CN107656271A - 基于压缩感知重构的太赫兹雷达成像算法 - Google Patents

基于压缩感知重构的太赫兹雷达成像算法 Download PDF

Info

Publication number
CN107656271A
CN107656271A CN201710782421.8A CN201710782421A CN107656271A CN 107656271 A CN107656271 A CN 107656271A CN 201710782421 A CN201710782421 A CN 201710782421A CN 107656271 A CN107656271 A CN 107656271A
Authority
CN
China
Prior art keywords
mrow
msup
msub
mfrac
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710782421.8A
Other languages
English (en)
Other versions
CN107656271B (zh
Inventor
葛玲玉
朱嘉祺
吴礼
彭树生
许静瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710782421.8A priority Critical patent/CN107656271B/zh
Publication of CN107656271A publication Critical patent/CN107656271A/zh
Application granted granted Critical
Publication of CN107656271B publication Critical patent/CN107656271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于压缩感知重构的太赫兹雷达成像算法,该算法首先根据回波信号的推导公式分离出两个隐藏式的测量矩阵;然后采用2D‑SL0重构算法解决最优化l0范数问题,对测量信号进行重构,得到成像目标的反射系数,得到最终成像结果。本发明与SL0算法相比,具有成像时间少,成像效率高的优点。

Description

基于压缩感知重构的太赫兹雷达成像算法
技术领域
本发明涉及太赫兹调频连续波雷达成像技术,特别是一种基于压缩感知重构的太赫兹雷达成像算法。
背景技术
太赫兹波(THz)是指频率在0.1THz—10THz之间的电磁波,是最后一个尚未被人类完全认知和利用的电磁波段。THz雷达具有大的带宽,能够实现高分辨率成像,同时可以穿透其他频段的电磁波不能穿透的物质,适用于无损检测、安检等一系列实际应用当中。
压缩感知理论利用信号的稀疏性,通过较少的测量数据即可准确恢复出原始信号。在雷达成像领域,尽管THz成像技术可极大提高成像分辨率,但同时对采样率、方位采样间隔提出了更高要求,由此带来数据获取时间长、数据传输困难等问题。依据压缩感知理论,如果雷达场景稀疏或者可通过某种变换稀疏表示,则可通过采集远低于传统奈奎斯特采样方法要求的数据量进行场景重构,即利用较少的采样数据来实现对原始完整信号的近似逼近,获得较理想的恢复重建。由于压缩采样方法的采用,压缩感知雷达成像技术可以降低系统采样率、增大测绘带宽度、降低采样数据量。所以本发明中将压缩感知理论应用到THz雷达成像中以减少采样的数据量。
目前已经有了一些压缩感知应用于THz雷达成像的算法,“基于压缩感知的太赫兹调频连续波雷达成像算法研究”一文中提出了基于SL0压缩感知重构算法的THz-FMCW雷达成像算法。该成像算法是将压缩感知中的多维优化问题转化为一维优化问题进行研究,但是这样处理存在一个问题:对于大场景目标,测量矩阵尺寸会过于庞大,需要占用大量存储空间,增加了成像处理时间。
发明内容
本发明的目的在于提供一种基于压缩感知重构的太赫兹雷达成像算法。
实现本发明目的的技术方案为:一种基于压缩感知重构的太赫兹雷达成像算法,包括以下步骤:
步骤1,根据回波信号的推导公式分离出两个隐藏式的测量矩阵;
步骤2,采用2D-SL0重构算法解决最优化l0范数问题,重构出原始信号。
与现有技术相比,本发明的显著优点为:
本发明采用隐式的测量矩阵,同时提出改进的SL0重构算法——2D-SL0算法,来减小存储空间,减少成像时间,提高成像效率。
附图说明
图1为本发明雷达成像扫描方式示意图。
图2为本发明实施例中2D-SL0算法重构的点目标二维图像。
图3为本发明实施例中SL0算法重构的点目标二维图像。
具体实施方式
一种基于压缩感知重构的太赫兹雷达成像算法,包括以下步骤:
步骤1,根据回波信号的推导公式分离出两个隐藏式的测量矩阵,得到最优化l0范数问题;
步骤2,采用2D-SL0重构算法解决最优化l0范数问题,重构出原始信号。
进一步的,步骤1具体为:
如图1所示,雷达成像采用平面扫描方式,雷达发射天线在x′o′y′扫描平面发射单频THz信号,接收天线将目标反射的回波信号纪录下来,组成回波数据矩阵;
扫描平面内测量点(x′,y′)接收的回波信号为:
式中,k=2πf/c,f为雷达信号频率,c为光速,σ为目标的散射系数,z0为扫描平面和成像目标之间的距离;(x,y)为目标平面成像点;
在满足远小于1这一条件时,2kR被表示为:
A为扫描平面长度,L为成像目标区域长度,λ为信号波长;
将式(2)代入式(1)可得:
测量目标是稀疏的点目标,其压缩感知算法是通过求解最优化l0范数问题来计算出σ:
min||σ||0 s.t.Φσ=G (4)
式中,G表示测量信号,Φ为测量矩阵;选取测量矩阵为:
由式(5)可知Φ是可分离的,将测量矩阵分离为两个矩阵:
因此,式(4)的最优化l0范数问题表示为:
min||σ||0 s.t.Φ1σΦ2=G (8)
进一步的,最优化l0范数问题是一个NP-hard问题,不能直接计算,需要寻找近似方法来求解。2D-SL0重构算法是用光滑的高斯函数来逼近离散的l0范数,从而将离散函数的最优化问题转化为连续函数的最优化问题,通过凸优化的方法对其求解,在迭代过程中采用最速下降法和梯度投影原理,经过多次迭代逐步逼近最优解。2D-SL0重构算法的具体步骤如下:
(1)初始化算法中的各个参数:
1)
2)选择外循环迭代值α以及确定算法终止的界限αmin
(2)当α>αmin时进行以下循环:
1)进行L次迭代,l=1,2,…,L:
A,令
B,对重构信号进行更新s←s-μα2d,μ为常数;
C,根据梯度投影原理,得到
2)α←βα,其中β为递减因子;
(3)得到重构信号
下面结合具体实施例对本发明进行详细说明。
实施例
本实施例通过对点目标的太赫兹雷达成像仿真阐述基于二维SL0压缩感知重构算法的太赫兹雷达成像算法。
如图1所示,假设目标的参考坐标系为xyz,三个待成像点目标在xy平面内的坐标中的位置分别为(-0.02m,-0.02m)、(0m,0m)、(0.02m,0.02m),雷达成像时扫描平面为x′y′,扫描平面与待测目标平面的距离z0为1.5m。雷达发射的单频信号频率为300GHz,设扫描平面x′y′的范围为100mm×100mm,现随机选取50mm×50mm的范围来接收回波数据,此时雷达回波信号可以表示为:
式中,k=2πf/c,f表示雷达信号频率,c表示光速,σ表示目标的散射系数。
本实施例中扫描平面长度A为100mm,信号波长λ为1mm,假设成像目标区域长度L为0.1m,则满足了远小于1这一条件,那么2kR可以被表示为:
则G(x′,y′)可以表示为:
待成像目标是三个稀疏的点目标,因此基于压缩感知的雷达成像算法可归结为通过求解最优化l0范数问题计算σ:
min||σ||0 s.t.Φσ=G (12)
式中,G表示测量信号,Φ为测量矩阵。选取测量矩阵为:
由式(13)可以看出Φ是可分离的,本发明中将测量矩阵分离为两个矩阵:
至此,式(12)的最优化l0范数问题又可以表示为:
min||σ||0 s.t.Φ1σΦ2=G (16)
下面通过2D-SL0算法求解上述最优化l0范数问题,具体步骤如下:
(1)初始化算法中的各个参数:
1)
2)选择一个合适的外循环迭代值α,以及确定算法终止的界限αmin
(2)当α>αmin时进行以下循环:
1)进行L次迭代,l=1,2,…,L:
A.令
B.对重构信号进行更新s←s-μα2d,μ为常数,本实施例中取值为2;
C.根据梯度投影原理,得到
2)α←βα,其中β为递减因子,取值在0到1之间,本实施例中取0.8;
(3)得到重构信号
至此完成了由测量信号G重构目标散射系数σ的全部过程,接下来进行二维成像显示即完成全部算法过程。图2为2D-SL0算法重构的点目标二维图像。
为了验证本发明中2D-SL0算法在减少成像时间方面的优势,本实施例给出了SL0算法重构的点目标二维图像,如图3所示。本实例仿真时,2D-SL0重构算法耗时0.3588s,SL0重构算法耗时2.2152s,2D-SL0重构算法在减少成像时间方面的优势显著。

Claims (3)

1.一种基于压缩感知重构的太赫兹雷达成像算法,其特征在于,包括以下步骤:
步骤1,根据回波信号的推导公式分离出两个隐藏式的测量矩阵;
步骤2,采用2D-SL0重构算法解决最优化l0范数问题,重构出原始信号。
2.根据权利要求1所述的基于压缩感知重构的太赫兹雷达成像算法,其特征在于,步骤1具体为:
雷达成像采用平面扫描方式,雷达发射天线在x′o′y′扫描平面发射单频THz信号,接收天线将目标反射的回波信号纪录下来,组成回波数据矩阵;
扫描平面内测量点(x′,y′)接收的回波信号为:
<mrow> <mi>G</mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>x</mi> </munder> <munder> <mo>&amp;Integral;</mo> <mi>y</mi> </munder> <mi>&amp;sigma;</mi> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>k</mi> <mi>R</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
式中,k=2πf/c,f为雷达信号频率,c为光速,σ为目标的散射系数,z0为扫描平面和成像目标之间的距离;(x,y)为目标平面成像点;
在满足远小于1这一条件时,2kR被表示为:
<mrow> <mn>2</mn> <mi>k</mi> <mi>R</mi> <mo>&amp;ap;</mo> <mn>2</mn> <mi>k</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>|</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
A为扫描平面长度,L为成像目标区域长度,λ为信号波长;
将式(2)代入式(1)可得:
<mrow> <mi>G</mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>x</mi> </munder> <munder> <mo>&amp;Integral;</mo> <mi>y</mi> </munder> <mi>&amp;sigma;</mi> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>kz</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>k</mi> <mfrac> <mrow> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>k</mi> <mfrac> <mrow> <mo>|</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
测量目标是稀疏的点目标,其压缩感知算法是通过求解最优化l0范数问题来计算出σ:
min||σ||0 s.t.Φσ=G (4)
式中,G表示测量信号,Φ为测量矩阵;选取测量矩阵为:
<mrow> <mi>&amp;Phi;</mi> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>kz</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>k</mi> <mfrac> <mrow> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>k</mi> <mfrac> <mrow> <mo>|</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
由式(5)可知Φ是可分离的,将测量矩阵分离为两个矩阵:
<mrow> <msub> <mi>&amp;Phi;</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>kz</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>k</mi> <mfrac> <mrow> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;Phi;</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>k</mi> <mfrac> <mrow> <mo>|</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
因此,式(4)的最优化l0范数问题表示为:
min||σ||0 s.t.Φ1σΦ2=G (8)
3.根据权利要求1所述的基于压缩感知重构的太赫兹雷达成像算法,其特征在于,步骤2中2D-SL0重构算法的具体步骤如下:
(1)初始化算法中的各个参数:
1)
2)选择外循环迭代值α以及确定算法终止的界限αmin
(2)当α>αmin时进行以下循环:
1)进行L次迭代:
A.令
B.对重构信号进行更新s←s-μα2d,μ为常数;
C.根据梯度投影原理,得到
2)α←βα,β为递减因子;
(3)得到重构信号
CN201710782421.8A 2017-09-02 2017-09-02 基于压缩感知重构的太赫兹雷达成像算法 Active CN107656271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710782421.8A CN107656271B (zh) 2017-09-02 2017-09-02 基于压缩感知重构的太赫兹雷达成像算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710782421.8A CN107656271B (zh) 2017-09-02 2017-09-02 基于压缩感知重构的太赫兹雷达成像算法

Publications (2)

Publication Number Publication Date
CN107656271A true CN107656271A (zh) 2018-02-02
CN107656271B CN107656271B (zh) 2021-06-22

Family

ID=61129250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710782421.8A Active CN107656271B (zh) 2017-09-02 2017-09-02 基于压缩感知重构的太赫兹雷达成像算法

Country Status (1)

Country Link
CN (1) CN107656271B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614265A (zh) * 2018-06-01 2018-10-02 金陵科技学院 基于NSL0重构算法的THz-FMCW雷达成像算法
CN110988906A (zh) * 2019-11-22 2020-04-10 湖北三江航天险峰电子信息有限公司 一种太赫兹强度关联探测装置
CN111427046A (zh) * 2020-03-27 2020-07-17 西安交通大学 一种用于提高检测精度的太赫兹脉冲回波定位方法
CN111551902A (zh) * 2020-06-02 2020-08-18 电子科技大学 基于压缩感知技术的fmcw雷达天线缺损时采集信号恢复方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068268A1 (en) * 2009-09-18 2011-03-24 T-Ray Science Inc. Terahertz imaging methods and apparatus using compressed sensing
CN103247034A (zh) * 2013-05-08 2013-08-14 中国科学院光电研究院 一种基于稀疏光谱字典的压缩感知高光谱图像重构方法
CN103364768A (zh) * 2012-03-31 2013-10-23 中国科学院电子学研究所 压缩感知雷达重构方法
CN103822577A (zh) * 2014-03-13 2014-05-28 中国电子科技集团公司第三十八研究所 单像素太赫兹全息成像装置和方法
CN104111458A (zh) * 2014-07-29 2014-10-22 西安电子科技大学 基于双重稀疏约束的压缩感知合成孔径雷达成像方法
CN105044018A (zh) * 2015-07-10 2015-11-11 上海理工大学 一种多功能太赫兹波成像系统及成像方法
CN105842693A (zh) * 2016-03-23 2016-08-10 哈尔滨工业大学 一种基于压缩感知的双通道sar动目标检测的方法
CN106950555A (zh) * 2017-05-03 2017-07-14 中国人民解放军国防科学技术大学 一种基于太赫兹孔径编码成像体制的面目标成像方法
US20170212059A1 (en) * 2015-09-16 2017-07-27 Massachusetts Institute Of Technology Methods and apparatus for imaging of near-field objects with microwave or terahertz radiation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068268A1 (en) * 2009-09-18 2011-03-24 T-Ray Science Inc. Terahertz imaging methods and apparatus using compressed sensing
CN103364768A (zh) * 2012-03-31 2013-10-23 中国科学院电子学研究所 压缩感知雷达重构方法
CN103247034A (zh) * 2013-05-08 2013-08-14 中国科学院光电研究院 一种基于稀疏光谱字典的压缩感知高光谱图像重构方法
CN103822577A (zh) * 2014-03-13 2014-05-28 中国电子科技集团公司第三十八研究所 单像素太赫兹全息成像装置和方法
CN104111458A (zh) * 2014-07-29 2014-10-22 西安电子科技大学 基于双重稀疏约束的压缩感知合成孔径雷达成像方法
CN105044018A (zh) * 2015-07-10 2015-11-11 上海理工大学 一种多功能太赫兹波成像系统及成像方法
US20170212059A1 (en) * 2015-09-16 2017-07-27 Massachusetts Institute Of Technology Methods and apparatus for imaging of near-field objects with microwave or terahertz radiation
CN105842693A (zh) * 2016-03-23 2016-08-10 哈尔滨工业大学 一种基于压缩感知的双通道sar动目标检测的方法
CN106950555A (zh) * 2017-05-03 2017-07-14 中国人民解放军国防科学技术大学 一种基于太赫兹孔径编码成像体制的面目标成像方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WU LI ET AL.: "Application of NUFFT to Terahertz FMCW 3-D Imaging", 《2016 IEEE INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT)》 *
刘记红: "基于压缩感知的ISAR成像技术研究", 《中国博士学位论文全文数据库 信息科科技辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614265A (zh) * 2018-06-01 2018-10-02 金陵科技学院 基于NSL0重构算法的THz-FMCW雷达成像算法
CN110988906A (zh) * 2019-11-22 2020-04-10 湖北三江航天险峰电子信息有限公司 一种太赫兹强度关联探测装置
CN111427046A (zh) * 2020-03-27 2020-07-17 西安交通大学 一种用于提高检测精度的太赫兹脉冲回波定位方法
CN111427046B (zh) * 2020-03-27 2022-05-06 西安交通大学 一种用于提高检测精度的太赫兹脉冲回波定位方法
CN111551902A (zh) * 2020-06-02 2020-08-18 电子科技大学 基于压缩感知技术的fmcw雷达天线缺损时采集信号恢复方法

Also Published As

Publication number Publication date
CN107656271B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN104111458B (zh) 基于双重稀疏约束的压缩感知合成孔径雷达成像方法
CN107656271A (zh) 基于压缩感知重构的太赫兹雷达成像算法
CN107462887B (zh) 基于压缩感知的宽幅星载合成孔径雷达成像方法
CN107132535B (zh) 基于变分贝叶斯学习算法的isar稀疏频带成像方法
CN102879782B (zh) 基于分数阶傅里叶变换的压缩感知sar成像方法
Yoon et al. Compressed sensing technique for high-resolution radar imaging
CN103149561B (zh) 一种基于场景块稀疏的稀疏微波成像方法
CN108226927B (zh) 基于加权迭代最小稀疏贝叶斯重构算法的sar成像方法
CN106405548A (zh) 基于多任务贝叶斯压缩感知的逆合成孔径雷达成像方法
CN106680815B (zh) 基于张量稀疏表示的mimo雷达成像方法
CN105513102B (zh) 基于非局部全变差和低秩稀疏的高光谱压缩感知重建方法
CN103399315A (zh) 实孔径相控阵雷达高分辨探测成像方法
CN102854505A (zh) 一种加权稀疏驱动自聚焦sar成像方法
CN112198506B (zh) 一种超宽带穿墙雷达学习成像的方法、装置、系统和可读存储介质
CN104483671B (zh) 基于稀疏表示理论的合成孔径雷达成像方法
CN107229049A (zh) 基于压缩感知的太赫兹调频连续波雷达三维成像算法
CN109669184A (zh) 一种基于全卷积网络的合成孔径雷达方位模糊消除方法
CN108318891B (zh) 一种基于改进sva和cs的sal数据旁瓣的压低方法
CN107607945A (zh) 一种基于空间嵌入映射的扫描雷达前视成像方法
Vasileiou et al. Efficient CNN-based super resolution algorithms for mmWave mobile radar imaging
CN108562901B (zh) 基于最大信杂噪比准则的isar高分辨成像方法
CN113608218A (zh) 一种基于后向投影原理的频域干涉相位稀疏重构方法
Bi et al. Baseline distribution optimization and missing data completion in wavelet-based CS-TomoSAR
Tang et al. Enhanced through-the-wall radar imaging using Bayesian compressive sensing
Xu et al. Backward projection imaging of through-wall radar based on airspace nonuniform sampling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Wu Li

Inventor after: Ge Lingyu

Inventor after: Zhu Jiaqi

Inventor after: Peng Shusheng

Inventor after: Xu Jingyao

Inventor before: Ge Lingyu

Inventor before: Zhu Jiaqi

Inventor before: Wu Li

Inventor before: Peng Shusheng

Inventor before: Xu Jingyao

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant