中),主要用于实验室分离目的。由于此后它们的应用有极大的提高,并且交联的多糖珠粒现在常规用于分离许多生物药物例如单克隆抗体、血浆成分、胰岛素和各种重组蛋白的大规模制备方法。
制备多糖珠粒的最常见的方法是通过反相悬浮方法,其中多糖的水溶液被乳化为在连续的油相中的油包水(w/o)乳液,并且乳液液滴通过交联或者通过热凝胶化凝固。这样的方法描述于例如US3208994、US4794177和US6602990中(通过引用以其整体结合到本文中),其使用卤代烃或芳族烃作为油相。本文的问题是当前卤代烃和芳族烃的大规模使用因环境原因而被淘汰。
因此对制备多糖珠粒而不使用卤化或芳族溶剂的方法存在着需求。
发明概述
本发明的一个方面是提供制备多糖珠粒的环境可接受的方法。这用如在权利要求中定义的方法实现。
一个优点是所述方法不使用卤化或芳族溶剂。进一步的优点是可获得具有良好的孔隙结构和机械特性的球形珠粒。
本发明的第二个方面是提供适合于分离目的的多糖珠粒。这用如在权利要求书中定义的珠粒实现。
本发明的第三个方面是提供用于分离交联珠粒的目的的用途。这采用如在权利要求中定义的用途实现。
本发明的进一步的合适实施方案描述于从属权利要求中。
附图
图1显示本发明的方法的概要。a) 将水相加入到油相中,b) 油包水乳液,c) 分散于油相中的凝固珠粒。
图2显示依据本发明的实施方案的右旋糖苷与表氯醇的交联。
图3显示来自a) 样品9090 (2-MCH)和b) 样品5595 (3-MCH)的溶胀颗粒的显微镜照片。
图4显示来自样品5624 (环己烷 + 3-MCH)的溶胀颗粒的显微镜照片。
图5显示来自a) 样品6462 (CPME)和b) 样品5182 (CPME + 3-MCH)的溶胀颗粒的显微镜照片。
图6显示来自a) 样品6671 (DIBK)和b) 样品5382 (DIBK + 3-MCH)的溶胀颗粒的显微镜照片。
图7显示来自样品9355 (MAK)的溶胀颗粒的显微镜照片。
实施方案的详述
在一个方面,由图1-2所说明的,本发明公开一种制备多糖珠粒的方法,其包括以下步骤:
i) 提供包含多糖水溶液的水相1。这可通过使多糖溶于水或溶于包含一种或多种另外的成分例如盐、缓冲剂、碱、还原剂等的水中而完成。多糖可例如是天然多糖例如右旋糖苷、支链淀粉、淀粉、藻酸盐、瓜尔胶、刺槐豆胶、魔芋、琼脂、琼脂糖、角叉菜胶等。作为实例,多糖可以是右旋糖苷,例如具有20-4000 kDa、40-2000 kDa或100-500 kDa的重均分子量(Mw)的右旋糖苷。或者,多糖可以是天然多糖的衍生物,例如纤维素醚、琼脂糖醚、淀粉醚、DEAE右旋糖苷等。有利地,多糖在室温或在升高的温度下是水溶性的。
ii) 提供包含至少一种水-不混溶的有机溶剂和至少一种油溶性乳化剂的油相2。水-不混溶的有机溶剂可合适地具有在25℃的小于5 vol. %,例如小于3 vol. %或小于2vol. %的水溶性,并且水在25℃的水-不混溶的有机溶剂中的溶解度可合适地小于5 vol.%,例如小于3 vol. %或小于2 vol. %。油溶性乳化剂可合适地溶于有机溶剂中,并且油相可通过使一种或多种油溶性乳化剂溶于水-不混溶的有机溶剂或水-不混溶的有机溶剂的混合物中来制备。乳化剂在油相中的浓度可例如是0.01-0.5 g/ml,例如0.05-0.3 g/ml。在使用混合的乳化剂的情况下,这些值也可指乳化剂在油相中的总浓度。如果使用聚合物乳化剂,油相的粘度可随着乳化剂的分子量和浓度而变化。
iii) 使水相在油相中乳化以形成油包水(w/o)乳液。如在图1中所说明的,这可例如在通过搅拌器4提供的搅拌下,将水相1加入到在乳化容器3中的油相2中进行,以使水相作为离散的液体小滴5分散于连续油相2中,经乳化剂稳定。本领域已知的其它技术也可使用,例如使用静态混合器、膜乳化等连续乳化。取决于油相的粘性,可能需要某些优化的搅拌强度以获得所产生的珠粒的特定粒径。作为选择(或另外地),乳化剂的浓度和/或类型可以变化以得到一定的粒径。
iv) 诱导水相在w/o乳液中凝固。这意味着液体小滴5通过多糖的凝胶化转化为(固体)凝胶珠粒6。凝胶化可例如通过加入交联剂诱导以化学(共价)交联多糖(如下文进一步讨论的),或通过降低温度以引起多糖的热凝胶化(也如下文讨论的)。一旦水相液滴已凝固成凝胶珠粒,所述珠粒可通过沉降和/或过滤回收,并且它们可被进一步洗涤和加工,以提供适合于分离或细胞培养目的的珠粒。进一步的加工可例如包括进一步的交联步骤和/或用试剂衍生化以引入官能团。
至少一种有机溶剂是脂族或脂环族酮或醚。作为选择,或另外地,至少一种有机溶剂不含卤素(即溶剂的分子不含有卤原子)且具有在δD = 15.0-18.5 MPa1/2,δP = 3.5-8.5MPa1/2和δH = 4.0-5.5 MPa1/2的范围内的汉森溶解度参数值。油相也可包含无卤素的水-不混溶有机溶剂的混合物,其中所述混合物具有在δD = 15.0-18.5 MPa1/2,δP = 3.5- 8.5MPa1/2和δH = 4.0-5.5 MPa1/2的范围内的汉森溶解度参数值。 合适地,卤化溶剂在油相中的含量可小于1 mol %,例如小于0.1%或小于0.01 %。汉森溶解度参数详细讨论于C MHansen:三维溶解度参数和溶剂扩散系数 - 它们在表面涂布制剂中的重要性(The threedimensional solubility parameter and solvent diffusion coefficient – Theirimportance in surface coating formulation), Copenhagen 1967。δD是对溶剂的溶解度参数(内聚能密度)的分散力贡献(dispersion force contribution),而δP是极性力贡献和δH是氢键力贡献。对于不同溶剂的汉森溶解度参数表可例如在J Brandrup, E HImmergut Eds. 聚合物手册(Polymer Handbook),第3版, John Wiley & Sons 1989, pp.VII/540-VII/544中发现。
在某些实施方案中,由图2说明,步骤iv)包括交联多糖。这可例如通过加入交联剂至w/o乳液中实现。交联剂可例如是具有两个亲电子官能团的化合物,其可例如与多糖上的两个羟基反应并通过在多糖链之间形成共价键的链接引起交联。羟基在高pH条件下是特别亲核的,并且在方法中使用高pH水相,例如通过加入NaOH或其它合适的碱(例如KOH)至水相中可能是有利的。在水相中的碱(NaOH或KOH)浓度可例如是至少0.1 M,例如0.1-2 M或0.5-1 M。亲电子交联剂的实例包括表氯醇、二环氧化物和多功能环氧化物,以及二乙烯砜和卤代醇像1,3-二溴-丙醇-2。交联剂可合适地被加入到w/o乳液中,以使它溶于油相并分散到水相液滴中。
在某些实施方案中,步骤iv)包括多糖的热凝胶化。在这种情况下,多糖可以是热水可溶性多糖,其在冷却时形成凝胶。这样的多糖的实例是例如琼脂和琼脂糖,其在约60℃和更高的温度下是可溶性的,但在冷却至例如约40℃或更低温度时形成固体凝胶。在这种情况下,步骤i)-iii)可在多糖为可溶性的温度下进行,而在步骤iv)中,温度被降至低于所用特殊多糖的凝胶点的温度。
在某些实施方案中,至少一种乳化剂是纤维素衍生物,例如纤维素酯或纤维素醚。在纤维素酯中,纤维素混合的酯,例如乙酸丁酸纤维素可能是特别有用的。不同级别的乙酸丁酸纤维素(CAB)是可市售获得的,例如得自Eastman Chemical Company (USA)。CAB的分子量可合适地是10-100 kDa,例如15-75 kDa或16-70 kDa,通过凝胶渗透层析作为聚苯乙烯等同物数均分子量(Mn)测定。乙酰基和丁酰基含量可例如是2-20 wt. %乙酰基含量和20-60 wt. %丁酰基含量,例如a) 10-15wt.%乙酰基含量和30-40 wt.%丁酰基含量或b) 2-5 wt.%乙酰基含量和50-60 wt.%丁酰基含量或c) 2-15 wt.%乙酰基含量和30-60 wt.%丁酰基含量。可用作乳化剂的纤维素醚的实例是乙基纤维素。
在一些实施方案中,至少一种有机溶剂是C6-C10脂族或脂环族酮或醚,例如C6-C10脂环族酮或醚。这样的溶剂的实例是由式I、II或III定义的那些,
其中:
R1和R2各自独立地为C1-C5烷基;
R3是C1-C5亚烷基;
R4是连接于环结构中的非-羰基碳原子的任何一个上的氢或C1-C5烷基;和
R5和R6各自独立地为C1-C6烷基或环烷基。
在一些实施方案中,至少一种有机溶剂由式II定义,其中R3和R4如上定义。R3可以例如是C2亚烷基和R4可以是甲基。
在某些实施方案中,有机溶剂可选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮、环己酮、二异丁基酮、甲基正戊基酮、甲基异戊基酮、甲基异丁基酮、环戊基甲基醚及其混合物。至少一种有机溶剂可例如选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮、环己酮、甲基正戊基酮、甲基异戊基酮、甲基异丁基酮和环戊基甲基醚,例如选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮和环己酮。在特殊的情况下,至少一种有机溶剂可以是2-甲基环己酮。
在第二个方面,本发明公开一种通过以上公开的任何实施方案的方法制备的多糖珠粒,或多种多糖珠粒。本发明也公开一种交联的多糖珠粒,或多种交联的多糖珠粒,包含至少0.1 ppm,例如0.1-100 ppm的C6-C10脂族或脂环族酮或醚。这可例如构成来自如上讨论的制备方法的溶剂残留物。所述量可例如通过顶部空间GC或提取物的GC分析,使用例如质谱或火焰电离作为检测方法来测量。C6-C10脂族或脂环族酮或醚可通过如上讨论的式I、II或III定义,并且它可例如选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮、环己酮、二异丁酮、甲基正戊基酮、甲基异戊基酮、甲基异丁基酮、环戊基甲基醚及其混合物。
在一些实施方案中,所述珠粒或多个珠粒在干燥的形式具有40-125 μm的直径。在多个珠粒的情况下,直径可作为体积-权重中位数直径d50v,例如通过激光衍射或通过电区(electrozone)传感计数技术测定。
在某些实施方案中,所述珠粒或多个珠粒包含至少0.1 mmol/g,或1-6 mmol/g,共价键合的荷电基团,例如羧甲基-、磺丙基-、二乙基氨基乙基-,和/或二乙基-(2-羟基-丙基)氨基乙基-基团。这样的基团对于离子交换分离是有用的,并且当所述珠粒被用作细胞培养中的微载体时,基团像二乙基氨基乙基也可促进粘附细胞的生长。使用荷电基团的衍生化可通过本领域熟知的方法完成。
在第三个方面,本发明公开一种或多种如上所述的多糖珠粒用于将目标生物分子例如目标蛋白与杂质或污染物分离的用途。
在第四个方面,本发明公开一种或多种如上所述的多糖珠粒作为细胞培养的微载体的用途。
实施例
乳化方法(参考实施例使用1,2-二氯乙烷)
使165 g右旋糖苷(Mw 150-250 kD)溶于390 ml蒸馏水,同时在搅拌下加入22 ml 50%氢氧化钠(NaOH)。将0.8 g硼氢化钠(NaBH4)加入到溶液中。
将21g乙酸丁酸纤维素(CAB)加入到一个附有顶部搅拌器的1000 ml玻璃反应器中。启动搅拌器并加入350 ml 1,2-二氯乙烷(EDC) (因此CAB浓度是0.060 g/ml EDC)。搅拌溶液直至CAB溶解。然后于50℃搅拌下,将水相加入到油相中,并继续搅拌直至达到合适的液滴大小,如从抽出的小样本的显微镜检所判断的。当获得合适的大小时,通过加入22.4ml表氯醇(ECH)以交联右旋糖苷并因此固化液滴来立即稳定乳液。加入ECH后20分钟,加入50 ml EDC使反应混合物较少粘性并容易搅拌。
在加入500 ml丙酮20±4h后终止交联反应。然后将反应混合物转移至一个含有1250 ml丙酮的3000 ml玻璃反应器中。搅拌溶液30 min,然后允许凝胶沉降。倾出上清液,并且洗涤程序用丙酮重复5次,然后用60%乙醇水溶液洗涤7次并用95%乙醇洗涤4次。然后于60℃真空下干燥凝胶48 h,并且生成的粉末经40和100 μm之间的筛过筛。
来自该实验的5次重复的结果示于表2,如样品3077、3088、3092、3081和1175。
SEC分析
将大约3-4克粉末称重至一塑料瓶中,该瓶中已加入大约100 ml的或者9 mg/ml NaCl溶液或者运行缓冲液(0.15M NaCl+ 0.05 M磷酸盐缓冲液,pH 7.0)。凝胶经放置溶胀并沉降至少16小时。然后将其洗涤数次并以运行缓冲液稀释以生成一种50-60%的凝胶浆液。10mm直径和30 cm高度的柱(GE Healthcare HR10/30)用1.0或者1.2 ml/min的初始流速填充,并且最终流速是1.2或者1.7 ml/min。然后在有效性试验中测试填充柱并通过选择性试验,用右旋糖苷标准品和蛋白评价,如描述于L Hagel: pp. 51-87,J C Janson (Ed):蛋白纯化:原理,高分辨率的方法,和应用(Protein Purification: Principles, HighResolution Methods, and Applications),第3版,Wiley 2011。试验蛋白是α胰凝乳蛋白酶原II型,牛(Mw 26 kDa),核糖核酸酶A,牛(Mw 13.7 kDa)和溶菌酶,鸡(Mw 14.3 kDa),伴有0.15 M NaCl、0.05M磷酸钠(pH 7.0)作为运行缓冲液。这些蛋白关于原型的KD数据(即可接近特定尺寸的探针分子的珠粒体积的分数)示于表3。
吸水量(Water regain)
吸水量(Wr)是1 g干燥珠粒在所述珠粒内吸收的水的量。高Wr值指示溶胀的凝胶是密度较低的并可分离高Mw目标分子。用500 ml水平衡15 g干燥珠粒24 h。带有10 μm底部过滤器的3.3 x 11.5 cm称重离心管填充有凝胶浆液并以1800 rpm离心10 min。在测定管的湿重后,于105℃干燥过夜,并测定干重。吸水量被计算为每g干燥凝胶的干燥重量损失(作为ml水)。
粒径分布
粒径分布以库尔特粒度分析仪(Coulter Multisizer) (Beckman Coulter),使用电区感应技术测定。
显微镜检查
交联后,所述珠粒以具有相差光学器件的光学显微镜检查,并且注意到表面凹痕、夹杂物、聚集体等的存在。
使用不同溶剂的乳化
溶剂缩略语
CPME - 环戊基甲基醚
DIBK - 二异丁酮(2,6-二甲基-4-庚酮)
EDC - 1,2-二氯乙烷
MAK - 甲基正戊基酮
2-MCH - 2-甲基环己酮
3-MCH - 3-甲基环己酮
4-MCH - 4-甲基环己酮
依据以上参考实施例,用其它溶剂代替EDC,并在某些情况下用不同类型和/或浓度的CAB进行乳化。所用的CAB类型在表1中指定。所述珠粒如上所述进行表征,并且结果整理于表2和3中并在下文讨论。
表1. 所用的CAB类型(全部来自Eastman Chemical Company并伴有依据供应商的数据表的数据)
CAB类型 分子量*, kDa 粘度**,泊 丁酰基含量, wt % 乙酰基含量, wt %
381-0.5 30 1.9 37 13
381-20 70 76 37 13.5
500-5 57 19 51 4
551-0.01 16 0.038 53 2
* 聚苯乙烯等同物数均分子量(Mn),如通过凝胶渗透层析测定的
** 通过ASTM方法D 1343测定的粘度。使用如对于ASTM方法D 817 (20%纤维素酯、72%丙酮、8%乙醇)中所述的式A的溶液密度,将结果转化为泊(ASTM方法D 1343)。
表2. 得自用不同溶剂和溶剂组合乳化的结果
表3. 在用填充在柱中的原型进行的凝胶过滤实验中3种试验蛋白的KD数据
所用的溶剂也在右旋糖苷和乳化剂的不存在下执行的乳化模型实验前后,通过NMR光谱学分析。之前和之后的光谱是基本上相同的,显示在所用的反应条件期间没有降解发生。这与酯溶剂乙酸叔丁酯形成对比,虽然乙酸叔丁酯是一种空间位阻酯,但在所用的强碱性条件下完全水解。
讨论
经评价的溶剂产生可用于层析的珠粒,例如通过它们在SEC分析中的性能所证实的。测量的特性是在关于参考原型的相同范围内,其显示新溶剂表现优异。由于溶剂和CAB乳化剂之间的不同相互作用,CAB类型和浓度必须变化以得到合适的油相粘度。珠粒通常是球形的(图7-11),但使用溶剂3-MCH和4-MCH (特别是当单独使用时),一些夹杂物和表面凹痕出现在珠粒上。
本书面描述使用实施例来公开本发明,包括最佳模式,并且还能使本领域任何技术人员实践本发明,包括制作和使用任何装置或系统并执行任何合并的方法。本发明的可专利范围受权利要求书的限定,并可包括本领域技术人员想到的其它实施例。意欲使这样的其它实施例落入权利要求书的范围内,如果它们具有不同于权利要求书的文字语言的结构元素,或如果它们包括与权利要求书的文字语言无实质不同的等同结构元素的话。本文提供的任何专利或专利申请通过引用以其整体结合到本文中,如同它们各自被结合到本文中一样。

Claims (29)

1.一种制备多糖珠粒的方法,其包括以下步骤:
i) 提供包含多糖水溶液的水相;
ii) 提供包含至少一种水-不混溶的有机溶剂和至少一种油溶性乳化剂的油相;
iii) 使所述水相在所述油相中乳化以形成油包水(w/o)乳液;和
iv) 诱导所述水相在所述w/o乳液中的凝固,
其中所述至少一种有机溶剂是脂族或脂环族酮或醚。
2.一种制备多糖珠粒的方法,其包括以下步骤:
i) 提供包含多糖水溶液的水相;
ii) 提供包含至少一种水-不混溶的有机溶剂和至少一种油溶性乳化剂的油相;
iii) 使所述水相在所述油相中乳化以形成油包水(w/o)乳液;和
iv) 诱导所述水相在所述w/o乳液中的凝固,
其中所述至少一种有机溶剂不含卤素且具有在δD = 15.0-18.5 MPa1/2,δP = 3.5-8.5MPa1/2和δH = 4.0-5.5 MPa1/2的范围内的汉森溶解度参数值,或其中所述油相包含无卤素的水-不混溶有机溶剂的混合物,所述混合物具有在δD = 15.0-18.5 MPa1/2,δP = 3.5-8.5MPa1/2和δH = 4.0-5.5 MPa1/2的范围内的汉森溶解度参数值。
3.权利要求2的方法,其中所述至少一种有机溶剂是脂族或脂环族酮或醚,例如脂环族酮或醚。
4.任一项前述权利要求的方法,其中步骤iv)包括交联所述多糖。
5.权利要求4的方法,其中在步骤iv)中,交联剂被加入到所述w/o乳液中。
6.权利要求的方法,其中所述交联剂包含表氯醇或二环氧化物。
7.权利要求4-6的任一项的方法,其中所述交联在碱性条件下进行。
8.任一项前述权利要求的方法,其中所述多糖包含右旋糖苷。
9. 权利要求8的方法,其中所述右旋糖苷具有20-4000 kDa的重均分子量,Mw。
10. 任一项前述权利要求的方法,其中所述乳化剂在所述油相中的浓度是0.01-0.5g/ml。
11.任一项前述权利要求的方法,其中所述至少一种乳化剂是纤维素衍生物,例如纤维素酯。
12.权利要求11的方法,其中所述至少一种乳化剂是纤维素混合的酯,例如乙酸丁酸纤维素。
13. 权利要求12的方法,其中所述至少一种乳化剂是具有10-100 kDa,例如15-75 kDa的平均分子量Mn的乙酸丁酸纤维素。
14. 权利要求12或13的方法,其中所述至少一种乳化剂是具有2-20 wt. %乙酰基含量和20-60 wt. %丁酰基含量的乙酸丁酸纤维素。
15.任一项前述权利要求的方法,其中所述至少一种有机溶剂是C6-C10脂族或脂环族酮或醚,例如C6-C10脂环族酮或醚。
16.任一项前述权利要求的方法,其中所述至少一种有机溶剂由式I、II或III定义,
其中:
R1和R2各自独立地为C1-C5烷基;
R3是C1-C5亚烷基;
R4是氢或C1-C5烷基;和
R5和R6各自独立地为C1-C6烷基或环烷基。
17.权利要求16的方法,其中所述至少一种有机溶剂由式II定义。
18.任一项前述权利要求的方法,其中所述至少一种有机溶剂选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮、环己酮、二异丁酮、甲基正戊基酮、甲基异戊基酮、甲基异丁基酮、环戊基甲基醚及其混合物。
19.权利要求18的方法,其中所述至少一种有机溶剂选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮和环己酮。
20.权利要求19的方法,其中所述至少一种有机溶剂是2-甲基环己酮。
21.一种多糖珠粒,其由任一项前述权利要求的方法制备。
22. 一种交联的多糖珠粒,其包含至少0.1 ppm,例如0.1-100 ppm的C6-C10脂族或脂环族酮或醚。
23.权利要求19的交联的多糖珠粒,其中所述C6-C10脂族或脂环族酮或醚由式I、II或III,例如由式II定义,
其中:
R1和R2各自独立地为C1-C5烷基;
R3是C1-C5亚烷基;
R4是氢或C1-C5烷基;和
R5和R6各自独立地为C1-C6烷基或环烷基。
24.权利要求19或20的交联的多糖珠粒,其中所述C6-C10脂族或脂环族酮或醚选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮、环己酮、二异丁酮、甲基正戊基酮、甲基异戊基酮、甲基异丁基酮、环戊基甲基醚及其混合物。
25.权利要求23的珠粒,其中所述有机溶剂选自2-甲基环己酮、3-甲基环己酮、4-甲基环己酮和环己酮。
26. 权利要求20-24的任一项的交联的多糖珠粒,其在干燥形式具有40-125 μm的直径。
27. 权利要求20-25的任一项的交联的多糖珠粒,其包含至少0.1 mmol/g,或1-6mmol/g,共价键合的荷电基团,例如羧甲基-、磺丙基-、二乙基氨基乙基-,和/或二乙基-(2-羟基-丙基)氨基乙基-基团。
28.依据权利要求20-26的任一项的一种或多种多糖珠粒在将目标生物分子例如目标蛋白与杂质或污染物分离中的用途。
29.依据权利要求20-26的任一项的一种或多种多糖珠粒作为细胞培养的微载体的用途。
CN201680032270.8A 2015-06-04 2016-05-27 多糖珠粒的制备方法 Active CN107667135B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1509677.9 2015-06-04
GBGB1509677.9A GB201509677D0 (en) 2015-06-04 2015-06-04 Manufacturing process for polysaccharide beads
PCT/EP2016/062050 WO2016193163A1 (en) 2015-06-04 2016-05-27 Manufacturing process for polysaccharide beads

Publications (2)

Publication Number Publication Date
CN107667135A true CN107667135A (zh) 2018-02-06
CN107667135B CN107667135B (zh) 2022-11-18

Family

ID=53784923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680032270.8A Active CN107667135B (zh) 2015-06-04 2016-05-27 多糖珠粒的制备方法

Country Status (5)

Country Link
US (2) US11236216B2 (zh)
EP (1) EP3303412B1 (zh)
CN (1) CN107667135B (zh)
GB (1) GB201509677D0 (zh)
WO (1) WO2016193163A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675793A (zh) * 2020-12-10 2021-04-20 广州中国科学院先进技术研究所 一种灵芝孢子油纳米微囊的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974054A (en) * 1961-10-25 1964-11-04 Aktoebolaget Pharmacia A method for the manufacture of high molecular weight hydrophilic copolymers of hydroxyl group-containing uncharged polymer substances in gel grain form
GB1244990A (en) * 1968-12-03 1971-09-02 Avebe Coop Verkoop Prod Cyclodextrin derivatives
EP0188084A2 (en) * 1984-12-29 1986-07-23 Ceskoslovenska akademie ved Method for the production of bead dextran materials for gel chromatography
US5075432A (en) * 1989-08-11 1991-12-24 Edward Vanzo Spherical cyclodextrin polymer beads
CN1078724A (zh) * 1993-04-20 1993-11-24 化学工业部晨光化工研究院成都分院 珠状交联葡甘露聚糖的制备方法
WO1997038018A1 (en) * 1996-04-11 1997-10-16 Amersham Pharmacia Biotech Ab Process for the production of a porous cross-linked polysaccharide gel and its use as a gel filtration media and in chromatography
WO2012028623A1 (en) * 2010-08-31 2012-03-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Crosslinked polysaccharide beads and their biomedical uses
CN103229261A (zh) * 2010-12-03 2013-07-31 旭硝子株式会社 电荷保持介质的制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL175307B (nl) * 1952-05-31 Air Prod & Chem Werkwijze ter bereiding van opschuimbare vinylharsmengsels, alsmede de hieruit vervaardigde schuimvormige voorwerpen.
DE3501074A1 (de) * 1985-01-15 1986-07-17 Agfa-Gevaert Ag, 5090 Leverkusen Fotografisches aufzeichnungsmaterial und verfahren zur herstellung fotografischer bilder
JPS6317904A (ja) * 1986-07-09 1988-01-25 Mitsubishi Chem Ind Ltd 多孔質架橋ポリビニルアルコ−ル粒子の製造法
US5935941A (en) * 1997-10-24 1999-08-10 Pitha; Josef Alkylations of cyclodextrins leading to derivatives which have a ridgidly extended cavity
JP4330265B2 (ja) * 2000-10-24 2009-09-16 株式会社日本触媒 多孔質架橋重合体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB974054A (en) * 1961-10-25 1964-11-04 Aktoebolaget Pharmacia A method for the manufacture of high molecular weight hydrophilic copolymers of hydroxyl group-containing uncharged polymer substances in gel grain form
GB1244990A (en) * 1968-12-03 1971-09-02 Avebe Coop Verkoop Prod Cyclodextrin derivatives
EP0188084A2 (en) * 1984-12-29 1986-07-23 Ceskoslovenska akademie ved Method for the production of bead dextran materials for gel chromatography
US5075432A (en) * 1989-08-11 1991-12-24 Edward Vanzo Spherical cyclodextrin polymer beads
CN1078724A (zh) * 1993-04-20 1993-11-24 化学工业部晨光化工研究院成都分院 珠状交联葡甘露聚糖的制备方法
WO1997038018A1 (en) * 1996-04-11 1997-10-16 Amersham Pharmacia Biotech Ab Process for the production of a porous cross-linked polysaccharide gel and its use as a gel filtration media and in chromatography
WO2012028623A1 (en) * 2010-08-31 2012-03-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Crosslinked polysaccharide beads and their biomedical uses
CN103229261A (zh) * 2010-12-03 2013-07-31 旭硝子株式会社 电荷保持介质的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675793A (zh) * 2020-12-10 2021-04-20 广州中国科学院先进技术研究所 一种灵芝孢子油纳米微囊的制备方法

Also Published As

Publication number Publication date
EP3303412B1 (en) 2024-10-09
GB201509677D0 (en) 2015-07-22
US20180291184A1 (en) 2018-10-11
US11236216B2 (en) 2022-02-01
CN107667135B (zh) 2022-11-18
US20220106462A1 (en) 2022-04-07
WO2016193163A1 (en) 2016-12-08
EP3303412A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5952522B2 (ja) セルロース誘導体微粒子、その分散液、その分散体及び診断薬
US9352298B2 (en) Method for producing polymer particles, and polymer particles
JP6231032B2 (ja) セルロース多孔質粒子の製造方法及びセルロース多孔質粒子
Yang et al. Hydrophobically modified alginate for emulsion of oil in water
CN105518059B (zh) 多孔性纤维素粒子的制造方法、多孔性纤维素粒子及色谱法用填充剂
JP2022515769A (ja) 大孔径アガロース
CN102307654A (zh) 聚合物壳
US20220106462A1 (en) Manufacturing Process for Polysaccharide Beads
CN110935406B (zh) 一种高强度多糖-纳米锂藻土复合微球及其制备方法
US12005424B2 (en) Separation matrix and method of separation
Song et al. pH‐Responsive Porous Nanocapsules for Controlled Release
CA2063441C (en) Cellulose chromatography support
CN104043379B (zh) 一种琼脂/葡聚糖复合凝胶微球的制备方法
Bria Development of asymmetrical flow field-flow fractionation for the characterization of proteins, protein aggregation, and nanoparticles
CN109750025A (zh) 一种水凝胶包覆树枝状二氧化硅固定化cpo酶反应器及其制备方法和应用
JP2012126797A (ja) 多糖複合粒子の製造方法、及び、多糖複合粒子
XL Tan et al. Parametric investigation of batch adsorption of proteins onto polymeric particles
Ma et al. Adsorption–Reaction Processes Between Gelatin and PDMS-E Emulsion Droplets
Wang et al. Facile Fabrication of Hollow Molecularly Imprinted Polymer Particles with Multicore Structure via Miniemulsion Polymerization
Yamaguchi et al. Imidazolium-based polymer hydrogels with microdomains as carriers of hydrophobic molecules
JPWO2018186222A1 (ja) 多孔質セルロースビーズおよび吸着体
Williams Adsorptive recovery of nanoparticulate protein products: physical and biochemical characterisation of candidate solid phases
Lazim et al. A Study on Microgel System as a Template for Dispersion and Separation of Chiral Tartaric Acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: uppsala

Applicant after: Situofan Biotechnology R & D Co.,Ltd.

Address before: uppsala

Applicant before: GE HEALTHCARE BIO-SCIENCES AB

GR01 Patent grant
GR01 Patent grant
TG01 Patent term adjustment
TG01 Patent term adjustment